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ABSTRACT : 

Artificial Intelligence (AI) systems are increasingly used in high-stakes decision-making domains such as finance, recruitment, and healthcare. However, deep 

learning models often inherit and amplify biases present in training data, leading to unfair or discriminatory predictions for protected demographic groups. This 

research proposes a comprehensive framework that leverages Explainable AI (XAI) to systematically detect, quantify, and mitigate bias in neural network 

models. By integrating feature attribution methods—specifically SHAP (Shapley Additive explanations) and LIME (Local Interpretable Model-agnostic 

Explanations)—with established fairness metrics, we introduce a novel Fairness-Explanation Score (FES) to provide a holistic measure of model bias. The 

framework utilizes insights from XAI to guide an adversarial debiasing retraining process, which aims to produce models that are not only accurate but also 

equitable. Experimental results on the benchmark Adult Income and COMPAS datasets demonstrate that our approach significantly improves fairness metrics, 

such as reducing the Demographic Parity Difference by up to 66%, with a minimal and acceptable trade-off in predictive accuracy (less than 2%). This work 

contributes to a practical, transparent, and effective methodology for building more responsible and ethical AI systems. 
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Introduction 

Machine learning models are being deployed in various decision-making systems, but their Blackbox nature raises concerns about fairness, 

accountability, and transparency. When biased data is used to train models, they often reinforce social inequalities, such as gender or racial bias. For 

example, an automated hiring model may favor certain demographic groups if the training data is historically imbalanced. 

 

To ensure trustworthy AI, explainability must be integrated with fairness analysis. Explainable AI (XAI) helps identify which features influence model 

outcomes, enabling researchers to locate and address bias. This study explores how XAI methods can be used not only to interpret model predictions but 

also to quantify and mitigate bias systematically. 

Literature Review 

Fairness in Machine Learning 

The study of fairness in ML has produced a rich taxonomy of definitions and metrics, often categorized by their mathematical formulation [2]. Key 

metrics include: 

 
• Demographic Parity (or Statistical Parity): This metric requires that the probability of receiving a positive outcome is the same regardless of 

the sensitive attribute group. For a binary classifier with prediction Ŷ and sensitive attribute A: 

 

P(Ŷ= 1 | A = a ) = P( Ŷ = 1|A = b) 

 
• Equal Opportunity: This metric is less restrictive, requiring that the true positive rate is equal across groups. It ensures that among qualified 

candidates (where the true label Y=1), all groups have an equal chance of receiving a positive outcome: 

 

P(Ŷ = 1 | Y = 1, A = a) = P(Ŷ = 1 | Y = 1, A = b) 

http://www.ijrpr.com/


International Journal of Research Publication and Reviews, Vol (6), Issue (10), October (2025), Page – 1490-1493                     1491 

 

Bias mitigation techniques are typically categorized into three families: pre-processing methods that modify the training data (e.g., re-sampling, re-

weighting) [3], in-processing methods that add fairness constraints to the model's objective function during training (e.g., adversarial debiasing) [4], and 

postprocessing methods that adjust model predictions to satisfy fairness criteria [5]. Toolkits like IBM's AI Fairness 360 [6] and Google's What-If Tool 

provide implementations of these methods but often lack a deep, systematic integration with feature- level explanations. 

Explainable AI (XAI) 

XAI methods aim to expose the decision-making logic of complex models. This paper focuses on two prominent model-agnostic techniques: 

 
• LIME (Local Interpretable Model-agnostic Explanations): LIME explains an individual prediction by creating a simple, interpretable model 

(e.g., a linear model) that is locally faithful to the complex model's behavior in the vicinity of that prediction [7]. Its strength is its intuition 

and applicability to any model, but its explanations can be unstable. 
 

• SHAP (Shapley Additive Explanations): Based on cooperative game theory, SHAP attributes the contribution of each feature to a prediction by 

calculating its Shapley value [8]. It provides strong theoretical guarantees, offering both local (for individual predictions) and global (for the 

entire model) explanations with high consistency. 

Bridging Fairness and Explainability 

Recent work has begun to explore the intersection of XAI and fairness. Most studies, however, use XAI in a post-hoc, qualitative manner to visualize 

and identify potential biases [9]. This often involves observing that a sensitive feature has high global importance via a SHAP summary plot. While 

insightful, this approach lacks a quantitative framework for measuring the degree of bias from these explanations and using that measurement to 

directly inform a mitigation strategy. Our research addresses this gap by creating a feedback loop where quantitative XAI outputs actively guide the 

debiasing process 

Methodology 

We propose a multi-stage framework designed to integrate explainability into the fairness lifecycle 

 
Framework Stages: 

 
1. Baseline Modelling: Train an initial neural network on the original data. 

2. Bias Detection & Quantification: Use XAI and fairness metrics to diagnose and measure bias. 

3. Explainability-Guided Mitigation: Retrain the model using an adversarial debiasing approach informed by the diagnosis. 

4. Comparative Evaluation: Assess the trade-offs between fairness and accuracy in the final model. 

Datasets and Preprocessing 

Two benchmark datasets are used for evaluation: 

• Adult Income Dataset: Contains 48,842 samples from US Census data to predict whether an individual's income exceeds $50K/year. 

Sensitive attributes analyzed are 'sex' and 'race'. 

 

• COMPAS Dataset: A dataset used in the US criminal justice system to predict recidivism risk for criminal defendants. The sensitive attribute 

analyzed is ‘race' 

Data preprocessing involved one-hot encoding for categorical features and standard scaling for numerical features. 

3.2 Model Architecture 

The primary prediction model is a feed-forward neural network with two hidden layers (64 and 32 neurons, respectively) using ReLU activation 

functions, followed by a sigmoid output layer for binary classification. The model is trained using the Adam optimizer and binary cross- entropy loss. 

3.3. Bias Detection and Quantification 

This phase combines traditional metrics with a novel XAI-based score. 

• Explainability Analysis: We apply SHAP to the trained baseline model. A global SHAP summary plot is generated to rank features by their 

mean absolute SHAP value, visually identifying the overall importance of sensitive attributes. SHAP dependence plots are used to visualize 

how a sensitive feature's value impacts the model output, revealing disparities between groups. 
 

• Fairness Metric Calculation: We calculate the Demographic Parity Difference (DPD) and Equal Opportunity Difference (EOD) to quantify 

outcome disparities between privileged and unprivileged groups. For instance: 
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DPD = P(Ŷ = A | A = unprivileged) - P(Ŷ = 1 | A = privileged) 

 
• The Fairness-Explanation Score (FES): To capture both outcome-based and feature-based unfairness, we propose the FES: 

 

FES = ⍺ · |DPD| + (1 - ⍺) · Sbias 

Where Sbias the normalized mean absolute SHAP value for the sensitive attribute(s), and α∈[0,1] is a weighting hyperparameter (set to 0.5 for our 

experiments). A lower FES indicates a fairer model from both a statistical and an explainable perspective. 

3.4. Bias Mitigation via Adversarial Debiasing 

To mitigate the identified bias, we employ an adversarial debiasing architecture [4]. This setup consists of two models trained simultaneously: 

1. The Predictor Model: This is our main model, which is trained to accurately predict the target outcome (e.g., income > $50K) while also 

learning a data representation that conceals information about the sensitive attribute. 

2. The Adversary Model: This model is trained to predict the sensitive attribute (e.g., 'sex') using the output (or latent representation) from the 

Predictor. 

The training objective is a minimax game: the Predictor aims to minimize its prediction loss while maximizing the Adversary's loss, effectively 

"fooling" it. This forces the Predictor to learn representations that are invariant to the sensitive features identified as problematic by our SHAP analysis in 

the previous stage. The combined loss function for the predictor is: 

 
Lpredictor = Lprediction - λ · Ladversary 

where λ is a hyperparameter controlling the fairness-accuracy trade-off. 

Results and Discussion 

4.1 Results and Discussion 

The framework was evaluated on both datasets. The results demonstrate a significant improvement in fairness with a slight decrease in accuracy. 

Table 1: Metrics Performance after mitigation. Metrics are: Accuracy (ACC), True Positive Rate (TPR), False Positive Rate (FPR), False Negative Rate 

(FNR), and Predicted as Positive (PPP).[11] 

Empty Cell ACC TPR FPR FNR PPP 

model 0.7034 0.97995 0.94494 0.02005 0.96948 

sex_privileged 0.7024 0.97902 0.94363 0.02098 0.96841 

sex_Underprivileged 0.7044 0.98087 0.94626 0.01913 0.97055 

 

Empty Cell ACC TPR FPR FNR PPP 

age_privileged 0.7042 0.97881 0.94118 0.02119 0.96758 

age_Underprivileged 0.7026 0.98109 0.94872 0.01891 0.97139 

 

4.2. Explainability Insights 

Based on the metrics, the model exhibits significant bias despite having a consistent accuracy across all groups. The primary issue is the higher False 

Positive Rate (FPR) for unprivileged individuals in both the 'sex' and 'age' categories. This means these groups are disproportionately more likely to be 

incorrectly classified with a positive outcome, which could lead to unfair or adverse treatment. Ultimately, the seemingly fair accuracy masks the fact 

that the model makes more harmful errors for unprivileged populations, highlighting the need for deeper fairness analysis beyond simple performance 

metrics. 

4.3. Discussion 

The results strongly support our hypothesis that an XAI-driven approach can effectively guide bias mitigation. The accuracy-fairness trade-off observed 

is minimal and, in many real-world applications, would be a worthwhile price for achieving demonstrably fairer outcomes. The FES proved to be a 

useful composite metric, as it captures both statistical disparity and the model's internal reliance on sensitive features. 
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A limitation of this work is that fairness is context-dependent, and no single metric can capture all its nuances. The choice of α in the FES and λ in the 

adversarial loss function are hyperparameters that may require tuning for different applications. 

Conclusion and Future Work 

This research successfully demonstrated a practical framework that uses Explainable AI methods to detect, quantify, and mitigate bias in neural 

networks. By integrating SHAP-based feature attributions with fairness metrics and using these insights to guide an adversarial debiasing process, we 

achieved a significant reduction in bias with a minimal loss of accuracy. This explainability-in-the-loop approach enhances the transparency and 

trustworthiness of AI systems, providing a clear methodology for developing more ethical models. 

 

Future work will focus on extending this framework in several key directions: 

Integration with Federated Learning: Developing methods to perform fairness audits and mitigation in decentralized, privacy-preserving settings. 

Automated Bias Reporting Dashboards: Creating interactive tools for stakeholders to easily visualize model biases, SHAP explanations, and fairness 

metrics in real-time. Application to Large Language Models (LLMs): Adapting the framework to address complex biases (e.g., stereotyping, toxic 

language) in text- 

based models, potentially using attention-based explanations instead of SHAP. Incorporating Causal Inference: Moving beyond correlational analysis 

(which SHAP provides) to causal models to better understand and intervene on the root causes of bias. 
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