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ABSTRACT : 

Background 

Artificial intelligence (AI) is increasingly applied in pharmacovigilance (PV) to support automated signal detection, case processing, and literature analysis. 

However, lack of transparency in many machine learning models creates challenges for regulators and healthcare professionals, who must understand model 

rationale to trust safety decisions. 

Methods 

A narrative review was conducted by searching PubMed, Google Scholar, and arXiv (2015–2025) using keywords such as 'explainable AI,' 'XAI,' 

'pharmacovigilance,' and 'signal detection.' Relevant peer-reviewed studies, regulatory guidance documents, and high-quality preprints were included. 

Results 

Explainable AI (XAI) methods including SHAP, LIME, surrogate models, attention visualizations, and counterfactual explanations improve interpretability of AI 

systems in PV. Applications include case triage, adverse drug reaction extraction, signal detection augmentation, EHR data mining, and drift monitoring. Key 

challenges include explanation instability, computational cost, regulatory reporting, and clinical usability. 

Conclusion 

XAI provides a pragmatic path toward accountable AI-assisted PV. Adoption will require standardized reporting, regulatory alignment, and integration of human-

in-the-loop workflows. With rigorous validation and documentation, XAI can strengthen trust and improve drug safety decisions. 
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Explainable AI in Pharmacovigilance : Challenges & Opportunities 

ABSTRACT : 

Artificial intelligence (AI) is increasingly applied in pharmacovigilance (PV) to support automated signal detection, case processing, and literature analysis. 

However, lack of transparency in many machine learning models creates challenges for regulators and healthcare professionals, who must understand model 

rationale to trust safety decisions. Explainable AI (XAI) provides tools such as SHAP, LIME, surrogate models, and counterfactual explanations to make model 

predictions more interpretable. These methods can improve reviewer acceptance, support regulatory decision-making, and enhance drug safety assessments. 

This narrative review synthesizes recent developments in XAI for PV, summarizing methods, applications, and limitations. Literature was searched across 

PubMed, Google Scholar, and arXiv (2015–2025) using terms including “explainable AI,” “XAI,” “pharmacovigilance,” and “signal detection.” Findings indicate 

that while XAI enhances interpretability, challenges remain in explanation stability, computational cost, and clinical usability. Practical applications include case 

triage, adverse drug reaction extraction, disproportionality augmentation, EHR data mining, and drift monitoring. 

Overall, XAI offers a pragmatic path toward accountable AI-assisted pharmacovigilance. Wider adoption will require standardized reporting, regulatory 

alignment, and integration of human-in-the-loop workflows. With rigorous validation and clear documentation, XAI can help PV teams detect and respond to 

safety concerns more transparently, improving trust and patient safety. 

http://www.ijrpr.com/
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Introduction : 

Pharmacovigilance (PV) is the science that focuses on finding, checking, understanding, and preventing harmful effects or any other problems related 

to medicines once they are available in the market[15,16,17]. Traditional PV relies heavily on manual review of individual case safety reports (ICSRs), 

spontaneous reporting systems, literature scanning, and signal evaluation by expert committees[16,17,18]. The volume, velocity and variety of safety-

relevant data have increased dramatically due to electronic health records (EHR), real-world evidence sources, social media, and large institutional 

databases[7,23,24]. These changes have made manual processes slower and less scalable. 

Artificial intelligence (AI) and machine learning (ML) methods are now used to support and accelerate many PV workflows: automated case triage, 

natural language processing (NLP) for ADR extraction from narratives, duplicate detection, and algorithmic signal detection[7,20,21]. While these 

models can increase efficiency and sensitivity, many high-performing algorithms are opaque; they provide little explanation about why a particular 

report was prioritized or why a signal was generated[4,13,14]. For safety-critical work such as PV, this lack of transparency poses practical and 

regulatory problems: reviewers and regulators must understand model rationale to trust, justify, and audit safety decisions[15,23]. 

The main purpose of Explainable AI (XAI) is to make the working and decisions of AI models easier for humans to understand. Explanation methods 

range from local feature attribution (why did the model make this single prediction?) to global surrogate models (what rules does the model generally 

follow?), to counterfactuals (what minimal change would flip this decision?)[2,3,5,6,10,12]. For PV, XAI promises clearer traceability, improved 

reviewer acceptance, and stronger regulatory alignment — provided explanations are validated, stable, and clinically meaningful[1,8,19]. This review 

examines XAI techniques applicable to PV, practical use cases, key challenges to adoption, and recommended pathways to operationalize XAI in real-

world safety  

Methods : 

This narrative review was conducted by searching peer-reviewed literature and authoritative reports published between 2015 and 2025. Databases 

searched included PubMed/PMC, Google Scholar and arXiv using combinations of keywords: “explainable AI”, “XAI”, “pharmacovigilance”, “signal 

detection”, “SHAP”, “LIME”, “adverse drug reaction” and related terms. Priority was given to articles reporting XAI methods applied to 

pharmacovigilance or clinical safety[1,8,19,20,21].  Regulatory guidance documents concerning AI/ML in healthcare[15,23] and recent systematic or 

scoping reviews on model interpretability in medical AI. Where recent high-quality preprints described promising techniques relevant to PV, these were 

considered but clearly marked as non-peer-reviewed. The goal was to produce a practitioner-oriented synthesis highlighting methods, applications, 

challenges, and pragmatic recommendations rather than a formal systematic review. Selected representative studies and guidance documents are cited 

in the References section [1-25]for readers seeking deeper technical detail. 

Explainable AI Techniques Relevant to  Pharmacovigilance : 

1. Feature Attribution (Local Explanations) 

Feature attribution methods describe why a model gave a certain result by giving importance scores to the input features. The most common tools used 

in XAI are SHAP and LIME, which explain model decisions in different ways[2,3,19]. SHAP uses concepts from game theory to compute each 

feature’s contribution fairly; it supports both local (single prediction) and global (aggregate) views.LIME creates simple and understandable model near 

the data point to show why the complex model gave that prediction. In PV, feature attribution can show why a case was prioritized (e.g., seriousness 

criteria, specific symptoms, drug exposure duration). SHAP has a few limits, such as being influenced by overlapping features and requiring a lot of 

computer resources[3,4,9] to get precise results on very large data. 

2. Surrogate and Rule-Based Models 

Surrogate models are interpretable approximations (for example, shallow decision trees) trained to mimic a complex model’s behaviour[6,11,12] in a 

local region or globally. They produce human-readable rules which can be audited. Rule-based explanations are immediately comprehensible to safety 

reviewers but may sacrifice fidelity — the surrogate may not perfectly reflect complex model decision boundaries. Practically, surrogate models work 

well as an initial explanation layer, supplemented by local attribution for edge cases. 

3. Attention and Token-Level Visualizations  (NLP) 

In pharmacovigilance, many recent NLP models that read case reports and medical articles work with attention techniques [9,10,20]to highlight 

important parts of the text. Attention scores can highlight tokens or phrases (e.g., “onset 3 days”, “hospitalized”) that influenced the prediction. While 

attention provides intuitive visual cues for reviewers, attention weights do not always equal causal importance;[4,9] they should be interpreted 

cautiously and validated against other XAI methods. 

4. Counterfactual Explanations 

Counterfactuals describe minimal, plausible changes to input that would change a model’s decision[4,13,21]. Example: adding “hospitalized” to a case 

narrative could change a classification from non-serious to serious ADR. Counterfactuals align with clinical reasoning and are particularly useful for 

actionable feedback: they tell reviewers what factors materially affect classification. Constraints are needed to ensure counterfactuals remain clinically 

plausible. 

5. Global Explanation and Model-Level  Diagnostics 

Global explanation techniques summarize model behavior across many predictions. Examples include aggregated SHAP summary plots, partial 

dependence plots (for continuous features), and global surrogate rules[3,6,12]. These diagnostics help PV teams understand model biases, common 

drivers of alerts, and subgroup behavior (e.g., age groups or comorbidities driving signals). 
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6. Causal and Mechanistic Approaches 

Causal XAI integrates causal inference with explainability[5,21] to move beyond correlation toward possible causal drivers. For PV, causal methods 

can help distinguish spurious associations from plausible drug-event relationships, reducing false positives in signal detection. However, causal 

modeling requires careful confounder control and often richer structured data. 

7. Stability, Fidelity and Evaluation Metrics for  Explanations 

A recurring technical challenge is evaluating explanations: fidelity (how well the explanation reflects the model), stability (consistency of explanation 

under small input/model changes), and human-grounded evaluation (do domain experts find the explanation useful?)[4,9,12]. PV systems should report 

explanation metrics and include expert validation loops to establish trust. 

8. Practical stack 

A practical XAI stack for PV often combines multiple methods: global diagnostics to monitor model behavior; SHAP or similar for local attributions; 

attention or token-highlighting for NLP outputs; and surrogate rules or counterfactuals for human-readable explanations. Combining methods reduces 

single-tool limitations and gives reviewers complementary views. 

Applications in Pharmacovigilance : 

I. Case Triage and Prioritization 

One immediate use of XAI is to support case triage. Automated models can flag ICSRs likely to be serious or high priority. When paired with 

explanations (for example, SHAP values showing that “hospitalization” and “age >65” strongly influenced the decision), reviewers can quickly assess 

the rationale and confirm or override triage decisions[1,19,20]. Explanations help reduce reviewer workload while maintaining safety oversight. 

II. ADR Extraction from Narrative Reports 

NLP models extract entities (drug names, symptoms, timings) from free-text narratives. XAI methods — token attention maps, integrated gradients, or 

local attribution — allow reviewers to see which phrases drove the extraction[20,21]. This is valuable for error analysis and improving NLP pipelines, 

especially when narratives are multilingual or noisy. 

III. Signal Detection and Disproportionality  Augmentation 

Traditional signal detection uses statistical disproportionality measures (e.g., PRR, ROR). ML-based classifiers[1,7,19,23,24] can augment these 

methods by integrating multiple data sources and predicting the likelihood that a drug-event pair is a true signal. XAI then documents the features 

supporting each candidate signal (report counts by subgroup, temporal clustering), enabling safety committees to prioritize and interpret signals with 

more confidence. 

IV. EHR and Real-World Data Mining 

EHRs and claims data can reveal patterns not obvious in spontaneous reports. XAI tools highlight patient subgroups[7,23,24] or covariates that drive 

model alerts, such as co-medications or comorbidities. This subgroup transparency is crucial when deciding whether a statistical association is clinically 

meaningful. 

V. Post-Deployment Monitoring and Drift  Detection 

XAI supports post-deployment monitoring by revealing shifts in feature importance or unexpected drivers of model [9,12,14]output over time. Sudden 

changes in global explanation patterns can signal data drift, prompting retraining or human review before safety decisions are affected. 

Challenges : 

a) Data Quality and Heterogeneity 

PV datasets are heterogeneous and often sparse:[16,17,18,22] spontaneous reports have variable completeness, ICSRs use different terminologies, free 

text may be noisy, and EHR data contain coding differences. Poor data quality undermines both model performance and the reliability of explanations. 

b) Explanation Instability and Method  Variability 

Different XAI tools can return divergent explanations[3,4,9] for the same prediction. For instance, SHAP and LIME may prioritize different features in 

correlated settings. Instability reduces reviewer confidence and complicates regulatory audit trails. 

c) Bias, Fairness and Representativeness 

Training data biases (underreporting from certain regions or populations) lead to skewed models and misleading explanations[13,14,22]. Explanations 

may obscure these biases unless teams proactively evaluate fairness and subgroup performance. 

d) Regulatory and Audit Requirements 

Regulatory agencies ask for documentation on model development, validation, intended use, and monitoring. Explanations must be reproducible and 

traceable (what version of the model, which parameters)[15,23]. Lack of standardized reporting for XAI hinders regulatory review. 

e) Human–AI Interaction and Usability 

Raw explanation outputs (plots of SHAP values, attention heatmaps) are technical. Safety reviewers and clinicians need concise, clinically meaningful 

explanations integrated into workflows. Building user-friendly explanation dashboards and training users are necessary but resource-

intensive[6,10,12,14]. 

f) Reproducibility and MLOps Maturity 

Producing stable explanations requires mature ML-ops: [4,9,12] versioned datasets, deterministic preprocessing, fixed random seeds, and reproducible 

model builds. Many PV teams lack this infrastructure, making consistent explanations difficult. 

g) Evaluation and Ground Truth 

There is no single ground truth for explanations[4,9,12]. Evaluating explanation usefulness requires human expert studies, task-oriented metrics, and 

often iterative design. 
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Opportunities and Recommended Actions : 

A. Human-in-the-Loop Workflows 

Design workflows where AI suggests triage or signals and human experts validate them with explanation artifacts. Iterative feedback improves both 

models and explanations. 

B. Standardize Explanation Reporting 

Adopt a minimal reporting standard for any AI-driven PV decision: report model version, XAI method and parameters, top contributing features, and 

an expert validation statement. 

C. Develop Benchmarks and Shared Data 

Create anonymized, annotated benchmark datasets for ADR extraction and signal evaluation. Shared tasks accelerate method comparison and 

reproducibility. 

D. Advance Causal XAI 

Investigation of causal frameworks can help distinguish confounding from plausible causal effects, improving signal specificity. 

E. Adopt Privacy-Preserving Collaboration 

Federated learning and secure aggregation allow multi-centre model improvement without sharing raw patient data; explanations can be computed 

locally and shared as aggregated artifacts. 

F. Align with Regulatory Best Practice 

Follow Good Machine Learning Practice (GMLP) principles: versioning, documentation, risk-based validation and post-deployment monitoring. 

Engage regulators early when planning AI-augmented PV systems. 

Discussion : 

Explainable AI offers a pragmatic path to trustworthy, AI-assisted pharmacovigilance. The combination of local attribution methods (e.g., SHAP), 

interpretable surrogates, attention visualization for NLP, and counterfactuals provides complementary perspectives that address both technical and 

human needs. However, XAI is not a silver bullet: it cannot fix poor data or absent clinical knowledge. Implementation requires careful validation with 

domain experts, robust MLOps to ensure reproducibility, and clear documentation to meet audit demands. 

Operational adoption should be incremental: start with pilot tasks (case triage, ADR extraction) where explanations are evaluated by reviewers, 

measure impact on review time and decision quality, and iterate. Over time, benchmarks, community standards, causal approaches, and better interfaces 

will enable wider adoption and regulatory confidence. Ultimately, XAI must be judged by whether it measurably improves safety decisions and 

supports accountable, transparent PV practice. 

Conclusion : 

Explainable AI can substantially improve the transparency and acceptability of AI-assisted pharmacovigilance if implemented with rigorous validation, 

documentation, and human oversight. Combining multiple XAI methods, investing in benchmark data, following GMLP principles, and designing 

human-centred explanation interfaces will accelerate trustworthy adoption. With such steps, XAI can help PV teams detect and respond to safety 

concerns faster, while preserving the interpretability and audit ability required by regulators and clinicians. 
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