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ABSTRACT : 

As deep learning models continue to grow in complexity, the computational and energy demands associated with their training and deployment are becoming 

increasingly significant, particularly for convolutional neural networks (CNNs) deployed on CPU-bound and resource- limited devices. Fully connected (FC) 

layers, while vital, are energy-intensive, accounting for 85.7% of a network’s parameters but contributing only 1% of the computations. This research proposes a 

novel approach to optimising these layers for greater energy efficiency by integrating low-rank factorisation with differential partial differential equations (PDEs). 

The introduction of the LowRankDense layer, which combines low-rank matrix factorisation with a differential PDE solver, aims to reduce both the parameter 

count and energy consumption of FC layers. Experiments conducted on the MNIST, Fashion MNIST, and CIFAR-10 datasets demonstrate the effectiveness of 

this approach, yielding promising results in terms of reduced energy usage and maintaining comparable performance, thereby enhancing the practicality and 

sustainability of CNNs for widespread use in environments with limited computational resources. 

Introduction : 

Convolutional neural networks (CNNs) have emerged as foundational tools across a broad spectrum of applications, from drug discovery to human-

machine interactions [1]–[3]. These architectures are known for their ability to capture complex patterns in data, yet their success comes with significant 

demands on computational resources [4], [5]. As CNNs have become more sophisticated, the energy required for both training [6]–[8] and inference [9] 

has surged, raising concerns about the sustainability of such approaches, especially in energy-constrained environments. 

Among the various components of a CNN, the training phase stands out as particularly resourcein- tensive [10]. During this phase, CNNs undergo 

iterative processes to optimise their performance, transforming and storing data across multiple layers [11]. This not only necessitates considerable 

computational power but also results in high energy consumption, a challenge that becomes more pronounced as networks grow in complexity. 

Addressing energy efficiency during training is crucial, as it not only determines the immediate resource usage but also influences the long-term 

operational efficiency of the model. 

A critical yet energy-intensive component of CNNs is the fully connected (FC) layer [12]. Despite constituting a small fraction of the computational 

workload—contributing only 1 percent of the operations—FC layers are responsible for a disproportionate 85.7 percent of the network’s parameters [13], 

[14]. This imbalance highlights the need for targeted optimisations in the design of FC layers to reduce their energy footprint without compromising model 

performance[15]. In this work, we focus 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1: Low Rank Factorisation 
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on designing lightweight, dense layers to tackle the challenges posed by the energy-intensive nature of fully connected layers in CNNs. 

Background Study 

In this section, we discuss some of the recent work focused on dense layers. The work [16] has replaced matrix multiplication with matrix factorisation 

to reduce the parameters of the dense layer. However, this study also addresses convolutional layers, and thus the impact specifically on dense layers is 

not thoroughly explored. Another study [17] replaces exact adders and multipliers in the MAC blocks with approximate ones to reduce the parameters 

of dense layers. While this approach aims to lower energy consumption, it does not fully address the tradeoff between energy efficiency and 

performance efficiency in dense layers. Similarly, [18] introduced parameter sharing within dense layers to reduce computation overhead, but the impact on 

the energy-performance tradeoff remains unclear. Additionally, [19] focused on compressing the weight matrix through permutation, yet this method 

does not provide a comprehensive analysis of energy and performance efficiency. Overall, existing research lacks a focused investigation into designing 

dense layers with a clear emphasis on reducing the tradeoff between energy efficiency and performance efficiency. 

Methodology : 

In this work, we propose a modified version of the dense layer, termed the LightDense, which integrates low-rank factorisation, a PDE-based update 

mechanism, and subsequent Normalisation. The design and implementation of this layer are as follows: 

Low-Rank Factorisation 

The weight matrix of the dense layer is decomposed into two smaller matrices, significantly reducing the overall number of parameters. Specifically, the 

factorisation is achieved using two weight matrices, W1 and W2, where W1 has a smaller rank compared to the original weight matrix. This approach aims 

to maintain the expressiveness of the model while lowering the computational burden and memory usage.Figure 1 shows the low rank computation 

performed. 

 

Let W be the original weight matrix with dimensions m × n. The number of parameters in this dense layer is: 

Parametersoriginal = m × n (1) 

After low-rank Factorisation, W is approximated by: 

W ≈ W1W2         (2) 

where W1 is m × r and W2 is r × n. The number of parameters now is: 

Parametersfactorized = (m × r) + (r × n) (3) 

Since r is much smaller than m and n, we have: 

(m × r) + (r × n) < m × n (4) 

 

 

 

 

 

 

 

 

 
Figure 2: Evaluation with Fashion MNIST dataset 

Differential PDE Solver 

To enhance the adaptability of the layer to varying input data, we introduce a simple PDE solver that simulates update mechanism that allows the model to 

respond more effectively to changes in the input, potentially leading to improved performance and reduced energy consumption during training. Given a 

matrix z and a PDE solver that models dynamics, the updated matrix zpde_solved is given by: 

zpde_solved = z + ∆t · 
∂z 

+ v · ∇z (5) 
∂t 

where: 

• z is the original matrix. 

• ∆t is the time step used in the PDE solver. 
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∂t 

i j 

• ∂z represents the temporal rate of change of z. 

• v is the velocity field vector representing advection dynamics. 

• ∇z denotes the spatial gradient of z. 

Normalisation 

After applying the PDE solver, a Normalisation step is included to stabilize the activations and improve convergence. This Normalisation ensures that 

the updated activations are appropriately scaled, addressing issues related to vanishing or exploding gradients and thereby contributing to more robust 

training dynamics. 

 

Given the matrix zpde_solved, the L2 Normalisation is applied as follows: 

The normalised value znormalised is given by: 

 

zpde_solved 

znormalised = 
 zpde_solved  

                                                                                                                                                                                        (6) 

 

where the L2 norm of zpde_solved is: 

zpde_solved  2 = 

sΣ Σ
(zpde_solved[i, j])2 (7) 

 

For Normalisation along a specific axis, it can be written as: 

 

 

 

 

This combination of low-rank Factorisation, dynamic PDE-based updates, and Normalisation in the LowRankDense layer provides a novel approach to 

improving the efficiency and effectiveness of dense layers within CNNs, particularly in the context of reducing energy consumption during training. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Evaluation with MNIST dataset 

 

 

 

 

 

 
 

 

 

 

Figure 4: Evaluation with CIFAR-10 dataset 
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Layer (type) Output Shape Param # 

InputLayer (None, 32, 32, 3) 0 

Conv2D (None, 30, 30, 32) 896 

MaxPool2D (None, 15, 15, 32) 0 

Conv2D (None, 13, 13, 64) 18,496 

MaxPool2D (None, 6, 6, 64) 0 

Conv2D (None, 4, 4, 64) 36,928 

GAP2D (None, 64) 0 

LightDense (None, 128) 1,664 

LightDense (None, 100) 1,924 

 

Layer (type) Output Shape Param # 

InputLayer (None, 32, 32, 3) 0 

Conv2D (None, 30, 30, 32) 896 

MaxPooling2D (None, 15, 15, 32) 0 

Conv2D (None, 13, 13, 64) 18,496 

MaxPooling2D (None, 6, 6, 64) 0 

Conv2D (None, 4, 4, 64) 36,928 

GAP2D (None, 64) 0 

Dense (None, 128) 8,320 

Dense (None, 100) 12,900 

 

Experiments : 

The experimental setup involves training the model using standard datasets including MNIST, CIFAR- 10, CIFAR-100, and FASHION-MNIST. We 

evaluate the performance of our proposed dense layer by comparing it with traditional dense layers in terms of both energy consumption and accuracy. 

To quantify the impact of our proposed layer on computational efficiency, we use the pyRAPL tool for energy measurement. All experiments are 

conducted on an AMD Ryzen CPU, ensuring a consistent and controlled environment for performance evaluation.Table 1 and 2 illustrate the model 

architecture utilized for testing. Our experimental results illustrate that the custom Dense layer 

 

        Table 1: CNN with Light Dense                                                  Table 2: CNN without Light Dense 

 

consistently outperforms the standard Dense layer across the following datasets FashionMNIST, MNIST, and CIFAR-10, in terms of energy efficiency, 

accuracy, and performance.Figures 3,Fig.2 and Fig.4 demonstrates the results.It demonstrates lower overall energy consumption and Energy-Delay 

Product (EDP) values while achieving higher or comparable accuracy, particularly evident in the MNIST dataset where it outperforms in accuracy and 

reduces operational energy per joule (OPJ). The custom layer also shows improvements in memory access energy, particularly in the CIFAR-10 dataset, 

indicating better optimization for energy usage without compromising on model accuracy or validation performance. 

Conclusion : 

In conclusion, this research highlights the critical need to address the energy inefficiencies of fully connected (FC) layers in convolutional neural 

networks (CNNs), particularly for deployments on CPU-bound and resource-constrained devices. By introducing the LowRankDense layer named 

as Lightdense, which effectively combines low-rank matrix Factorisation with differential Partial Differential Equations (PDEs), we have demonstrated a 

promising strategy for reducing both param- eter count and energy consumption without sacrificing performance. The experimental results on the 

MNIST dataset validate the efficacy of this approach, showing significant reductions in energy usage while maintaining comparable accuracy. This 

work not only advances the state-of-the-art in energy-efficient deep learning but also contributes to the sustainability of CNNs in diverse application 

scenarios, particularly in environments where computational resources are limited. Future work will explore the generalisability of this approach to 

more complex datasets and broader network architectures, further evaluating its potential for widespread adoption. 
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