

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

TRIBONACCI PRODUCT CORDIAL LABELING ON PATH RELATED GRAPHS

S.Bala¹, V.Suganya², K.Thirusangu³

^{1,2,3} Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-73
 E-mail ID: <u>lyesbala75@gmail.com</u>, <u>lsugan4kavi@gmail.com</u>

Abstract:

In this paper we investigate the existence of Tribonacci Product Cordial labeling on path related graphs.

Keywords: Graph Labeling, Tribonacci Number, Cordial labeling, Product Cordial labeling.

1. INTRODUCTION:

The concept of graph labeling was introduced by Rosa in 1967 [5]. Bala et.al., discussed the concept of Tribonacci Product Cordial Labeling [1]. An injective function $\delta : R(G) \to \{T_1, T_2, ..., T_m\}$ is said to be Tribonacci product cordial labelling if the induced function $\delta^* : B(G) \to \{0,1\}$ defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$ satisfies the condition $|b_{\delta^*}(0) - b_{\delta^*}(1)| \le 1$. A graph which admits Tribonacci Product cordial labelling is called Tribonacci product cordial graph.

Definition 1.1:Bistar

The **Bistar**B_{m,n} is the graph obtained from K_2 by joining *m* pendent edges to one end of K_2 and *n* pendent edges to the other end of K_2 . The edge of K_2 is called the central edge of B_{m,n} and the vertices of K_2 are the central vertices of B_{m,n}. It has 2m + 2 vertices and 2m + 1 edges.

Definition 1.2:Bi-Double star

By attaching *m* copies of P_2 (path of length 2) in one end of K_2 and *n* copies of P_2 (path of length 2) in other end of K_2 we get a **Bi-Double Star**. Bi-Double star has 4m + 2 vertices and 4m + 1 edges.

Definition 1.3: Triangular snake

The **Triangular snake** T_m is obtained from the path P_m by replacing each edge of the path by a triangle C_3 . It has 2m - 1 vertices and 3(m - 1) edges.

Definition 1.4:Coconut tree

A Coconut tree CT(m,n) is the graph obtained from the path P_m by appending new pendent n edges at an end vertex of P_m . It has m + n vertices and m + n + 1 edges.

Definition 1.5: Total graph of path

Total graph T(G) is a graph with the vertex set $R(G) \cup B(G)$ in which two vertices are adjacent whenever they are either adjacent or incident in G.A **Total graph of path** has 2m - 1 vertices and 4m - 5 edges, the vertex set and the edge set of $T(P_m)$ be $R(T(P_m)) = \{u_1, u_2, ..., u_m, r_1, r_2, ..., r_{m-1}\}$ and $B(T(P_m)) = \{u_i u_{i+1}; 1 \le i \le m - 1\} \cup \{r_i r_{i+1}; 1 \le i \le m - 2\} \cup \{r_i u_{i+1}; 1 \le i \le m - 1\} \cup \{u_i r_i; 1 \le i \le$

2. MAIN RESULT

In this section we investigate the existence of Tribonacci Product Cordial Labeling on Total graph of Path, Bistar, Bi-Double star, Triangular Snake graph, Coconut tree graph.

THEOREM 2.1

Total graph of path $T(P_m)$ admits Tribonacci product cordial labeling

Proof

From the structure of Total graph of path $T(P_m)$, it is clear that it has 2m - 1 vertices and 4m - 5 edges.

Define the function $\delta: \mathbb{R} \to \{\{T_1, T_2, T_3, \dots, T_n\}\}$ to label the vertex as follows:

Case(i): $m \equiv 1 \pmod{2}$

For $1 \le i \le \frac{m+1}{2}$

(i)
$$\delta(r_i) = T_{4i-3}$$

For $1 \le i \le \frac{m-1}{2}$

(ii)
$$\delta\left(r_{\frac{m-1}{2}+i+1}\right) = T_{4i-1}$$

(iii) $\delta(r_{n+i}) = T_{4i-2}$
(iv) $\delta\left(r_{\frac{3m+i}{2}}\right) = T_{4i}$

Case(ii): $m \equiv 0 \pmod{2}$

For $1 \le i \le \frac{m}{2}$

(i)
$$\delta(r_i) = T_{4i-3}$$

(ii) $\delta\left(r_{\frac{m}{2}+i}\right) = T_{4i-1}$
(iii) $\delta(r_{n+i}) = T_{4i-2}$

For $1 \le i \le \frac{m}{2} - 1$

(iv)
$$\delta\left(r_{\frac{3m}{2}+i}\right) = T_{4i}$$

To obtain the edge labels, define the induced function δ^* : B \rightarrow {0,1}defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$. Thus using the induced function the edges receive the labels as follows:

Case(i): $m \equiv 1(mod2)$

For $1 \le i \le \frac{m-1}{2}$ (i) $\delta^*(r_i r_{i+1}) = 1$ (ii) $\delta^*(r_i r_{m+1}) = 1$ (iii) $\delta^*(r_{i+1} r_{m+1}) = 1$ (iv) $\delta^*\left(r_{\frac{m-1}{2}+i}r_{\frac{m-1}{2}+i+1}\right) = 0$ (v) $\delta^*\left(r_{\frac{m-1}{2}+i}r_{\frac{3m+i}{2}}\right) = 0$ (vi) $\delta^*\left(r_{\frac{m-1}{2}+i+1}r_{\frac{3m+i}{2}}\right) = 0$ For $1 \le i \le \frac{m-3}{2}$

$$\delta^*(r_{i+m}r_{m+1+i}) = 1$$

For $\frac{m-1}{2} \le i \le m-3$

(i)

(ii) $\delta^*(r_{i+m}r_{m+i+2}) = 0$

Case(ii): $m \equiv 0 \pmod{2}$

For $1 \le i \le \frac{m-2}{2}$

(i)	$\delta^*(r_ir_{i+1})$	= 1
(ii)	$\delta^*(r_ir_{n+1})$	= 1
(iii)	$\delta^*(r_{i+1}r_{n+1})$	= 1
(iv)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{m}{2}+i+1}\right)$	= 0
(v)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{3m}{2}+i}\right)$	= 0
(vi)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{3m}{2}+i}\right)$	= 0

For $1 \le i \le \frac{m-2}{2}$

(vii) $\delta^*(r_{i+m}r_{m+1+i}) = 1$

For
$$\frac{m}{2} \le i \le m - 2$$

(viii) $\delta^*(r_{i+m}r_{m+i+2}) = 0$

OUTPUT:

cases	TS_n	Label '0'	Label '1'
1	$m \equiv 1(mod2)$	$\frac{4m-4}{2}$	$\frac{4m-6}{2}$
2	$m \equiv 0 (mod2)$	$\frac{4m-4}{2}$	$\frac{4m-6}{2}$

Hence the condition $|B_{\delta^*}(0) - B_{\delta^*}(1)| \le 1$ is satisfied.

Therefore, the Total graph of path $T(P_m)$ admits Tribonacci product cordial labeling.

EXAMPLE 2.1

Tribonacci product cordial labeling for Total graph of path $T(P_6)$ and $T(P_5)$ are shown in the figure 2.1.1 and 2.1.2 respectively.

Figure2.1.1

Figure2.1.2

THEOREM 2.2

BiStar graph $K_{m,m}$ admits Tribonacci product cordial labeling

Proof

From the structure of Double Star graph $K_{m,m}$, it is clear that it has 2m + 2 vertices and 2m + 1 edges.

Define the function $\delta: \mathbb{R} \to \{\{T_1, T_2, T_3, \dots, T_n\}\}$ to label the vertex as follows:

Case(i): m = 0(mod2)

 $\begin{array}{ll} (i) & \delta(r) = T_{1} \\ (ii) & \delta(u) = T_{3} \end{array}$ For $1 \leq i \leq \frac{m}{2}$ $\begin{array}{ll} (i) & \delta(r_{2i-1}) & = T_{4i-2} \\ (ii) & \delta(r_{2i}) = T_{4i+1} \\ (iii) & \delta(u_{2i-1}) = T_{4i} \end{array}$ For $1 \leq i \leq \frac{m-2}{2} \\ (iv) & \delta(u_{2i}) & = T_{4i+3} \end{array}$ Case(ii): m = 1(mod2)

 $\delta(u_n) = T_{2n+2}$ (v) (i) $\delta(r)=T_1$ (ii) $\delta(u) = T_3$ For $1 \le i \le \frac{m+1}{2}$ (i) $\delta(r_{2i-1}) = T_{4i-2}$ (ii) $\delta(u_{2i-1})=T_{4i}$ For $1 \le i \le \frac{m-1}{2}$ $\delta(u_{2i}) = T_{4i+3}$ (i) (ii) $\delta(r_{2i}) = T_{4i+1}$

To obtain the edge labels, define the induced function δ^* : B \rightarrow {0,1}defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$. Thus using the induced function the edges receive the labels as follows:

For $1 \le i \le m$

(iii) $\delta^*(rr_i) = 1$ (iv) $\delta^*(uu_i) = \delta^*(ru) = 0$

Hence the condition $|B_{\delta^*}(0) - B_{\delta^*}(1)| \leq 1$ is satisfied.

Therefore, the BiStar graph $K_{m,m}$ admits Tribonacci product cordial labeling

EXAMPLE2.3

Tribonacci product cordial labeling for $K_{4,4}$, $K_{5,5}$ are shown in the figure 2.2.1 and 2.2.2 respectively.

Figure 2.2.1

THEOREM 2.3

Bi-Double star graph BDS_{m} , admits Tribonacci product cordial labeling

Proof

From the structure of Bi-Double star graph $BDS_{m,i}$ it is clear that it has 4m + 2 vertices and 4m + 1 edges.

Define the function $\delta: \mathbb{R} \to \{\{T_1, T_2, T_3, \dots, T_n\}\}$ to label the vertex as follows:

(i)	$\delta(r)$	$=T_1$
(ii)	$\delta(u)$	$=T_2$

For $1 \le i \le m$

(i)	$\delta(r_i) = T_{4i-1}$
(ii)	$\delta(r_{m+i}) = T_{4i}$
(iii)	$\delta(u_i) = T_{4i+1}$
(iv)	$\delta(u_{m+i}) = T_{4i+2}$

To obtain the edge labels, define the induced function δ^* : B \rightarrow {0,1}defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$. Thus using the induced function the edges receive the labels as follows:

(i)
$$\delta^*(ur) = 1$$

For $1 \le i \le m$

(ii)	$\delta^*(ru)$	= 0
(iii)	$\delta^*(r_ir_{m+i})$	= 0
(iv)	$\delta^*(uu_i)$	= 1
(v)	$\delta^*(u_i u_{m+i})$	= 1

So, $|B_{\delta^*}(0) - B_{\delta^*}(1)| = |2m - (2m + 1)| = 1$

Hence the condition $|B_{\delta^*}(0) - B_{\delta^*}(1)| \leq 1$ is satisfied.

Therefore, the Bi-Double star graph BDS_{m_i} , admits Tribonacci product cordial labeling.

EXAMPLE 2.3

Tribonacci product cordial labeling foroftheBi-Double star graph $BDS_{4,}$ is shown in the figure 2.3.1.

THEOREM 2.4

Coconut tree graph CT(m, n) admits Tribonacci product cordial labeling

Proof

From the structure of Cononut tree graph CT(m, n), it is clear that it has 2m vertices and 2m edges.

Define the function $\delta: \mathbb{R} \to \{\{T_1, T_2, T_3, \dots, T_n\}\}$ to label the vertex as follows:

$$Case(i): m, n \equiv 1 (mod2)$$

For $1 \le i \le \frac{m+1}{2}$

(i) $\delta(r_{2i-1}) = T_{4i-3}$

For $1 \le i \le \frac{m-1}{2}$

(ii)	$\delta(r_{2i})$	$=T_{4i-2}$
(iii)	$\delta(u_{2i-1})$	$=T_{4i-1}$
(iv)	$\delta(u_{2i}) = T_{4i}$	
(v)	$\delta(u_n) = T_{2n}$	ı

 $Case(ii): m, n \equiv 0 (mod2)$

For $1 \le i \le \frac{m}{2}$

(i)	$\delta(r_{2i-1})$	$=T_{4i-3}$
(ii)	$\delta(r_{2i})$	$= T_{4i-2}$
(iii)	$\delta(u_{2i-1})$	$= T_{4i-1}$
(iv)	$\delta(u_{2i})$	$=T_{4i}$

 $Case(iii): m \neq n, n = m - 1$

Subcase (i): $m \equiv 1 (mod2)$

For $1 \le i \le \frac{m+1}{2}$

(i)
$$\delta(r_{2i-1}) = T_{4i-3}$$

For $1 \le i \le \frac{m-1}{2}$

(i)	$\delta(r_{2i})$	$= T_{4i-2}$
(ii)	$\delta(u_{2i-1})$	$=T_{4i-1}$
(iii)	$\delta(u_{2i})$	$=T_{4i}$

Subcase (ii): $m \equiv 0 \pmod{2}$

For $1 \le i \le \frac{m}{2}$

(i)	$\delta(r_{2i-1})$	$= T_{4i-3}$
(ii)	$\delta(r_{2i}) = T_4$	i-2
(iii)	$\delta(u_{2i-1})$	$=T_{4i-1}$

For $1 \le i \le \frac{m-2}{2}$

(iv)
$$\delta(u_{2i}) = T_{4i}$$

To obtain the edge labels, define the induced function δ^* : B \rightarrow {0,1}defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$. Thus using the induced function the edges receive the labels as follows:

```
Case(i): m = n
```

For $1 \le i \le m - 1$

(i) $\delta^*(r_i r_{i+1}) = 1$

For $1 \le i \le m$

(ii) $\delta^*(r_n u_i) = 0$

 $Case(ii): m \neq n, n = m - 1$

For $1 \le i \le m - 1$

(i)	$\delta^*(r_ir_{i+1})$	= 1
(ii)	$\delta^*(r_n u_i)$	= 0

OUTPUT:

Cases	CT(m,n)	Label '0'	Label '1'
1	$m,n \equiv 0 (mod2)$	m-1	m
2	$m,n\equiv 1(mod2)$	m	m-1
3	m eq n, n = m-1	n	n

Hence the condition $|B_{\delta^*}(0) - B_{\delta^*}(1)| \leq 1$ is satisfied.

Therefore, the Coconet tree graphs admits Tribonacci product cordial labeling.

EXAMPLE 2.4

Tribonacci product cordial labeling for CT(5,5), CT(4,4) and CT(5,4) are shown in the figure 2.4..1, 2.4.2 and 2.4..3 respectively.

THEOREM 2.5

Triangular Snake graph TS_m admits Tribonacci product cordial labeling

Proof

From the structure of Triangular Snake graph TS_m , it is clear that it has 2m - 1 vertices and 3(m - 1) edges.

Define the function $\delta: \mathbb{R} \to \{\{T_1, T_2, T_3, \dots, T_n\}\}$ to label the vertex as follows:

Case(i): $m \equiv 1(mod2)$

For $1 \le i \le \frac{m+1}{2}$

(v) $\delta(r_i) = T_{4i-3}$

For $1 \le i \le \frac{m-1}{2}$

 $\begin{array}{ll} \text{(vi)} & & \delta\left(r_{\frac{m-1}{2}+i+}\right) & = T_{4i-1} \\ \text{(vii)} & & \delta(r_{n+i}) & = T_{4i-2} \\ \text{(viii)} & & \delta\left(r_{\frac{3m+1}{2}}\right) = T_{4i} \end{array}$

Case(ii): $m \equiv 0 \pmod{2}$

For $1 \le i \le \frac{m}{2}$

(v) $\delta(r_i) = T_{4i-3}$ (vi) $\delta\left(r_{\frac{m}{2}+i}\right) = T_{4i-1}$ (vii) $\delta(r_{n+i}) = T_{4i-2}$

For $1 \le i \le \frac{m}{2} - 1$

(viii)
$$\delta\left(r_{\frac{3m}{2}+i}\right) = T_{4i}$$

To obtain the edge labels, define the induced function δ^* : B \rightarrow {0,1}defined by $\delta^*(r_i r_j) = (\delta(r_i)\delta(r_j))(mod2)$. Thus using the induced function the edges receive the labels as follows:

Case(i): $m \equiv 1(mod2)$

For $1 \le i \le \frac{m-1}{2}$

Case(i): $m \equiv 0 \pmod{2}$

For $1 \le i \le \frac{m-2}{2}$

(ix)	$\delta^*(r_ir_{i+1})$	= 1
(x)	$\delta^*(r_i r_{n+1})$	= 1
(xi)	$\delta^*(r_{i+1}r_{n+1})$	= 1
(xii)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{m}{2}+i+1}\right)$	= 0
(xiii)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{3m}{2}+i}\right)$	= 0
(xiv)	$\delta^*\left(r_{\frac{m}{2}+i}r_{\frac{3m}{2}+i}\right)$	= 0

OUTPUT:

cases	TS_m	Label '0'	Label '1'
1	$m \equiv 1(mod2)$	3(m-1)	3(m-1)
		2	2
2	$m \equiv 0(mod2)$	3m - 5	3m - 3
		2	2

Hence the condition $|B_{\delta^*}(0) - B_{\delta^*}(1)| \le 1$ is satisfied.

Therefore, the Triangular Snake graph TS_m admits Tribonacci product cordial labeling.

EXAMPLE 2.5:

Tribonacci product cordial labeling for Triangular Snake graph TS_5 and TS_6 are shown in the figure 2.5.1 and 2.5.2 respectively.

Conclusion:

This paper, we have confirmed the existence of Tribonacci Product Cordial Labeling for Total graph of path,BiStar, Bi-Double star, and Triangular Snake graphs.

References:

- 1. Bala S, Suganya V, Thirusangu. K, Cordial labeling on Extended Triplicated Complete Bipartite Graph, IPL Journal of Management, Vol 14, N0 18, July-December2024, ISSN:2249-9040.
- Bala.S, Suganya.V, Thirusangu.K, Tribonacci product cordial labelling on some basic graphs, Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), Vol: 43 Issue: 12-2024, ISSN: 1671-5497.
- 3. Cahit.I, Cordial graphs; a weaker version of graceful and harmonious graphs, Ars Combin, 23 (1987), 201-207.

- 4. Mitra S and Bhoumik S, Fibonacci Cordial Labeling of Some Special Families of Graphs, Annals of Pure and Applied Mathematics, 21(2020), 135-140.
- 5. Rosa A H and Ghodasara G V, Fibonacci cordial labeling of some special Graphs, Annais of pure and Applied Mthematices Vol, 11, No,1,2016,133-144,ISSN-2279-087X(P), 2279-0888(online),Pubished on 29 February 2016.
- 6. Sarbari Mitra, Soumya Bhoumik, Tribonacci Cordial Labeling of Graphs, Journal of Applied Mathematics and physics, 2022, 10, 1394-1402.
- 7. Sundaram M,Ponraj R, and Somasundaram S, product cordial labelling of graphs, Bulletin of pure and Applied Science, Vol.23E(NO.1)2004.
- 8. Tessymol Abraham, Shiny Jose, Fibonacci Product Cordial Labeling, JETIR January 2019, Volume 6, Issue 1, ISSN-2349-5162.
- 9. Venkatachalam M, Vernold Vivin J and Kaliraj K, armonious Colouring on double star
- 10. graph families, Tamkang Journal of Mathematics, Vol. 43, No. 2, 153 158.
- 11. Vaidya S K, ShahN H, Some Star and Bistar Related Divisor Cordial Graphs, Annals of Pure and Applied Mathematics Vol.3, No.1, 2013, 6777.
- 12. Wayan Sudarsana I, Selvy Musdalifah, Nurhasanah Daeng Mangesa, On Super Mean Labeling for Total Graph of Path and Cycle, International journal of Mathematics and Mathematical Science, Volume 2018, Issue 1/9250424.