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ABSTRACT 

Optimizing the available megawatt hours in baseload power plants requires precise fore- casting of full-load electrical output. This study evaluates various machine 

learning regression techniques to develop a robust model for predicting hourly output in a combined cycle power plant. The dataset comprises 9,568 data points 

spanning the years 2006 to 2011, collected from a high-efficiency operation. 

Key variables influencing the power plant’s performance include ambient temperature, 

atmospheric pressure, relative humidity, and exhaust steam pressure. The target variable, elec- trical power output, varies significantly based on these environmental 

factors. After rigorous evaluation of multiple regression approaches, the ensemble method employing a bagged tree approach with the full set of input variables 

emerged as the top performer. 

This model achieved a commendable root mean square error (RMSE) of 3.51 and mean absolute error (MAE) of 2.5484 during validation, indicating its superior 

predictive accuracy. Notably, the ensemble method also demonstrated impressive computational efficiency, capable of processing approximately 30,000 

observations per second. These findings underscore the effectiveness of advanced machine learning techniques in optimizing operational forecasting for enhanced 

efficiency and reliability in power generation.  
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1. Introduction 

Solving several nonlinear equations is complicated, thermodynamic approaches to study- ing systems sometimes depend on assumptions. These 

presumptions are important because they consider how unpredictable solutions can be. Without them, it would be very challenging and time-consuming 

to solve these equations in order to investigate real-world applications. Ma- chine learning approaches are widely employed in place of thermodynamic 

ones to get over this problem, particularly in systems with random inputs and outputs. For example[1], uses an Artificial Neural Network (ANN) model 

based on real plant data to investigate how variables like atmospheric pressure, temperature, humidity, wind speed, and direction affect power plant 

performance. 

Several machine learning regression algorithms are applied to investigate a particular ther- modynamic system the combined cycle power plant (CCPP). 

Heat recovery systems, steam tur- bines, and gas turbines are some of the parts of this facility [3]. For a plant of this type to operate profitably and 

efficiently, it is essential to predict its electrical production. 9,568 data points were gathered over the course of six years (2006–2011) from a CCPP that 

was working at maximum capacity [4]. This dataset was used in the study. The net hourly electrical energy output (EP) of the plant is predicted using 

variables like exhaust vacuum (V), relative humidity (RH), ambient pressure (AP), and temperature (T). The purpose of this study is to assess the 

predictive accuracy of several regression techniques for the full-load electrical power output of a base load-operated CCPP. 

This study aims to evaluate the prediction accuracy of several regression techniques in predicting the electrical power output of a base load-operated 

CCPP at full load. This paper’s second section describes the approaches used and how machine learning techniques were applied in this thermodynamic 

setting. The actual findings from these analyses are presented in Section 3, which provides insight into how well various regression models predict CCPP 

output. The results are contextualized and critically analyzed in Section 4, along with the study’s implications and key takeaways. Section 5 concludes 

the study by summarizing the main discoveries and outlining potential directions for more research in this area. 
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2. Methods and materials 

The 480 MW designed capacity of the combined cycle power plant (CCPP) utilized in this study is made up of two 160 MW ABB 13E2 gas turbines, 

two dual-pressure HRSGs (heat re- covery steam generators), and one 160 MW ABB steam turbine. The operation of the gas and steam turbines is greatly 

influenced by several environmental factors, including ambient tem- perature (AT), atmospheric pressure (AP), relative humidity (RH), and exhaust 

steam pressure 

(V). The target variable in this dataset is the electrical power output produced by both types of turbines, with the ambient and steam parameters being 

considered as input variables. Certain ranges for every variable are reflected in the hourly data gathered from sensors. 

Ambient Temperature (AT): Ranges from 1.81°C to 37.11°C. Atmospheric Pressure (AP): Ranges from 992.89 to 1033.30 mbar. Relative Humidity 

(RH): Ranges from 25.56% to 100.16%. Vacuum (Exhaust Steam Pressure, V): Ranges from 25.36 to 81.56 cm Hg. Full Load Electrical Power Output 

(PE): Target variable ranges from 420.26 MW to 495.76 MW. Machine learning algorithms are used to establish a relationship between these independent 

variables (inputs) and the dependent variable (output). Each instance in the dataset, denoted as (Xi,Yi), represents a set of input-output pairs. The goal of 

machine learning regression methods is to learn a mapping function Y = f(X) that accurately predicts the electrical power output based on the input 

variables. 

The regression technique aims to minimize the difference between the actual output (Y)of the system and the predicted output (Y) derived from the 

training dataset. This process involves finding the optimal function that captures the complex relationships between ambient conditions and turbine 

performance, as illustrated in Figure 1. 

 

Figure 1-1 A machine learning regression method using real system data to predict. 

3. MATLAB Regression Leaner 

A graphical tool with an intuitive MATLAB interface for regression analysis is the MAT- LAB Regression Learner. Regression model training and 

performance evaluation are made easier with this application. It also streamlines the data preparation and import procedure. It is compatible with multiple 

regression techniques, including decision trees, neural networks, ensemble techniques, support vector machines, and linear regression. It has capabilities 

for choosing pertinent features and modifying hyperparameters to improve model accuracy. The objective is to forecast the electrical power output (PE), 

which is the dependent variable, us- ing the Regression Learner with our dataset. A five-fold cross-validation strategy is selected in order to guarantee 

robustness and avoid overfitting. Using this method, the data is divided into five subsets. The model is trained on four of the subsets, and it is validated 

on the fifth. This procedure is repeated for all possible combinations. To evaluate how effectively a model generalizes to unknown data, validation 

techniques such as holdout validation, resubstituting validation, and cross-validation are crucial. A model is said to be overfitting if it grows unduly 

complex, fits the training set too closely, and exhibits poor performance on fresh data. Before training models, it is essential to choose a suitable validation 

scheme in order to reliably assess their performance. The validation strategy selected affects every training model, guaranteeing an equitable and 

trustworthy evaluation. 

The MATLAB Regression Learner provides a strong and effective means of investigating different regression models [10]. Accuracy is ensured by 

reliable validation methods like cross- validation, which also helps to mitigate problems like overfitting. Validation methods which are essential for 

assessing how well a model generalizes to unseen data. 

3.1 Cross-Validation 

Select what number of folds (or divisions) to use to divide the data collection. If k folds are selected, the app will, 

i. The data is divided into k distinct sets or folds. 

ii. For each fold in the validation: 

•Trains a model using observations from the training fold (not observations from the vali- dation fold). 

•Assesses model performance using validation-fold data 
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iii. Determines the mean validation error across all folds. 

The predictive accuracy of the final model trained using the entire data set is well-estimated using this strategy. Although the method necessitates several 

fits, it effectively utilizes all the data, making it suitable for tiny data sets [7]. 

3.2 Holdout Validation 

A portion of the data should be chosen to serve as a validation set. A model is trained on the training set using the programmed, and its performance is 

evaluated using the validation set. Holdout validation is only applicable for big data sets because the model used for validation is based only on a subset 

of the data. The complete data set is used to train the final model. 

3.3 Resubstituting Validation 

Overfitting is not protected against. Using all the data, the programmed trains determine the error rate using the same data. In the absence of any further 

validation data, you obtain an imprecise evaluation of the model’s performance on new data. Stated otherwise, it is likely that the training sample accuracy 

will be excessively high and the anticipated accuracy would be lower. 

The fiollowing Regression models showed promise with smaller RMSEs 

3.3.1 Ensemble bagged tress 

Ensemblen bagged tress is a potent machine learning technique that aims to increase the robustness and accuracy of models. It operates by employing 

bootstrap samples of the training data to create several models, most commonly decision trees. With bootstrap sampling, subsets of the training data are 

chosen at random using replacement. This implies that certain observa- tions may be repeated in a subset while others may not appear at all. A different 

decision tree is trained using each of these subsets. Bagging’s main concept is to increase model diversity by having them trained on several data subsets. 

By lowering the model’s variance, this variety can improve the model’s ability to generalize results to previously untested data. A final prediction is 

produced by combining the forecasts of each individual decision tree once it has been trained. For regression problems, this aggregation procedure can 

entail averaging the predictions, and for classification tasks, voting. It is also possible to improve ensemble bagged trees by including other methods like 

boosting or random forests. For example, random forests add another layer of unpredictability to bagging by employing a random selection of features at 

each decision tree split in addition to sampling subsets of the data. Contrarily, boosting focuses on training models in a sequential manner where each 

new model fixes the mistakes of the previous one, eventually creating a powerful predictive model through repetitions. The bagging algorithm is 

exemplified by the following: 

1. For every training data bootstrap sample i=1…, B 

a. To construct a fresh bootstrap sample Xi, randomly select a portion of the training data with replacement. 

b. Using a portion of the characteristics at each split, train a decision tree Ti on the bootstrap sample Xi. 

c. Keep theTidecision tree on hand. 

2. To anticipate a new input vector x, compute the ensemble’s expected values for each decision tree, then average them to produce the 

final prediction: 

 

here Ti(x) is the decision tree, i is the predicted value for input vector x. The bagging algorithm is mathematically represented by this formula, where the 

final prediction is obtained by averaging the predictions of various decision trees. The goal of bagging is to reduce variance and enhance performance by 

building a diversified group of models that are each trained on slightly different subsets of the data. Ensemble bagged trees are effective because they 

harness the power of multiple models trained on varied data subsets, thereby improving predictive ac- curacy and resilience to overfitting compared to 

individual models trained on the entire dataset. This makes bagging particularly useful for creating robust regression models that can handle complex 

datasets and generalize well to new, unseen data. 

3.3.2 Gaussian Process Regression 

(GPR) is a probabilistic machine learning method used for regression tasks. Unlike tra- ditional regression methods that assume a parametric form for the 

relationship between inputs. 

Exponential GPR, specifically using the exponential covariance function, is effective at captur- ing smooth patterns in data. It is particularly useful when 

the relationship between inputs and outputs exhibits gradual changes or correlations that can be modeled effectively by an expo- nential decay in similarity 
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between data points as their distance increases. A specific kind of GPR called exponential GPR makes use of an exponential covariance function. In 

mathematical terms, the exponential covariance function is: 

 

where ||x−x′||2 is the squared distance between the input vectors x and x’ and f 2 is the variance of the function values. l is a length scale parameter. The 

function’s smoothness is determined by the length scale parameter l. When l is large, the function changes slowly as the input variables change, whereas 

a small l causes the function to change more quickly. The GPR model esti- mates the posterior distribution over the function values at x using the training 

data to produce a prediction for a new input vector x. The training data and the covariance function determine the mean and variance of the posterior 

distribution, which is a Gaussian distribution. Exponen- tial GPR is a specific variant of GPR that uses an exponential covariance function, which can 

capture smooth patterns in the data. 

3.3.3 Support Vector Machine 

SVM is an effective machine-learning technique used for both regression and classification tasks [12]. Finding a hyperplane that divides the data into two 

classes and maximizes the distance between the hyperplane and the nearest data points is the aim of SVM. By predicting the value of a continuous output 

variable rather than a binary class label, SVM can also be utilized for regression applications. An SVM version known as a Gaussian SVM sometimes 

referred to as a Radial Basis Function (RBF) SVM, uses a Gaussian kernel to map the input data into a high-dimensional space. A definition of the 

Gaussian kernel is: 

 

where is the squared distance between the input vectors, gamma is a hyperparameter that regulates the kernel’s width, and xi and xj are the input vectors. 

The radial form of the Gaussian kernel constricts as one moves away from the center. In order to improve the performance nof a Gaussian SVM on a 

particular dataset, the hyperparameters of the model are frequently adjusted. The most crucial Gaussian SVM hyperparameters are C, which regulates the 

trade-off between the margin and classification error, and gamma, which regulates the Gaussian kernel’s width. The best values for these hyperparameters 

are frequently found via grid searches or other optimization methods. With an RMSE value of 3.51, the ensemble bagged tree was the best of the three 

regression models, followed by Gaussian Process Regression (Exponential GPR), Gaussian Support Vector Machine (Fine Gaussian SVM), and Gaussian 

Process Regression. These are the top three models, even though there are alternative models with various RMSEs. 

4.Results 

4.1 DATASET DESCRIPTION 

The dataset used in this study comprises four input variables and one target variable col- lected over a period of six years (2006-2011). It consists of 9,568 

data points gathered from a combined cycle power plant (CCPP) operating at full capacity across 674 distinct days. Input Variables: The input variables 

represent typical hourly measurements obtained from sensors at the plant. These variables include: Ambient Temperature (T) Ambient Pressure (AP) 

Rela- tive Humidity (RH) Exhaust Vacuum (V) Target Variable: The target variable is the full-load electrical power output (PE), which measures the 

average hourly output when the power plant operates at base load. This data is crucial for assessing the plant’s operational efficiency and performance. 

4.2 Data Preprocessing 

The collection initially included some erratic and noisy data, mostly as a result of electrical disruptions influencing sensor readings. Furthermore, during 

preprocessing, data points with the power plant operating at less than 420.26 MW were deemed incompatible and removed. At first, there were 674 

distinct daily files in the dataset, all in the.xls format. These files were cleaned and merged into a single dataset to guarantee data consistency and integrity. 

After removing duplicate entries, a consolidated dataset that was prepared for analysis was obtained. Additional preparation procedures, described in 

[13], included randomly rearranging the dataset in order to reduce bias and improve the stability of ensuing analyses. To make the final dataset easier to 

use and more accessible in analytical tools, it was transformed to the.xlsx format. 

5. PREDICTION ACCURACY 

The prediction accuracy of each machine-learning regression technique is used to evaluate the overall agreement between the expected and real values. 

The performance metrics employed in this study to evaluate the prediction accuracy are the Mean Absolute Error (MAE) and the Root Mean Squared 

Error (RMSE) for continuous variables. 

iv. Mean Absolute Error (MAE): Mean absolute error is the average of all test cases’ antic- ipated and actual values, without taking direction into 

account [40]. 



International Journal of Research Publication and Reviews, Vol 6, no 1, pp 3441-3460 January 2025                                     3445 

 

 

MAE = (|a1 − c1| + |a2 − c2| + · · · + |an − cn|)     1-4) 

N 

v. Root Mean Square Error (RMSE): is a commonly used indicator of discrepancies be- tween values predicted by a model or estimator and the 

values obtained from the process being modelled or estimated [9.RMSE = 

 

In the two equations above, a represents the output’s actual value and c its expected value. A lower value indicates a more accurate model in all the error 

assessments, with a value of 0 indicating a statistically flawless model [11]. 

Table 1-1 Training Results of Ensemble Bagged Trees 

Metric Value 

RMSE (Validation) 3.51 

R-Squared (Validation) 0.96 

MSE (Validation) 12.32 

MAE (Validation) 2.5484 

Prediction Speed 9200 

Training Time 559.92 sec 

Model Size 6 MB 

Table 1-2 Ensemble Hyperparameters Used in Model Training 

Preset Bagged Trees 

Minimum leaf size 8 

Number of learners 30 

Number of predictors to sample Select all 

5.1 Ensemble Bagged Trees Results (Summary) 

Partial dependence charts (PDPs) are a useful tool for visualizing the projected response of a trained regression model. PDPs display the marginal impacts 

of each predictor. Partial de- pendence graphs illustrate how the expected values of the output variable fluctuate in response to changes in the value of a 

single input variable, with other variables being maintained con- stant. The partial dependence graphs display the fitted model along with the output 

variable’s projected values at different input variable values. In addition to identifying any nonlinearities or interactions between the input variables, these 

plots are used to assess the correlation between the input and output variables. 
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Figure 1-2 Partial Dependence Plot PE vs V 

 

 

Figure 1-3 Partial Dependence Plot PE vs RH 
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Figure 1-4 Partial Dependence Plot PE vs AP 

 

Figure 1-5 Partial Dependence Plot PE vs AT 

A regression model’s response plots (Fig 1-6, 1-15) show how the input and output variables are correlated. Each response plot shows the relationship 

between a specific input variable and the output variable when all other input variables are held constant. The response plots display both the fitted model 

and the actual data points. These graphs assess the degree to which the input and output variables have a linear or nonlinear relationship, as well as how 

well the model matches the data. 



International Journal of Research Publication and Reviews, Vol 6, no 1, pp 3441-3460 January 2025                                     3448 

 

 

 

Figure 1-6 Response Plot PE vs Record Number with errors 

 

Figure 1-7 Response Plot PE vs Record Number 
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Figure 1-8 Response Plot PE vs AT with errors 

 

 

Figure 1-9 Response Plot PE vs AT 
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Figure 1-10 Response Plot PE vs V with errors 

 

Figure 1-11 Response Plot PE vs V 
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Figure 1-12 Response Plot PE vs RH with errors 

 

Figure 1-13 Response Plot PE vs RH 
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Figure 1-14 Response Plot PE vs AP with errors 

 

Figure 1-15 Response Plot PE vs AP 

The performance of the regression model and how well it forecasts different response values are assessed by the expected vs. real plot. Because the 

projected response of a perfect regression model equals the true response, all the points lie on a diagonal line. The vertical distance from the line to any 

given location equals the forecast error for that point. A well-designed model produces predictions that are distributed throughout the line with small 

errors. 
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Figure 1-16 Validation Predicted vs. Actual Plot (True response 

The residuals plot (Figrs 1-17, 1-23) assesses how well the model predicts the outcome variable by displaying the difference between observed values 

(actual responses) and predicted values. When these residuals are symmetrically distributed around zero, it indicates that the model accurately predicts 

responses across various data ranges. This symmetry supports the reliability and robustness of the model’s predictions, validating its effectiveness in 

capturing the underlying patterns in the data. 

 

Figure 1-17 Validation Residuals Plot Record number 
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Figure 1-18 Validation Residuals Plot True response 

 

Figure 1-19 Validation Residuals Plot Predicted response 
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Figure 1-20 Validation Residuals Plot Predictor AT 

 

Figure 1-21 Validation Residuals Plot Predictor AP 
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Figure 1-22 Validation Residuals Plot Predictor RH 

 

Figure 1-23 Validation Residuals Plot Predictor V 

In terms of prediction accuracy, the Ensemble Bagged Trees model fared better than all other trained models based on the evaluation criteria of Mean 

Absolute Error (MAE) and Root Mean Squared Error (RMSE). Regression analysis often uses RMSE and MAE as metrics to evaluate how well a model 

predicts the outcomes in comparison to the actual values. When the RMSE is smaller, it means that, on average, the model’s predictions are more accurate 
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than the actual values across the dataset. In a similar vein, a lower MAE denotes fewer absolute discrepancies between the model’s predictions and the 

actual values. Out of all the trained models in this investigation, the Ensemble Bagged Trees model has the lowest RMSE (3.51) and MAE (2.5484). 

These findings suggest that, for the study’s purposes, the Ensemble Bagged Trees model offers the most precise and trustworthy estimates of the full-

load electrical power output (PE). Compared to the other regression models examined, the model’s better performance in mini- mizing both RMSE and 

MAE shows it can estimate the power output more precisely. Because of this, it is a better option for real-world scenarios where precise power generation 

forecasting is essential. Its robustness and generalizability are highlighted by the test dataset’s validation of its effectiveness, which further supports its 

appropriateness as a predictive tool for yet-to-be- seen data in related circumstances. Thus, the Ensemble Bagged Trees model is the best option for 

forecasting the results of full-load electrical power production (PE) in this study setting, according to these evaluation criteria. 

Table 3. summarizes the performance of each of the models based on their RMSE and MAE values. The RMSE values range from 3.5 to 19, while the 

MAE values range from 12 to 

20. Based on the evaluation criteria of RMSE and MAE, the best-performing model among the trained models was the Ensemble bagged Trees model. 

This model achieved the lowest RMSE and MAE values compared to the other models. This indicates that the Ensemble bagged Trees model is the most 

accurate and reliable model for predicting the outcomes of the PE. 

 

Figure 1-24 Table 3 shows the Regression Models that were trained 
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In Table 4, the test results of the regression ensemble bagged tree model are presented. The model was applied to a dataset, and the predicted values for 

PE are shown in green next to the actual values. Notably, the difference between the actual PE values and the predicted PE values is extremely small, 

almost negligible. This indicates that the trained ensemble bagged trees model is highly accurate in estimating the output of electrical combined cycle 

power plants. Therefore, based on the results displayed in Table 4, it is evident that the ensemble bagged trees model stands out as the most precise 

method for predicting PE outcomes. 

 

Figure 1-25 Table 4 shows some of the predicted output of the best Model 

6.Discussions 

The development of reliable methods for the correct prediction of yet-to-be-seen data is the main objective of machine learning research. Regression has 

shown to be a useful tool for forecasting in this study, as indicated by the encouraging outcomes that are covered in the Results section. In order to forecast 
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the output of a combined cycle power plant (CCPP), which consists of two gas turbines, a steam turbine, and two heating systems, the research investigated 

several machine learning regression models. The goal of the study was to identify the precise variable or variables combined that had the biggest impact 

on the generation of full-load electrical power. In order to do this, over 25 regression models must be tested using 15 distinct combinations of the four 

main variables, AT, V, AP, and RH. It evaluated the best regression technique for forecasting the electrical power output under full load scenarios for 

various dataset subsets. 

7.Conclusion 

The study presented an alternative approach to predict the electrical power output of a combined cycle power plant (CCPP) operating at full load, opting 

for machine learning methods over traditional thermodynamical approaches. These methods were chosen for their ability to provide accurate predictions 

without the computational burden and potential unreliability of thermodynamic models that rely on numerous assumptions and nonlinear equations. Two 

main objectives guided the study: identifying the most influential variables in predicting power output and determining the most effective machine 

learning regression method for this prediction. The analysis involved testing 15 different combinations of four variables (AT, V, AP, RH) across 15 

machine learning regression techniques. The results indicated that the subset containing all four parameters provided the most accurate predictions, 

achieving a Mean Absolute Error (MAE) of 2.5484 and Root Mean Square Error (RMSE) of 3.51. Specifically, the Bagging method with REP Tree 

predictor yielded the highest accuracy among the methods tested, with an MAE of 

3.220 and RMSE of 4.239 on average. The developed predictive model has been implemented by the CCPP for forecasting hourly energy output using 

next day’s temperature forecasts from the state’s meteorology institute. Future research aims to enhance the model by improving the precision of ambient 

variable predictions and extending its application to different types of power plants. This approach not only improves the accuracy of power output 

prediction but also streamlines the computational process, offering a promising alternative to traditional thermodynamic modeling in the field of energy 

production forecasting. 
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