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A B S T R A C T 

System identification is one of the first tasks to address when solving an automatic control problem where the controlled object 
lacks parameters. The simple reason is that it is impossible to analyze or synthesize a system without a mathematical model to 
describe it. Therefore, the problem of kinematic identification has attracted significant attention from many scientists. These 
issues are studied in the course "System Dynamics Identification in Control Systems." 

From this context, the research team proposes developing an experiment to identify the dynamics of a DC servo motor based on a 
non-parametric model. This paper applies a dynamics identification algorithm to develop a mathematical model for the controlled 
object, which is a small-power DC servo motor with missing parameters. The research product can be utilized in learning, research, 
and teaching the course "System Dynamics Identification in Control Systems."  
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1. Introduction  

Dynamic identification is the process of determining the mathematical model that represents the dynamics of a controlled object, 
based on experimental data of input and output signals from the actual system according to specific criteria. 

Dynamic identification for a motor with missing parameters involves experimentally determining the mathematical model of the 
motor when certain parameters are absent by observing input and output signals. The identified mathematical model must have 
minimal error and ensure the highest accuracy compared to the actual motor. 

To develop the mathematical model for the motor, two main methods can be employed: theoretical modeling and experimental 
modeling. Each method has its own advantages and limitations, and the choice of method depends on the specific requirements of 
the problem. 

Theoretical modeling, also known as physical modeling, relies on fundamental physical and chemical laws to construct a 
mathematical model of the motor. This approach combines the motor's technical parameters to define differential or algebraic 
equations that describe its dynamics. Theoretical models are based on the physical and chemical relationships among the motor's 
internal quantities. However, theoretical modeling faces certain challenges: It often reflects only the dynamic characteristics of the 
motor, without accounting for factors such as the properties of measurement devices and actuators. It may fail to fully represent the 
motor's real-world operation. Determining accurate technical parameters from available device information can be difficult, reducing 
the precision and comprehensiveness of the model. 

While theoretical modeling is useful for studying dynamic characteristics and designing control systems, it is less suitable for 
parameter identification when critical information about the motor is missing. 

Experimental modeling, also known as the black-box or identification method, relies on experimental data to determine the 
mathematical model of a motor with missing parameters. This method begins with data collection on the motor's input and output 
signals through experiments. The mathematical model is then derived by analyzing the collected data to identify relationships 
between the input and output signals. The advantages of experimental modeling include: The ability to provide a relatively accurate 
mathematical model for the motor, especially when the model structure is known. Direct identification of model parameters based 
on experimental data, which enhances the model's ability to reflect the motor's real-world operation. However, the quality of the 
model depends heavily on the accuracy of the measuring equipment and the data collected. Noise during measurement can distort 
data and degrade the model's quality. 
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In cases where the motor lacks critical parameters, experimental modeling becomes a valuable tool to compensate for missing 
information and improve the accuracy of the mathematical model. However, to achieve optimal results, it is essential to ensure 
precise measuring equipment and carefully process the data to minimize the effects of noise and measurement errors. 

Dynamic identification of motors with missing parameters is essential because, in automatic control systems, the mathematical 
model of the object is the foundation for designing controllers. In many cases, theoretical models cannot fully describe the system's 
characteristics due to the complexity of industrial processes and the lack of information. Therefore, identification becomes a useful 
method to develop models for motors with missing parameters, which are then used for determining controller parameters. 

Specifically, to determine the dynamic equations of a motor, the relationships between physical parameters such as the torque 
constant Km, back electromotive force constant Ke, armature inductance L, armature resistance R, moment of inertia J, and friction 
coefficient B must be considered. However, when a motor lacks information about parameters like Km, Ke, L, R, J, or B, experimental 
methods can be employed. This involves measuring the input voltage and the output angular displacement of the motor with missing 
parameters, and then using identification algorithms to derive the dynamic equations for the motor. 

2. Dynamic Identification Process for Motors with Missing Parameters 

The dynamic identification process for a controlled object is carried out in six steps, as illustrated in Figure 1. 

 

 

 

  

 

 

 

Fig.1. Dynamic Identification Process for a Controlled Object 

The specific content of the steps in the identification process is as follows: 

a) Step 1: Initial Information Extraction 

In the first step of the dynamic identification process for a motor with missing parameters, collecting and analyzing initial 
information is crucial for preparing subsequent steps. This involves analyzing data to identify key input-output variables, boundary 
conditions, and related assumptions. Step 1 is a vital preparatory stage to gather the necessary data for constructing the 
mathematical model. Clearly defining the input-output variables, boundary conditions, and related assumptions provides a solid 
foundation for selecting the identification method, collecting experimental data, and determining the model structure in later steps. 

In this study, the controlled object is assumed to be a small-power DC servo motor, specifically the Dynamixel XL-320 with missing 
parameters. The input variable is the applied voltage, and the output variable is the motor's angular displacement. 

b) Step 2: Selection of Identification Methods and Algorithms 

The choice of identification methods, estimation algorithms, and evaluation criteria is essential for building an accurate and 
appropriate dynamic model for a motor with missing parameters. In this study, a passive identification method and the least squares 
algorithm are selected to identify the dynamics of the small-power DC servo motor, Dynamixel XL-320, with missing parameters. 

c) Step 3: Collection of Experimental Data for Each Input-Output Pair 

In this step, experimental data is collected for the motor's input and output variables to construct the dynamic model. First, the 
input-output variable pairs to be measured, such as input voltage and output angular displacement, are determined. Experimental 
data is then collected, ensuring that the data accurately reflects the relationships between the variables. Additionally, data 
processing is conducted to eliminate inaccuracies or noise, ensuring the quality and reliability of the information used to construct 
the model. 

In this study, experimental data for the input voltage and output angular displacement of the small-power DC servo motor, 
Dynamixel XL-320, with missing parameters, is collected. 

d) Step 4: Determination of Model Form and Structure 

In this step, the form and structure of the dynamic model are determined based on the intended application and the selected 
identification method. First, the decision is made whether the model should be linear or nonlinear, continuous or discrete, to ensure 
it meets specific application requirements. Next, hypotheses about the model structure are proposed, including factors such as the 
order of the numerator and denominator in the transfer function and whether the system has delays. This process helps accurately 
shape the model, facilitating parameter estimation and model performance evaluation. 
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In this study, the identification model is chosen to be a transfer function and state-space equation with an order less than 3 for the 
small-power DC servo motor, Dynamixel XL-320, with missing parameters. According to [5], the transfer function and state-space 
equation for a DC servo motor have the following form: 

2
( )

(( )( ) )

K
P s

s Js b Ls R K


  
     (1) 

. .

.

X A X BU

Y C X

  





       (2) 

In which: 

𝑠 is the Laplace operator 

𝐽 is the moment of inertia of the rotor 

𝑏 is the motor's viscous friction coefficient 

𝐾 is the motor's torque constant 

𝑅 is the armature resistance 

𝐿 is the armature inductance 

𝑋 is the state variable matrix 

𝑈 is the control input matrix 

𝑌 is the output matrix 

𝐴 is the system matrix 

𝐵 is the control matrix 

𝐶 is the output matrix 
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e) Step 5: Parameter Estimation for the ModelIf the identification has been carried out for each sub-model, input-output channel, 
and stage of the process, the next step is to combine them into a comprehensive model. The tools used for this can be software such 
as Matlab, Maplc, or programming languages like C, Pascal, Delphi, etc. 

In this study, the System Identification Toolbox (SIT) in Matlab is used to identify the dynamics of the small-power DC Servo motor, 
Dynamixel XL-320, with missing parameters. 

g) Step 6: Model Verification and EvaluationAfter calculating the parameters and setting up the model, the next step is to verify the 
accuracy of the model. This is usually done by comparing the input-output data of the model with experimental input-output data. 
To ensure accurate verification, the real data used must be different from the data used for model identification. If the verification 
results do not meet the requirements, it is necessary to return to step 4 to adjust the model. If the results are unsatisfactory due to 
low-quality data, it is necessary to go back to step 3 to collect and process the data again. 

In this study, the SIT toolbox automatically verifies and evaluates the model's suitability using the FIT (Fitting) criterion. 

3. Practical Experiment: System Identification for a DC Servo Motor with Missing Parameters 

3.1. Collecting Input and Output Data for the DC Servo Motor 

Figure 2 illustrates the process of collecting data and identifying the system dynamics. 
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Fig.2. Data collection and system dynamics identification process 

The process of collecting input and output data for the DC servo motor is carried out through the following steps: 

Step 1: Write the Data Collection Program 

The data collection program is designed to record the input and output parameters of the Dynamixel XL-320 DC Servo motor. 

Input Data: This is the applied voltage value Uv, which is adjusted via a potentiometer. The voltage is proportional to the desired 
angle θv and is sent from the potentiometer to the Arduino Uno R3 board. The Arduino converts the voltage value into a PWM signal 
to control the DC servo motor to rotate to the desired angle. 

Output Data: Measured by the integrated encoder in the Dynamixel XL-320 motor, it provides the actual angular displacement θr. 
This value is sent back to the Arduino via TTL communication. 

The Arduino receives both the input signal θv and output signal θr, then converts them into proportional voltage values and sends 
them to the computer through the COM port. 

Step 2: Connect the DC Servo Motor to the Arduino Board 

Connect the power wire (red) to the 5V pin. 

Connect the ground wire (black) to the GND pin. 

Connect the signal wire (orange) to the digital pin D4. 

Step 3: Connect the Arduino Board to the Computer 

Use a USB cable to connect the Arduino to the computer. This acts as a communication channel between the Arduino and the 
computer, allowing data transmission via COM6 (or another port if configured). 

Step 4: Connect the Potentiometer to the Arduino Board 

The potentiometer is connected to one of the Arduino's analog input pins (e.g., A0). When the potentiometer's value is changed, the 
input voltage will vary, and the Arduino will record this value to adjust the motor's rotational angle. 

Step 5: Run the Data Collection Program 

After completing the hardware setup, run the data collection program written in Matlab. This program will begin collecting the input 
angle θv and the actual rotational angle θr of the motor from the COM port over a 10-second period. 

Step 6: Convert Data into iddata Format 

After collecting the data, the program will convert the input and output signals into the iddata format in Matlab. This data is then 
used for system identification. 
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Fig.3. Input angle and actual rotational angle signals of the motor 

3.2. System Identification for DC Servo Motor 

After the data collection process, the result is the acquisition of data sets in the iddata format. These datasets are selected to be 
provided to the System Identification Toolbox to determine a model that is simple yet sufficient to accurately describe the system's 
dynamics. Below are two types of models chosen for the identification process: the transfer function model and the state-space 
model. 

a) Identification using Transfer Function Model 

Identification using the transfer function model involves estimating a linear dynamic model for the system in the form of a 
continuous transfer function. To perform this estimation, the number of poles and zeros needs to be determined. The System 
Identification Toolbox will automatically determine the poles and zeros to maximize the fit with the selected data sets. 

Launch the system identification tool by running the command: >> ident 

 

Fig.4. Selecting the transfer function model for identification 

Import the datasets into the tool from the Workspace by using the "Import Data" dropdown menu. Figure 4 shows the system 
identification tool with the IDDATA1 dataset already imported. 
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- Case 1: Choosing 2 poles and 1 zero: The identified transfer function is tf1. This is a second-order continuous transfer function that 
represents the relationship between the input "Voltage" and the output "Angle." The transfer function has two poles and one zero. 

4

2

-1389s+8,205×10
tf1=

s +60,13s+2306
 

Model Evaluation: 

FIT = 80.7% is the goodness of fit between the experimental data and the output data from the identified model. This value does not 
meet the required criterion of FIT > 95%. 

FPE = 47.34 is the error between the experimental data and the output data from the identified model. The smaller this value, the 
more accurate the model. 

MSE = 46.22 is the mean squared error between the actual and predicted values from the model. The smaller the MSE value, the 
more accurate the model. 

- Case 2: Choosing 2 poles and 0 zeros: The identified transfer function is tf2. 

2

10
tf2=

0,01s +0,2s+1
  

Model Evaluation: 

FIT = 99.29% is the goodness of fit between the experimental data and the output data from the identified model. The larger this 
value, the more accurate the model. Therefore, the real model and the identified model have a better fit compared to the previous 
case. 

FPE = 9.22 is the error between the experimental data and the output data from the identified model. The smaller this value, the 
more accurate the model. Hence, the identified model is more accurate than in the previous case. 

MSE = 9.038 is the mean squared error between the actual and predicted values from the model. The smaller the MSE value, the 
more accurate the model. Thus, this identified model is more accurate than the previous case. 

This result shows that the model has been optimized and fits the experimental data well. 

b) State-Space Model Identification 

The identified state-space model is ss1. This is a continuous-state model that represents the relationship between the input 
"Voltage" and the output "Angle." 

          dx/dt = A x(t) + B u(t) + K e(t) 

           y(t) = C x(t) + D u(t) + e(t) 

A =  

               x1         x2 

   x1    -17.89    -31.89 

   x2     14.24      6.093 

B =  

                  Voltage 

          x1    -0.2034 

          x2    -0.992 

C =  

                          x1         x2 

          Angle    406.6    46.94 

D =  

                     Voltage 

         Angle        0 

       K =  

                            Angle 

        x1        0.301 

         x2      -0.4524 

FIT = 98.58%. This value is very high, indicating that the model fits the experimental data very well. 

FPE = 0.1661. This value is very small, indicating that the model is highly accurate. 

MSE = 0.1621. This value is very small, indicating that the model has high accuracy. 
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This result shows that the continuous-state model has been optimized and fits the experimental data very well. 

4. Conclusion 

The paper presented the process of designing and constructing an experimental setup for dynamic modeling identification of a 
parameterless DC servo motor. The steps, from collecting the input and output data of the motor to performing dynamic 
identification based on transfer function and state-space models, were implemented in detail using Arduino Uno R3, Dynamixel XL-
320 Servo Motor, and supporting tools like Arduino IDE and Matlab. 

The process included Arduino programming, hardware connections, data collection, and dynamic identification, which were carried 
out systematically and efficiently. The results obtained were data sets in the iddata format, allowing system identification using two 
models: the transfer function model and the state-space model. Both models provided identification results with high FIT accuracy 
and small FPE and MSE errors, creating favorable conditions for designing controllers for the DC Servo motor. 

The results have laid the foundation for conducting dynamic identification experiments for the DC servo motor, as well as advancing 
research for other types of parameterless motors. 
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