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A B S T R A C T 

Let G(V,E) be a simple graph with vertex set V(G) and edge set E(G). Let ϱ  be a labeling (binary) from the vertex set of G to {0,1}. The mapping ϱ induces an 

edge labeling 〖ϱ 〗^*:E(G)→{0,1} defined by 〖ϱ 〗^* (wv)=|ϱ(w)−ϱ(𝑣)| for all edges wv in the graph G. Let V_ϱ (j) be the set of vertices w of  G with ϱ(w)=j 

and E_ϱ (j) be the set of edges wv of E(G) with 〖ϱ 〗^* (wv)=j. The cardinalities of V_ϱ (0), V_ϱ (1), E_ϱ (0) and E_ϱ (1)  are denoted by v_ϱ (0), v_ϱ (1), e_ϱ 

(0) and e_ϱ (1) respectively. A labeling  ϱ is called cordial labeling if it satisfies the conditions |V_ϱ (0)-V_ϱ (1)| ≤ 1 and |E_ϱ (0)-E_ϱ (1)| ≤ 1. A graph is cordial, 

then it satisfies the conditions of cordial labeling. In this paper, we have completely presented the cordiality of Copper-Oxide and its extended networks containing 

m rows and n columns of octagons. 
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1. Introduction 

Graph labeling was first introduced in the middle of sixties. In the intervening years, dozens of graph labeling techniques have been studied in over 

thousands and is still getting embellished due to increasing number of application driven concepts. Most graphs labelings trace their origins to labelings 

presented by Alex Rosa [1] in his paper in 1967. The application of magic labeling is widely studied in [12], [28], [21], [27], [30]. To establish the 

maximum number of stations in a particular electromagnetic spectrum bandwidth, the concept of radio labeling and its related works were studied in [7], 

[14], [16], [15], [8]. The epidemic spread related concepts were studied through labeling technique termed as burning number problem in [3], [4], [9], 

[26]. Recently Kins et.al. [17] studied its application in RFI avoiding for Robotic surgery.  

The concept of cordial labeling was first introduced by Cahit [1]. This labeling method assigns labels to the vertices or edges of a graph in a way that 

balances the number of elements assigned to each label. The formal definition of cordial labeling is given below: Let 𝐺(𝑉, 𝐸)  be a simple graph with 

vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). Let 𝜚 be a labeling (binary) from the vertex set of 𝐺 to {0,1}. The mapping 𝜚 induces an edge labeling 𝜚 ∗: 𝐸(𝐺) →

{0,1} defined by 𝜚 ∗(𝑤𝑣)=|𝜚(𝑤)−𝜚(𝑣)| for all edges 𝑤𝑣 in the graph G. Let 𝑉𝜚(𝑗) be the set of vertices 𝑤 of  𝐺 with 𝜚(𝑤) = 𝑗 and 𝐸𝜚(𝑗) be the set of 

edges 𝑤𝑣 of 𝐸(𝐺) with 𝜚 ∗(𝑤𝑣) = 𝑗. The cardinalities of 𝑉𝜚(0), 𝑉𝜚(1), 𝐸𝜚(0) and 𝐸𝜚(1) are denoted by 𝑣𝜚(0), 𝑣𝜚(1), 𝑒𝜚(0) and 𝑒𝜚(1) respectively. A 

labeling 𝜚 is called cordial labeling if it satisfies the conditions |𝑉𝜚(0) − 𝑉𝜚(1)| ≤ 1 and |𝐸𝜚(0) − 𝐸𝜚(1)| ≤ 1. If a graph is claimed to be cordial, then it 

satisfies the conditions of cordial labeling. The dynamic survey of graph labeling by Gallian [3] provides a comprehensive overview of various labeling 

techniques, including cordial labeling and its applications across different types of graphs. The application of cordial labeling has been extensively 

investigated in [23], [19], [11], [2]. Various aspects of cordial labeling techniques were explored in  [6],[19].[20],[22]. 

Recently, Yenoke et.al [18] has specifically explored the L(2,1) labeling problem for copper oxide and its extended networks. This study expands on the 

classical notions of cordial labeling, and shows that Copper-Oxide network CuO(m, n),  Extended Copper-Oxide network 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) and Enhanced 

Copper-Oxide network 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) are cordial.  

2. Copper oxide and its extended networks 

 Copper (II) Oxide (𝑪𝒖𝑶) [29],[10] network is structured as follows: The octagon structure of Copper (II) Oxide is joined to each other in rows and 

columns. The link between two octagons is joined by forming each 𝑪𝒖𝟒 bond between two octagons. The obtained network structure called as Copper-

Oxide network with 𝒎 rows and 𝒏 columns of octagons.  It is denoted by 𝑪𝒖𝑶(𝒎, 𝒏). It is illustrated in figure 1(a). The number of vertices and edges 

are  𝟒𝒎𝒏 +  𝒎 + 𝟑𝒏   and 𝟐𝒏(𝒎 +  𝟏) respectively. 

In order to prove the theory, we have named the vertices of Copper-Oxide and its extended networks as follows: 

Let the vertex in 𝑗𝑡ℎ linear row and 𝑖𝑡ℎ linear column be named as 𝑤𝑖
𝑗
,  1 ≤ 𝑗 ≤ 𝑚 + 1, 1 ≤ 𝑖 ≤ 3𝑛. The vertices which lie between odd and even or even 

and odd linear rows are marked by 𝑣𝑖
𝑗
, 𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … 𝑚.  Rest of the vertices contained inside each octagon for 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) are marked 

by 𝑢𝑖
𝑗
, 𝑖 = 1, 2 … 𝑛, 𝑗 = 1, 2 … 𝑚. This partition of vertex set is visible in Figure 1(a). 

http://www.ijrpr.com/
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The constructions of extended networks given by Kins et.al in [18] are as follows: 

2.1 Coper-Oxide Network.  

The chemical structure of Copper (II) Oxide has an octagonal structure that is joined together in rows and columns. Cu4 bonds are formed between two 

octagons to connect them. The resulting network topology, known as the Copper-Oxide network, consists of m rows and n columns of octagons. It is 

designated as 𝐶𝑢𝑂 (𝑚, 𝑛). The cardinality of vertex and edge sets in 𝐶𝑢𝑂 is 4𝑚𝑛 +  𝑚 +  3𝑚 and 2𝑛 +  𝑚 + 1, respectively. 

2.2 Extended Copper-Oxide networks. 

In the extended Copper-Oxide network 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛), if we place a vertex in each face of an octagon to form a wheel 𝑊8+1 then the resulting obtained 

derived structure is denoted by 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) and is named as Enhanced Coper-Oxide networks. Further, the cardinality of vertex and edge sets are 

5𝑚𝑛 + 𝑚 + 3𝑛 and 10𝑚𝑛 + 2𝑛 respectively. 

3. 𝑪𝒐𝒓𝒅𝒊𝒂𝒍 Labeling of 𝑪𝒖𝑶(𝒎, 𝒏), 𝑪𝒖𝑶𝑬𝑿(𝒎, 𝒏) and 𝑪𝒖𝑶𝑬𝑵(𝒎, 𝒏) Networks 

In this section, we have completely proved that copper oxide and two of its derived networks are cordial.  

Theorem 3.1 Let 𝐶𝑢𝑂(𝑚, 𝑛) be a Copper-Oxide network with 𝑚 rows and 𝑛 columns of octagons. Then for any m, n ∈ ℕ,  𝐶𝑢𝑂(𝑚, 𝑛) is cordial.  

Proof: Define a mapping 𝜚: 𝑉(𝐶𝑢𝑂(𝑚, 𝑛)) → {0,1} as follows: 

𝜚(𝑤𝑖
2𝑗−1

) =  {
0     𝑖𝑓 𝑖 ≡ 2,3,4,7 𝑚𝑜𝑑 9  
1     𝑖𝑓 𝑖 ≡ 0,1,5,6,8 𝑚𝑜𝑑 9

   𝑖 = 1, 2 … 3𝑛, 𝑗 = 1, 2 … ⌈
𝑚+1

2
⌉,  

𝜚(𝑤𝑖
2𝑗

) =  {
0     𝑖𝑓 𝑖 ≡ 0,1,5,6,8 𝑚𝑜𝑑 9
1     𝑖𝑓 𝑖 ≡ 2,3,4,7 𝑚𝑜𝑑 9

   𝑖 = 1, 2 … 3𝑛, 𝑗 = 1, 2 … ⌊
𝑚+1

2
⌋ ,  

𝜚(𝑣𝑖
2𝑗−1

) = {
0     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2

    𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … ⌊
𝑚+2

2
⌋, 

𝜚(𝑣𝑖
2𝑗

) = {
0     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2

        𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … ⌊
𝑚

2
⌋.  The mapping is visible in Figure 1(b). 

w 5
1 w 5

2 w 5
3

w 5
4 w 5

5 w 5
6 w 5

7 w 5
8 w 5

9 w 5
10 w 5

11 w 5
12

v 4
1 2 3 4 5

4

0

w 1
1 w 1

2 w 1
3 w 1

4 w 1
5 w 1

6 w 1
7 w 1

8 w 1
9 w 1

10 w 1
11 w 1

12

w 2
2 w 2

3 w 2
4 w 2

5 w 2
6 w 2

7w 2
1 w 2

8 w 2
9 w 2

10 w 2
11 w 2

12

w 3
2 w 3

3w 3
1 w 3

4 w 3
5 w 3

6 w 3
7 w 3

8 w 3
9 w 3

10 w 3
11 w 3

12

w 4
1 w 4

2 w 4
3 w 4

4 w 4
5 w 4

6 w 4
7 w 4

8 w 4
9 w 4

10 w 4
11 w 4

12

v 2
1 v 2

2 v 2
3 v 2

4 v 2
5

v 4 v 4 v 4 v 4

v  3
1 v 3

2 v 3
3 v 3

4
v 3

5

v 1
2v 1

1 v 1
3 v 1

4
v 1

5

    

4

  1

1 1 0 1

1

0

1

0

0

1

0

1

1 0 0

11

0

0

1 00

1

1

1 0 0

1 0 0

0 1 1

1

0

1 0 1

01

0 1
0

0 0 0 1 1 0 1 1 1 0 0

1 1

0 10 1

0

0

011

1

0

0

0

1

1

00

0

1

1

0

0

1

0

                      

 Figure 1(a): Naming of vertices in Copper-Oxide network                                                     Figure 1(b): 𝑪𝒐𝒓𝒅𝒊𝒂𝒍 labeling for 𝑪𝒖𝑶(𝟒, 𝟒) 

Next, we verify the above labeling pattern satisfies vertex cordial condition |𝑉𝜚(0) − 𝑉𝜚(1)|  ≤  1 and edge cordial condition |𝐸𝜚(0) − 𝐸𝜚(1)|  ≤  1 for 

every distinct pair of copper and oxide nodes in 𝐶𝑢𝑂(𝑚, 𝑛).  

Let us dissect the proof of vertex cordial condition in four distinct cases for 𝐶𝑢𝑂(𝑚, 𝑛).  

Case 1: Assume 𝐶𝑢𝑂(𝑚, 𝑛) network has even m rows and odd n columns of octagons.  

Case 1.1: The number of ‘j’ linear rows and ‘i’ linear columns for 𝑤𝑖
𝑗
 is odd. Vertices of these rows are of the form 2𝑦 + 1 where 𝑤𝑖

𝑗
(1) and 𝑤𝑖

𝑗
(0) 

complement each other in the even 2𝑦 rows as seen in the mapping from Figure 1(b). Hence, we only need to check 𝜚(𝑤𝑖
𝑗
) for one last row to prove the 

vertex condition of cordiality. This row contains an odd 2𝑧 + 1 columns of vertices. For the 2𝑧 columns of 𝑤𝑖
𝑗
 vertices, 𝑤𝑖

𝑗
(1) = 𝑤𝑖

𝑗
(0) = 𝑧, which 

implies there exists only one vertice of label 1,0 such that 𝑤𝑖
𝑗
(1,0) = 𝑤𝑖

𝑗
(0,1) +  1. 

Thus, 

|𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| =  1-------------------------------(1) 
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Case 1.2: The number of ‘j’ linear rows and ‘i’ linear columns for 𝑣𝑖
𝑗
 is even. For vertices marked by 𝑣𝑖

𝑗
, labels of 1,0 alternate for consecutive rows and 

columns. As the ‘i’ linear columns is even, the cardinality of 𝑣𝑖
𝑗
vertices is also even. This implies that 𝑣𝑖

𝑗
(1)  =  𝑣𝑖

𝑗
(0) for all 𝑖 = 1, 2 … 𝑛 + 1, 𝑗 =

1, 2 … ⌊
𝑚+2

2
⌋. 

Therefore, 

|𝑣𝑖
𝑗(1)– 𝑣𝑖

𝑗(0)| =  0 ------------------------------(2) 

From (1) and (2),  

Vertex condition of cordiality for all vertices (𝑤𝑖
𝑗

+ 𝑣𝑖
𝑗
) in the graph 𝐶𝑢𝑂(𝑚, 𝑛) with even m rows and odd n columns of octagons is given by, 

  |𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| +  |𝑣𝑖

𝑗
(1) – 𝑣𝑖

𝑗
(0)|  =  1 +  0, which implies that |𝑉𝜚(0) − 𝑉𝜚(1))| =  1. 

Case 2: Assume 𝐶𝑢𝑂(𝑚, 𝑛) network has odd m rows and even n columns of octagons.  

Case 2.1: The number of ‘j’ linear rows and ‘i’ linear columns for 𝑤𝑖
𝑗
 is even. Vertices of these rows are of the form 2𝑦 which implies 𝑤𝑖

𝑗
(1) and  𝑤𝑖

𝑗
(0) 

complement each other in alternating rows. The cardinality of ‘i’ linear columns is moot as the number of ‘j’ linear rows is even. 

Thus,  

|𝑤𝑖
𝑗(1)– 𝑤𝑖

𝑗(0)| =  0 --------------------------(3) 

Case 2.2: The number of ‘j’ linear rows and ‘i’ linear columns for 𝑣𝑖
𝑗
 is odd. Vertices of these rows are of the form 2𝑦 + 1 where 𝑣𝑖

𝑗
(1) and 𝑣𝑖

𝑗
(0) 

complement each other in the even 2𝑦 rows. Hence, we only need to check 𝜚(𝑣𝑖
𝑗
) for one last row to prove the vertex condition of cordiality. This row 

contains an odd  2𝑧 + 1 columns of vertices. For the 2𝑧 columns of 𝑣𝑖
𝑗
 vertices, 𝑣𝑖

𝑗
(1) = 𝑣𝑖

𝑗
(0) = 𝑧, which implies there exists only one vertice labeled 

by 𝜚(𝑤𝑖
𝑗
) = 0,1 such that 𝑣𝑖

𝑗
(1,0)  =  𝑣𝑖

𝑗
(0,1) +  1. 

Thus, 

|𝑣𝑖
𝑗
(1) – 𝑣𝑖

𝑗
(0)| =  1 -------------------------(4) 

From (3) and (4),  

Vertex condition of cordiality for all vertices (𝑤𝑖
𝑗

+ 𝑣𝑖
𝑗
) in the graph 𝐶𝑢𝑂(𝑚, 𝑛) with odd m rows and even n columns of octagons is given by 

|𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| + |𝑣𝑖

𝑗
(1) – 𝑣𝑖

𝑗
(0)|  =  0 +  1, which satisfies the condition  |𝑉𝜚(0) − 𝑉𝜚(1))| =  1. 

Case 3: Assume 𝐶𝑢𝑂(𝑚, 𝑛) network has odd m rows and n columns of octagons.  

Case 3.1. The number of ‘j’ linear rows is even and ‘i’ linear columns for 𝑤𝑖
𝑗
 is odd. Vertices of these rows are of the form 2𝑦 which implies 𝑤𝑖

𝑗
(1) and 

𝑤𝑖
𝑗
(0) complement each other in alternating rows. The cardinality for ‘i’ linear columns of 𝑤𝑖

𝑗
 is moot as the number of ‘j’ linear rows is even. 

Thus,  

|𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| =  0--------------------(5) 

Case 3.2. The number of ‘j’ linear rows is odd and ‘i’ linear columns is even. For vertices marked by 𝑣𝑖
𝑗
, labels of 1,0 alternate for consecutive rows and 

columns. As the ‘i’ linear columns is even, the cardinality of 𝑣𝑖
𝑗 

vertices is also even. This implies that 𝑣𝑖
𝑗
(1) = 𝑣𝑖

𝑗
(0) for all 𝑖 = 1, 2 … 𝑛 + 1, 𝑗 =

1, 2 … ⌊
𝑚+2

2
⌋. 

Therefore, 

|𝑣𝑖
𝑗(1)– 𝑣𝑖

𝑗(0)| =  0 -----------------------(6) 

From (5) and (6),  

Vertex condition of cordiality for all vertices (𝑤𝑖
𝑗

+ 𝑣𝑖
𝑗
) in the graph 𝐶𝑢𝑂(𝑚, 𝑛) with odd m rows and n columns of octagons is given by 

|𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| + |𝑣𝑖

𝑗
(1) – 𝑣𝑖

𝑗
(0)|  =  0 +  0. Thus, the cordial condition  |𝑉𝜚(0) − 𝑉𝜚(1)| =  0 holds true. 

Case 4: Assume 𝐶𝑢𝑂(𝑚, 𝑛) network has even m rows and n columns of octagons. 

Case 4.1. The number of ‘j’ linear rows is odd and ‘i’ linear columns for 𝑤𝑖
𝑗
 is even. Vertices of these rows are of the form 2𝑦 + 1 where 𝑤𝑖

𝑗
(1) and 

𝑤𝑖
𝑗
(0) complement each other in the even 2𝑦 rows. Hence, we only need to check 𝜚(𝑤𝑖

𝑗
) for one last row to prove the vertex condition of cordiality. This 

row contains an even 2𝑧 column of vertices which implies that 𝑤𝑖
𝑗
(1) = 𝑤𝑖

𝑗
(0) = 0.  

Thus,  

                                                                                     |𝑤𝑖
𝑗(1) – 𝑤𝑖

𝑗(0)| =  0--------------------------(7) 

Case 4.2. The number of ‘j’ linear rows is even and ‘i’ linear columns is odd. For 𝑣𝑖
𝑗
 vertices, labels of 1,0 alternate for consecutive rows and columns. 

As the ‘j’ linear rows is even, the number of vertices marked by 𝑣𝑖
𝑗
 is also even. This implies that 𝑣𝑖

𝑗
(1) = 𝑣𝑖

𝑗
(0) for all 𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … ⌊

𝑚+2

2
⌋. 
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Therefore, 

                                                                                      |𝑣𝑖
𝑗
(1) – 𝑣𝑖

𝑗
(0)| =  0------------------------(8) 

From (7) and (8), 

Vertex condition of cordiality for all vertices (𝑤𝑖
𝑗

+ 𝑣𝑖
𝑗
) in the graph 𝐶𝑢𝑂(𝑚, 𝑛) with even m rows and n columns of octagons is given by 

|𝑤𝑖
𝑗
(1) – 𝑤𝑖

𝑗
(0)| + |𝑣𝑖

𝑗
(1) – 𝑣𝑖

𝑗
(0)|  =  0 +  0. That is, |𝑉𝜚(0) − 𝑉𝜚(1)| =  0. 

As vertex condition of cordiality is satisfied for all four cases, 𝐶𝑢𝑂(𝑚, 𝑛) is vertex cordial. 

Next, we verify the edge cordial conditions. We notice that the edges in 𝐶𝑢𝑂(𝑚, 𝑛) receive its edge labeling in two different cases. We partitioned these 

two sets of edges in 𝐶𝑢𝑂(𝑚, 𝑛) and named as 𝐸1 and 𝐸2 respectively. Now define the edge labeling as follows. 

  𝜚∗(𝑒1)   =  𝜚(𝑤𝑖
𝑗
) ≡ 𝜚(𝑤𝑖+1

𝑗
) 𝑚𝑜𝑑 2 , when  𝑖 ≡ 1,2 mod 3 ∀ 𝑒1 ∈  𝐸1 

  𝜚∗(𝑒2)   =  𝜚(𝑣𝑖
𝑗
) ≡ 𝜚(𝑤3𝑖−2

𝑗
,   𝑤3𝑖−3

𝑗
, 𝑤3𝑖−2

𝑗+1
, 𝑤3𝑖−3

𝑗+2
) 𝑚𝑜𝑑 2 , when 𝑖 > 1 ∀ 𝑒2 ∈  𝐸2 

In each individual octagon, the edges are labeled in the pattern (1,0,0) or (0,1,1). So, 𝑒1(1) = 𝑒1(0)  =  1 in every individual octagon. There exists an 

overlap of 𝑒1 edges in consecutive octagons but it remains moot as 𝑒1(1) = 𝑒1(0) = 1.  

Hence,  

  |𝐸1(1) – 𝐸1(0)| =  0 -----------------------------(9) 

Edge 𝑒2 is mapped to four distinct 𝑤𝑖
𝑗
 vertices from every 𝑣𝑖

𝑗
. Either 𝜚(𝑣𝑖

𝑗
) = 1 or 𝜚(𝑣𝑖

𝑗
) = 0, That is, the four inner edges of the octagon are labelled as 

alternatively 0 and 1 respectively.  Thus, each 𝑣𝑖
𝑗 

contains the label 1 or 0 is mapped to two 𝑤𝑖
𝑗
 vertices of label 1 and two 𝑤𝑖

𝑗
 vertices of label 0 resulting 

in two 𝑒2 edges with label 1 and two 𝑒2 edges with label 0. Also, there is no overlap of 𝑒2 edges as each 𝑣𝑖
𝑗
 vertice is mapped to four unique 𝑤𝑖

𝑗
 vertices. 

Hence, 

|𝐸2(1) – 𝐸2(0)| =  0 ------------------------(10) 

From (9) and (10),  

|𝐸1(1) – 𝐸1(0)|  + |𝐸2(1) – 𝐸2(0)| =  0 +  0. That is,  |𝐸𝜚(0) − 𝐸𝜚(1)| =  0. 

As edge condition of cordiality is satisfied for all possible edges (𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2), 𝐶𝑢𝑂(𝑚, 𝑛) is edge cordial.  

Therefore, the copper-oxide network is cordial. 

Theorem 3.2 Let 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) be an extended Copper-Oxide network with 𝑚 octagon rows and 𝑛 octagon columns. Then, the network 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) is 

cordial. 

Proof: As 𝐶𝑢𝑂(𝑚, 𝑛) is proved to be cordial, vertex condition of cordiality remains true for 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) as both networks have similar mapping of 

vertices. Check Figure 2(a) for labeling of 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛). 

The edges in 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) receive its edge labeling in five different cases. We partitioned these five sets of edges in 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) and named as 𝐸1, 

𝐸2, 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5 respectively. Now define the edge labeling as follows. 

𝜚∗(𝑒1)  =  𝜚(𝑤𝑖
𝑗
) ≡ 𝜚(𝑣𝑖+1

𝑗
) 𝑚𝑜𝑑 2 , when 𝑖 ≡ 1,2 𝑚𝑜𝑑 3  ∀ 𝑒1 ∈ 𝐸1 

𝜚∗(𝑒2)  =  𝜚(𝑣𝑖
𝑗
) ≡ 𝜚(𝑤3𝑖−2

𝑗
,   𝑤3𝑖−3

𝑗
, 𝑤3𝑖−2

𝑗+1
, 𝑤3𝑖−3

𝑗+2
) 𝑚𝑜𝑑 2 , when 𝑖 > 1  ∀ 𝑒2 ∈ 𝐸2 

𝜚∗(𝑒3)  =  𝜚(𝑤𝑖
𝑗
) ≡ 𝜚(𝑤𝑖

𝑗+1
) 𝑚𝑜𝑑 2 , when  𝑖 ≡ 2 𝑚𝑜𝑑 3  ∀ 𝑒3 ∈ 𝐸3 

𝜚∗(𝑒4)  =  𝜚(𝑣𝑖
𝑗
) ≡ 𝜚(𝑣𝑖+1

𝑗
) 𝑚𝑜𝑑 2  ∀ 𝑒4 ∈ 𝐸4 

𝜚∗(𝑒5)  =  𝜚(𝑤𝑖
𝑗
) ≡ 𝜚(𝑤𝑖+2

𝑗+1
,   𝑤𝑖+2

𝑗−1
) 𝑚𝑜𝑑 2 , when  𝑖 ≡ 1 mod 3  ∀ 𝑒5 ∈ 𝐸5 

As 𝐶𝑢𝑂(𝑚, 𝑛) is proved to be cordial, edge condition of cordiality remains true for all the outer edges (𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2). To prove that 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) is 

edge cordial, we need to show that 𝐸3, 𝐸4 𝑎𝑛𝑑 𝐸5 satisfy cordiality.  

Each octagon in 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) contains four inner edges (one edge of 𝑒3 and 𝑒4, 𝑡𝑤𝑜 𝑒𝑑𝑔𝑒𝑠 𝑜𝑓 𝑒5). For m rows and n columns of octagons in the network 

𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛), the number of horizontal and vertical inner edges is given by 

                                                                                                        |𝐸3|  +  |𝐸4|  =  2𝑚𝑛 

As each octagon contains an equal number of 𝑒3, 𝑒4 edges and that these edges do not overlap in any other octagon,  

                                                                                                        |𝐸3|  =  |𝐸4|, which implies  |𝐸3|  =  |𝐸4|  =  𝑚𝑛. 

All 𝑒3 edges are assigned with the label of 1 and 𝑒4 edges with 0. Therefore, |𝐸3(1)|  =  |𝐸4(0)|  and  |𝐸3(1) − 𝐸4(0)|  =  0. 
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From the four inner edges of 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛), the cardinality of two edges marked by 𝑒5 are given by 2|𝐸5|  =  2𝑚𝑛 which implies |𝐸5| =  𝑚𝑛. 

Each octagon contains an edge 𝑒5 with label 1 and an edge 𝑒5 with label 0. In this case, |𝐸5(1)|  =  |𝐸5(0)| which implies |𝐸5(1)  − 𝐸5(0)|  =  0. 

From all possible edge cordial conditions using edge sets 𝐸1, 𝐸2, 𝐸3, 𝐸4 and 𝐸5 in 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛), we conclude that  |𝐸𝜚(0) − 𝐸𝜚(1)| =  0. 

Thus, the extended copper-oxide network is cordial.  
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                   Fig 2. (a) - 𝑪𝒐𝒓𝒅𝒊𝒂𝒍 labeling of 𝑪𝒖𝑶𝑬𝑿(𝟒, 𝟒)                                                                  Fig 2. (b) - 𝑪𝒐𝒓𝒅𝒊𝒂𝒍 labeling of 𝑪𝒖𝑶𝑬𝑵(𝟒, 𝟒) 

Theorem 3.3 The enhanced Copper-Oxide network 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) is cordial. 

Proof:  Define a mapping 𝜚: 𝑉(𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛)) → {0,1} as follows: 

𝜚(𝑤𝑖
2𝑗−1

) =  {
0     𝑖𝑓 𝑖 ≡ 2,3,4,7 𝑚𝑜𝑑 9  
1     𝑖𝑓 𝑖 ≡ 0,1,5,6,8 𝑚𝑜𝑑 9

   𝑖 = 1, 2 … 3𝑛, 𝑗 = 1, 2 … ⌈
𝑚+1

2
⌉,  

𝜚(𝑤𝑖
2𝑗

) =  {
0     𝑖𝑓 𝑖 ≡ 0,1,5,6,8 𝑚𝑜𝑑 9
1     𝑖𝑓 𝑖 ≡ 2,3,4,7 𝑚𝑜𝑑 9

   𝑖 = 1, 2 … 3𝑛, 𝑗 = 1, 2 … ⌊
𝑚+1

2
⌋ ,  

𝜚(𝑣𝑖
2𝑗−1

) = {
0     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2

    𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … ⌊
𝑚+2

2
⌋, 

𝜚(𝑣𝑖
2𝑗

) = {
0     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2

        𝑖 = 1, 2 … 𝑛 + 1, 𝑗 = 1, 2 … ⌊
𝑚

2
⌋, 

𝜚(𝑢𝑖
2𝑗−1

) = {
0     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2

        𝑖 = 1, 2 … 𝑛, 𝑗 = 1, 2 … 𝑚, 

𝜚(𝑢𝑖
2𝑗

) = {
0     𝑖𝑓 𝑖 ≡ 1 𝑚𝑜𝑑 2
1     𝑖𝑓 𝑖 ≡ 0 𝑚𝑜𝑑 2

        𝑖 = 1, 2 … 𝑛, 𝑗 = 1, 2 … 𝑚. The mapping is visible in Figure 2(b). 

The mapping of vertices in 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) is similar to that of 𝐶𝑢𝑂(𝑚, 𝑛) except there exists an inner vertice 𝑢𝑖
𝑗
 in each octagon. As 𝐶𝑢𝑂(𝑚, 𝑛) is already 

proved to be cordial, the vertices 𝑤𝑖
𝑗
, 𝑣𝑖

𝑗
 satisfy vertex cordiality. Cardinality of the inner vertices 𝑢𝑖

𝑗
 is given by, 

|𝑢𝑖
𝑗
|  =  𝑚𝑛 

Consider the four cases stated for 𝐶𝑢𝑂(𝑚, 𝑛) to prove vertex cordiality for 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛). 

For cases 1, 2 and 4, 

|𝑢𝑖
𝑗
(1)| + |𝑢𝑖

𝑗
(0)|  =  𝑚𝑛, which implies  |𝑢𝑖

𝑗
(1)|  =  |𝑢𝑖

𝑗
(0)|  =  𝑚𝑛/2. Hence,   |𝑢𝑖

𝑗
(1) − 𝑢𝑖

𝑗
(0)|  =  0. 

Vertices 𝑤𝑖
𝑗
, 𝑣𝑖

𝑗
 have already been proved to satisfy cordiality for the above cases. Thus, all the vertices 𝑤𝑖

𝑗
, 𝑣𝑖

𝑗
, 𝑢𝑖

𝑗
  for cases 1, 2 and 4 satisfy 

|𝑉𝜚(0) − 𝑉𝜚(1)|  ≤  1 

As m and n are odd in case 3, vertice 𝑢𝑖
𝑗
 foll`ows  

|𝑢𝑖
𝑗
(1) − 𝑢𝑖

𝑗
(0)|  =  1------------------------(11) 

Vertices 𝑤𝑖
𝑗
, 𝑣𝑖

𝑗
 in case 3 have already been proved to satisfy 

|𝑤𝑖
𝑗
, 𝑣𝑖

𝑗
(1)  − 𝑤𝑖

𝑗
, 𝑣𝑖

𝑗
(0)|  =  0 -----------------------------(12) 

From (11) and (12), 

|𝑉𝜚(0) − 𝑉𝜚(1)|  =  1 

As vertex condition of cordiality remains true for all four cases, 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛)  is vertex cordial.  
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The edges in 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) receive its edge labeling in three different cases. We partitioned these three sets of edges in 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) and named as 𝐸1, 

𝐸2, 𝐸3 respectively. Now, we define the edge labeling as follows. 

𝜚∗(𝑒1)  =  𝜚(𝑤𝑖
𝑗
) ≡ 𝜚(𝑣𝑖+1

𝑗
) 𝑚𝑜𝑑 2 , when 𝑖 ≡ 1,2 𝑚𝑜𝑑3  ∀ 𝑒1 ∈ 𝐸1 

𝜚∗(𝑒2)  =  𝜚(𝑣𝑖
𝑗
) ≡ 𝜚(𝑤3𝑖−2

𝑗
,   𝑤3𝑖−3

𝑗
, 𝑤3𝑖−2

𝑗+1
, 𝑤3𝑖−3

𝑗+2
) 𝑚𝑜𝑑 2  ∀ 𝑒2 ∈ 𝐸2 

𝜚∗(𝑒3)  =  𝜚(𝑢𝑖
𝑗
) ≡ 𝜚(𝑣𝑖

𝑗
, 𝑣𝑖

𝑗+1
, 𝑤𝑖

𝑗
, 𝑤𝑖

𝑗+1
, 𝑤𝑖

𝑗+2
, 𝑤𝑖+1

𝑗
, 𝑤𝑖+1

𝑗+1
, 𝑤𝑖+1

𝑗+2
 ) 𝑚𝑜𝑑 2  ∀ 𝑒3 ∈ 𝐸3 

As 𝐶𝑢𝑂(𝑚, 𝑛) is proved to be cordial, edge condition of cordiality remains true for all the outer edges (𝑒1 ∈ 𝐸1, 𝑒2 ∈ 𝐸2). To prove that 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) is 

edge cordial, we need to show that all edges 𝑒3 ∈ 𝐸3 satisfy cordiality. Due to the inner vertex 𝑢𝑖
𝑗
 in 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛), it creates eight inner edges 𝑒3 in each 

octagon without any overlap in other octagons and so |𝐸3| =  8𝑚𝑛. Whether the inner vertex is labeled by 𝜚(𝑢𝑖
𝑗
)  =  1,0 , 𝑢𝑖

𝑗
 is mapped to six 𝑤𝑖

𝑗
 and 

two 𝑣𝑖
𝑗
 vertices. As these vertices are individually connected to 𝑢𝑖

𝑗
, the inner edges would always result in |𝑒3(1)| = |𝑒3(0)| = 4 for each octagon. 

Therefore, |𝐸3(1)|  =  |𝐸3(0)|  =  4𝑚𝑛, which implies  |𝐸3(1) − 𝐸3(0)|  =  0. 

As all possible edge sets 𝐸1, 𝐸2 𝑎𝑛𝑑 𝐸3 in 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛) satisfy the edge condition of cordiality,  |𝐸𝜚(0) − 𝐸𝜚(1)| = 0.  

Thus, the enhanced copper-oxide network is cordial.  

4. Conclusions 

In this research work, we have proved cordiality for different copper-oxide derived networks. The proof, along with mapping of vertices is illustrated 

above for 𝐶𝑢𝑂(𝑚, 𝑛), 𝐶𝑢𝑂𝐸𝑋(𝑚, 𝑛) and 𝐶𝑢𝑂𝐸𝑁(𝑚, 𝑛). This study can be extended by studying different graph theory problems for the copper-oxide 

networks. Also, conditions of cordiality can be proved for other chemical structures. 

References 

[1] Alexander Rosa, “On certain valuations of the vertices of a graph”, Theory of Graphs, (349-355), 1967. 

[2] Balamurugan. B.J, Thirusangu .K, Murali. B.J, “Computing Narayana Prime Cordial Labeling of Web Graphs and Flower Graphs”, Advances in 

Intelligent Systems and Computing, Vol.904(411-419), 2019.  

[3] S. Bessy, A. Bonato, J. Janssen, D. Rautenbach, and E. Roshanbin, “Bounds on the burning number”, Discrete Applied Mathematics, Vol.235(16–

22), 2018. 

[4] A. Bonato and T. Lidbetter, “Bounds on the burning numbers of spiders and path-forests”, Theoretical Computer Science, Vol.794(12–19), 2019.  

[5] Cahit.I, ‟Cordial Graphs: A weaker version of graceful and Harmonic Graphs”, Ars Combinatoria, Vol.23(201-207), 1987. 

[6] Cahit.I, ‟On cordial and 3-equitable labelings of graphs”, Utilitas Mathematica, Vol.37(189-198), 1990. 

[7] G.Chartrand, D. Erwin, and P. Zhang, “A graph labelling problem suggested by FM channel restrictions”, Bull. Inst. Combin. Appl., Vol.43(43-57), 

2005. 

[8] G. Chartrand, N. Ladislav, P. Zhang, “Radio k-colorings of paths”,Discussiones Mathematicae Graph Theory, Vol.24(5-21), 2004. 

[9] S. Das, S. R. Dev, A. Sadhukhan, U. K. Sahoo, and S. Sen. Burning Spiders, “In Algorithms and Discrete Applied Mathematics”, Springer International 

Publishing, Vol.10743(55–163), 2018. 

[10] Gao.W, Baig.A.Q, Khalid. W, Farahani. M.R, “Molecular description of copper (II) oxide”, Maced. J. Chem. Chem. Eng., Vol.36(93–99), 2017. 

[11] W.K. Hale, “Frequency assignment: Theory and applications”, Proceedings of the IEEE, Vol 68(1497- 1514), 1980. 

[12] N. Hartsfield, G. Ringel G., “Pearls in Graph Theory: A Comprehensive Introduction”, Academic Prress Inc.,Boston, 1990.  

[13] Ho, Y.S., Lee, S.M., Shee, S.C., “Cordial labelings of unicylic graphs and generalized Petersen graphs”, Congr. Number, Vol.68(109–122), 1989. 

[14] Kins Yenoke, “Radial radio number of uniform cyclic and wheel split graphs”, International Journal of Advance Research, Ideas and Innovations in 

Technology, Vol.6(222-227), 2020. 

[15] Kins Yenoke, Charles Robert Kenneth, “Lower bounds on the radio degree of ladder graph, triangular ladder graph and comb graph”, International 

Journal of Current Science and Engineering, Vol.02(341-344), 2020. 

[16] Kins Yenoke, Rexy Mereum K, Prasanna R, Allen Cornelius N F, “A Study on Radio Mean Graceful for Certain Graphs”, International Journal of 

Innovative Research in Science, Engineering and Technology, Vol.9, 2020. 

[17] Kins Yenoke, Mohammed K. A. Kaabar, M. Selvi Sirumalar and Infant R. Carmel, “A Study on Avoiding RFI in the Movement of Robots via Radio 

Resolving Number Problem”, Palestine Journal of Mathematics, Vol.12(204–212), 2023. 



International Journal of Research Publication and Reviews, Vol 5, no 9, pp 3728-3734 September 2024                                     3734 

 

 

[18] Kins Yenoke, T. Shiba Neenu, Charles Robert Kenneth, D. Francis Xavier, M. Peter and K. Leo Lawrence, “A Study on L(2,1) Labelling Problem 

for Copper-Oxide and its Extended Networks”, Advances and Applications in Mathematical Sciences, Vol.21(6361-6372), 2022. 

[19] Lawrence Rozario Raj, ‟Cordial labeling for the splitting graph of some standard graphs”, International Journal of Mathematics and Soft Computing 

Vol.1, 2011. 

[20] Madhubala.G, Rajakumari.N, ‟A square divisor cordial labeling of graphs”, International Journal of Mathematics Trends and Technology, Vol.65, 

2019. 

[21] D. McQuillan, “Vertex-magic cubic graphs”, JCMCC, Vol.48(103–106), 2003. 

[22] Meena.S, Renugha. M and Sivasakthi. M, ‟Cordial labeling for different types of shell”, International Journal of Scientific & Engineering Research, 

Vol.6, 2015. 

[23] Murali, B.J., Thirusangu, K., Balamurugan, “Narayana prime cordial labeling of graphs”, International Journal of Pure and Applied 

Mathematics, Vol.117(1–8), 2017. 

[24] Roberts.F. S, ‟Graph Theory and Its Applications to the Problems of Society”, SIAM Publications, Philadelphia, 1978. 

[25] Rokad Amit.H, Patadiya Kalpesh M, ‟Cordial labeling of some graphs”, Aryabhatta Journal of Mathematics and Informatics, Vol.9, 2017. 

[26] E. Roshanbin, “Burning a graph as a model for the spread of social contagion”, PhD thesis, Dalhousie University, 2016. 

[27] J. Sedl´aˇcek, “On magic graphs”, Math. Slov., Vol.26(329–335), 1976. 

[28] Slamin S, Adiwijaya N.O, Hasan M.A, Dafik D, Wijaya K, “Local Super Antimagic Total Labeling for Vertex Coloring of Graphs”, Vol.12, 2020. 

[29] Sourav Mondal, Nilanjan De, Anita Pal, “On Some New Neighborhood Degree-Based Indices for Some Oxide and Silicate Networks”, 

Multidisciplinary Scientific Journal, Vol.2(384–409), 2019. 

[30] W. D. Wallis, “Vertex magic labelings of multiple graphs”, Congressus Numerantium, Vol.152 (81–83), 2001. 

 

https://www.researchgate.net/profile/Lawrence-Raj?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

