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ABSTRACT:  

Landslides are a major environmental hazard in mountainous regions, and their occurrence is often influenced by hydrological factors. This study focuses on 

assessing the hydrological impact on landslides and their spatial distribution in the Pir Panjal Range of the Himalayas using a GIS and Analytical Hierarchy Process 

(AHP) approach. Key hydrological parameters such as rainfall intensity, drainage density, and tropical wetness index  are integrated to determine landslide 

susceptibility and distribution. The AHP method is employed to prioritize these factors based on their contribution to landslide initiation, allowing for a more 

accurate landslide susceptibility map. GIS tools are used to spatially analyze and visualize the distribution of landslides, providing a comprehensive understanding 

of the areas most prone to this hazard. This study highlights the significant role of hydrology in triggering landslides and provides valuable insights for land-use 

planning and disaster mitigation in the region. 

Keywords: Landslides, Hydrological impact, Pir Panjal Range, GIS, Analytical Hierarchy Process (AHP), Landslide susceptibility, Drainage density, 

Groundwater flow, Spatial distribution.. 

Introduction 

Landslides are debris flow resulting from the outward and downward movement of soil and rock masses along slopes (Varnes, 1984; Cruden, 1991). In 

the country's mountainous regions, landslides occur frequently, varying in magnitude from minor to severe (Gao & Maro, 2010). This complex geological 

phenomenon poses significant risks to human lives and infrastructure, especially in hilly areas (Svalova et al., 2019). Landslides are caused by a 

combination of geological, geomorphological, and climatic factors, making their study crucial for better hazard management (Rai et al., 2014). Recent 

years have seen an increase in landslide occurrences, largely due to factors such as the overexploitation of natural resources, land-use changes, 

unsustainable mining practices, deforestation, climate change, traffic congestion, rapid urbanization, and road expansion (Nadim et al., 2006; Hoyois et 

al., 2007; Schuster, 1996). The growth of tourism, improved water and electricity supplies, and favorable climatic conditions has encouraged more people 

to settle in mountainous areas, contributing to urbanization. This, in turn, has led to infrastructure development, often without proper slope management 

practices, exacerbating the risk of landslides (Jaiswal et al., 2011). 

When extreme rainfall or earthquakes occur, they can destabilize slopes by increasing shear stress or reducing shear strength, leading to landslides (Dai 

& Lee, 2002; Guzzetti et al., 2005). Additionally, regional seismic activity may gradually weaken slopes, making them more susceptible to failure (Moore 

et al., 2011). 

This study focuses on analyzing hydrological influences on landslide distribution in the Pir Panjal Range using GIS and the AHP method. The resulting 

maps provide valuable insights into areas vulnerable to landslides, supporting better risk assessment, land-use planning, and decision-making. 

Materials And Methods 

In this research, an extensive study of landslides was conducted across the Pir Panjal Range.  

http://www.ijrpr.com/
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The geographical coordinates of this study domain span from Latitude: 33.8893 Longitude: 74.4865.The PirPanjal Range  a bunch of mountains in the 

Lesser Himalayan area. They stretch from the southeast to the northwest, covering places like Himachal Pradesh, Jammu and Kashmir in India, and 

even some parts controlled by Pakistan in Kashmir 

The main objective was to assess the impact of hydrology on landslide distribution. To accomplish this, a robust integration of the Analytic Hierarchy 

Process (AHP) and Geographical Information System (GIS) was utilized. The AHP method systematically evaluated and prioritized key hydrological 

factors such as rainfall, proximity to streams, and the Topographic Wetness Index. These critical parameters were then effectively combined within a GIS 

framework to produce comprehensive and accurate maps, followed by an analysis of landslide distribution. The resulting map is an invaluable tool, 

offering deep insights into vulnerable areas within the Pir Panjal Range, thereby aiding informed decision-making and enhancing risk management 

strategies.   

The data utilized in this research stems from various different sources. Notably, Survey of India (SOI) Toposheets with  designations. 43H/15, 43H/14, 

43I/3143H/16, 43I/4, 43I/843O/5,43O/6,43O/9,43O/1043O/11,43O/15,43P/3  were carefully employed to create the basic map at a scale of 1:50,000. 

Geological information was sourced from the Geological Survey of India (GSI),. These original maps were meticulously traced, aligned, and digitized to 

construct an accurate spatial representation of distinct litho- units within the geographical domain. 

Meteorological data pertaining to rainfall was meticulously gathered from the Indian Meteorological Department (IMD) and subsequently subjected to 

spatial analysis within a GIS framework. 

the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM) dataset with a 30-meter resolution was harnessed to create detailed 

maps of drainage patterns, and drainage density within the research area. 

The creation and analysis of models and progressions relevant to this study were accomplished using ArcGIS version 10.6. Field data collection was 

facilitated by the utilization of Global Positioning System (GPS) technology. 

         The additional data used in the study include rainfall. These data was collected from Indian Meteorological.  

Analytic Hierarchy Process (AHP method) 

The Analytical Hierarchy Process (AHP) method, introduced by Saaty (1980), has become a popular tool for Multi-Criteria Decision-Making (MCDM) 

in analyzing Landslide Hazard Zones (LHZ) ( Sangchini et al., 2016; Gupta ., 2016.; Althuwaynee and Pradhan, 2016).AHP involves a structured 

approach, breaking down complex decisions into a hierarchical model with clear levels of criteria and alternatives (Senouci et al., 2021). In the context 

of this study, AHP is utilized to prioritize landslide-influencing hydrological parameters and create a landslide susceptibility map for the Pirpanjal range. 

• Construction of the Hierarchy 

The initial step in the AHP method is to construct a hierarchical structure that organizes the decision problem into manageable components (Saaty, 1980). 

The hierarchy consists of three main levels: Goal, Criteria, and Alternatives. At the top level, the ultimate goal is defined, which is to develop a landslide 

susceptibility map for the Pirpanjal Range. The second level comprises criteria that significantly influence landslide occurrence, such as, precipitation , 

distances from streams , TWI..  

• Pair wise Comparisons 

           Pair wise comparisons play a crucial role in the AHP method, allowing experts and stakeholders to express their preferences between criteria and 

alternatives (Saaty, 1980). A scale ranging from 1 to 9 is used to represent the relative importance of elements, where 1 indicates equal importance and 9 
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indicates extreme importance. These pair wise comparisons result in a matrix, known as the pair wise comparison matrix, which quantifies the 

relationships between elements. 

Table 3.4  Comparison Scale (saaty, 1980) 

 

• Calculation of Priority Weights 

 The data obtained from the pair wise comparisons is used to calculate the priority weights of criteria and alternatives (Saaty, 1980). The Eigen value 

method or Eigenvector method, based on the largest Eigen value principle, is commonly employed for this purpose. The priority weights represent the 

relative significance of each criterion and alternative in contributing to the overall goal of landslide susceptibility mapping. 

• Consistency Analysis 

To ensure the reliability of the decision-making process, it is essential to assess the consistency of judgments made during pair wise comparisons (Saaty, 

1980). Saaty (1980) introduced the Consistency Ratio (CR) as a measure of consistency. A CR value greater than 0.1 indicates some level of inconsistency 

in the judgments, raising the need for reevaluation and adjustment. 

𝐶𝐼 =
𝜆 − 𝑛

𝑛 − 1
 

Where λ is the max value of eigenvector and n is the number of criteria. 

Saaty (2000) generated a reciprocal matrix randomly by using scales ranging from 1/9 to 9. The purpose was to obtain a random consistency index (RI) 

and assess if it falls within the range of approximately 10% (0.1) or below. Additionally, Saaty (1977) introduced the consistency ratio (CR), depicted in 

equation 2, which involves comparing the consistency index with the random consistency index to evaluate their similarities. 

CR=
𝐶𝐼

𝑅𝐼
 

Where RI is the Random Index, and CI stands for Consistency Index. 

•  Synthesis of Results 

                     After calculating the priority weights and confirming consistency, the final step involves synthesizing the results to rank the criteria and 

alternatives based on their importance (Saaty, 1980). High-ranking criteria and alternatives have a more significant influence on landslide susceptibility, 

while low-ranking ones are relatively less impactful. 

A pair wise comparison matrix of each landslide influencing parameters was done and resulted Weight Eigen Vector (WEV) values were calculated. 

The consistency index (CI) for the favorable factors is 0.00, which is less than 10%. This indicates that the assigned weights are appropriate for generating 

the landslide susceptibility map of the study area using the weighted overlay method (WOM) (Shit et al., 2016) 

Consequently, a weighted overlay method (WOM) was employed to parameter layers generated to delineate the final landslide susceptibility map (LSM) 

using the equation specified in the methodology.                           

𝐿𝑆𝑀 =  ∑ (𝑅𝑎𝑛𝑘𝑖ℎ 

𝑚

ℎ
× 𝑊ℎ)/ ∑ 𝑊ℎ

𝑚

ℎ

 

Where LSM = landslide susceptibility map  

Ordinal 

Scales 

Degree of Preference Explanation / Remarks 

1 Equally important Two factors  influence  equally 

3 Moderately important The level of experience and judgment leans towards a moderate preference for one 

activity over another. 

5 Strongly important Experience and assessment substantially or essentially incline towards giving 

preference to one activity over another. 

7 Very strongly important One activity is strongly favored over another, and its dominance is shown in practice 

9 Extremely important The indication of favoring one activity over another is of the utmost degree for an 

affirmation. 

2,4,6,8 Intermediate values Utilized to signify a middle ground between the preferences assigned to weights 1, 3, 

5, 7, and 9. 
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Rankih = rating classes 

Wh = weight of each landslide-inducing factors 

Drainage Density and Distance from streams 

Drainage density, an essential geomorphic parameter, represents the ratio of the total length of streams and rivers to the area of a drainage basin. It plays 

a vital role in natural processes such as slope stability and landslide occurrence. This article delves into the concept of drainage density, the factors 

influencing it, and its impact on slope stability and landslides. 

The link between drainage density and landslide occurrence is well-documented (Ajin et al., 2016). Areas with moderate to high drainage density are 

more susceptible to landslides. The concentration of watercourses in these areas enhances erosion and slope destabilization.  

Measuring drainage density through proximity to streams provides valuable insights into a landscape’s vulnerability to slope instability and landslides. 

Higher drainage density, marked by closer watercourse proximity, increases landslide risk due to intensified erosional forces.  

The study examined existing landslide locations concerning their distance from streams, revealing that landslide events were most frequent within buffer 

zones of 0-100 meters, 100-500 meters, and 500-1000 meters from streams. This underscores the importance of stream proximity in affecting slope 

stability and landslide susceptibility. 

Using SRTM-DEM, a distance-from-stream map was generated in a GIS environment. The distances were categorized into 0-100m, 100-500m, 500-

1000m, 1000-1500m, and >1500m, with the area and number of landslides for each class calculated (Table 1). The distance-from-stream map is shown 

in Fig. 4.3, and the drainage density map in (Fig.1a). 

Tab 1 - Distance from stream and number of landslides in each class. 

S No Distance from stream Area (Sq.km) Area % Number of landslides 

1 0 – 100m 328 5.35 % 22 

2 100 – 500m 1182 19.28 % 95 

3 500 – 1000m 1365 22.26 % 46 

4 1000 – 1500m 1175 19.16 % 7 

5 > 1500m 2080 33.93 % 10 

Tropical wetness Index (TWI) 

The Topographic Wetness Index (TWI) is a key hydrological metric that helps in understanding how topography influences the formation and extent of 

saturated source areas for runoff generation. It is a vital element in runoff modeling and has been extensively analyzed by (Pourghasemi et al. (2012) and 

Pradhan and Kim (2014). 

TWI is calculated using the formula: Ln[AS/tan(β)], where AS represents the specific catchment area of each cell, and β is the slope gradient in degrees. 

This method was first introduced by (Moore et al. (1988) and later employed by (Saadatkhah et al. (2014). In saturated soil conditions, surface moisture 

follows predictable downhill flow patterns, governed by gravity and flow dynamics. 

 In this study, TWI was divided into five classes—very low, low, medium, high, and very high—as shown in Table 2. This classification provides valuable 

insights into the runoff generation potential across different regions and the map in (Fig.1b). 

Table 2-  Tropical wetness index and Number of Landslides in each Class. 

S No 
Tropical wetness Index 

(TWI) 
Area (Sq.km) Area % Number of landslides 

1 Very Low 2762 42.49 % 85 

2 Low 2181 35.55 % 56 

3 Medium 1044 16.06 % 19 

4 High 401 6.16 % 11 

5 Very High 112 1.72 % 8 

Rainfall 

Rainfall plays a crucial role in triggering landslides worldwide, making it the most significant factor in landslide occurrences (Marc et al., 2018; Jia et 

al., 2020). Rainfall-induced landslides are one of the most common geological hazards, posing severe threats to mountainous regions across various 

spatial and temporal scales (Lai et al., 2018). 
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 In mountainous areas, shallow landslides are typically triggered by either high-intensity, short-duration rainstorms or prolonged, low to medium-intensity 

rainfall events (Cheila et al., 2016; Anna et al., 2020). Landslides often cluster during periods of intense rainfall, with the potential to evolve into debris 

flows or be associated with flash floods, leading to casualties and significant economic losses (Tohari, 2018; Yang et al., 2020). 

 For this study, an annual average rainfall map was generated in a GIS environment using the interpolation technique IDW (Fig.1c). The station data, 

collected from IMD, when interpolated, highlighted the rainfall distribution across various locations. The southern part of the study area experienced 

higher rainfall, whereas the northern regions received comparatively less. About 30.15% (1,850 km²) of the area received very high annual rainfall (>2000 

mm)  and the majority of landslides occurred in these high rainfall zones, followed by areas with slightly lower rainfall, indicating a clear link between 

rainfall and slope instability as shown in (Tab. 3). 

Table 3-   Annual Rainfall and Number of Landslides in each Class. 

S No Annual Rainfall Area (Sq.km) Area % Number of landslides 

1 < 1250 mm/yr 834 13.60 % 3 

2 1250 – 1500 mm/yr 1034 16.86 % 13 

3 1500 – 1750 mm/yr 1101 17.95 % 5 

4 1750 – 2000 mm/yr 1314 21.42 % 15 

5 > 2000 mm/yr 1849 30.15 % 144 

Landslide Inventory Mapping 

The first and essential step in understanding landslides is conducting an inventory study (Strom and Abdrakhmatov, 2017). A landslide inventory database 

helps identify locations affected by landslides within the study area (Gerzsenyi and Albert, 2021), forming a foundation for hazard, risk, and prevention 

studies (Fan et al., 2019).  

In this study, the landslide inventory dataset includes 180 landslides, mapped through visual interpretation of optical satellite images, Google Earth image 

analysis, news reports from multiple sources (timesofindia.indiatimes.com, indianexpress.com, onmanorama.com, mathrubhumi.com, etc.), GSI field 

reports (gsi.gov.in), and field surveys (Fig. 1d). The types of landslides identified include debris flow, earth flow, subsidence, rockfall, creep, and rock-

cum-debris slide. The landslide footprints were vectorized using high-resolution Google Earth imagery. 
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             Fig – (a)  Streams  , (b) Tropical wetness index, (c) Annual Rainfall, (d) Landslides 

AHP Ranking 

Numerous researchers across the globe have employed the Analytical Hierarchy Process (AHP) method to construct landslide susceptibility maps ( Ashok 

and Reghunath, 2017; Noorollahi et al., 2018; Stanley and Kirschbaum, 2017; Handong et al., 2019; Milevski et al., 2019; Kumar and Anbalagan, 2016). 

In this particular study, the landslide susceptibility map was prepared using the GIS-based AHP method.The analysis involved three hydrological 

landslide-influencing parameters, namely rainfall, tropical wetness index, distance from stream. To ensure the accuracy of the weights assigned to each 

parameter, the AHP method was utilized. The AHP method facilitated obtaining proportion scales from paired comparisons (Saaty, 1977 & 2000), while 

ranks and weights were assigned based on existing literature (Saaty, 1977).Each parameter's influence on landslides was assessed through expert opinions 

and ranked on a scale ranging from 1 to 9 

The hydrological parameters contributed essential in delineating the landslide susceptibility   zones . The ranks and weights assigned for each parameter 

as per AHP can be found in (Table 4),following the methodology laid out by Satty 1977. 

Tab 4- Parameters and weights   

 

                                    

 

 

 

 

                                              

The overall consistency index, calculated as 0.000, suggests that the assigned weights are suitable and consistent. 

GIS Overlay Analysis and results 

The identification of landslide susceptibility zones within the study area draws upon a multifaceted set of hydrological factors including rainfall, 

topographic wetness index, distance from streams. The integration of these diverse inputs, in conjunction with relevant parameters, forms a pivotal step 

in this process Employing the Analytic Hierarchy Process (AHP) method, suitable weightage is assigned to each factor, ensuring a balanced and informed 

approach.The amalgamation of this quantitative data takes place within the GIS framework. Through numerical integration, the influencing parameters 

are subjected to reclassification (refer to Table 5), subsequently undergoing processing within the "Raster Calculator" function of the spatial analysis tool. 

 

Factors Annual Rainfall Distance from stream TWI Normalized  Weights 

Annual Rainfall 1 2/3 2/3 0.2501 

Distance from stream 1 1/2 1 1 0.3750 

TWI 1 1/2 1 1 0.3750 

Maximum Eigen Value =3.00 

C.R.=0.000 

(d) 
(c) 
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Table- 5   Rank and Weights of Influencing Parameters for Landslides 

 

Employing a straightforward arithmetic calculation, these parameters are seamlessly combined. The resultant Landslide Susceptibility Zonation map 

(depicted in Figure 2) is stratified into three distinct zones:, 'High Susceptibility Zone', 'Moderate Susceptibility Zone', and 'Low Susceptibility Zone' and 

the distribution of landslides in each zone is calculated. 

The study found out that the areas under high influence of hydrological factors have the most number of landslides. This signifies that hydrological 

processes in the region are one of the most important factor that causes landslides as shown in (Tab 6) 

  Table 6- Spatial Distribution and number of Landslides Presented in each Landslide Susceptibility Classes 

 

                                                   

 

 

 

Parameters Class Area(km2) Rank (% influence) Weight 

Annual Rainfall 

< 1250 mm/yr 

1250–1500 mm/yr 

1500–1750 mm/yr 

1750–2000 mm/yr 

> 2000 mm/yr 

834 

1034 

1101 

1314 

1849 

40% 

3 

5 

5 

7 

9 

Dist from stream 

0 – 100m 

100 – 500m 

500 – 1000m 

1000 – 1500m 

> 1500m 

328 

1182 

1365 

1175 

2080 

40% 

9 

9 

7 

5 

3 

Tropical wetness index  

(TWI) 

Very low 

Low 

Moderate 

High 

Very high 

2762 

2181 

1044 

401 

112 

20% 

7 

7 

7 

9 

9 

Susceptibility Classes Area in Km2 Area in % Landslide in each class 

Low 299 4.88 % 1 

Moderate 2420 39.55 % 12 

High 2734 44.68 % 40 
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Fig 2-  Landslides Susceptibility Map of the Study Area 

Conclusion 

Regions with high precipitation and elevated wetness indices have been identified as particularly prone to erosion, especially in barren land areas. The 

methodology employed in this study has proven to be an effective and efficient way to assess erosion susceptibility over vast areas qualitatively. This 

approach holds significant value for planners and policymakers as they devise conservation strategies. By providing reliable predictions, this study assists 

decision-makers in reducing potential soil erosion damage in the Sind and Dachigam catchments.To mitigate soil loss, it is crucial to review and refine 

current scientific management practices and implement appropriate conservation measures at the catchment level. Key recommendations include 

afforestation, urban tree planting, controlling overgrazing, contour farming, water conservation systems, and the establishment of flood and erosion 

control structures, as well as runoff water catchment systems. The influence of the aspect factor, which affects the overall erosion dynamics, also demands 

attention in such evaluations.Moreover, the adoption of conservation techniques like no-till (NT) farming, where seeds are planted directly into 

unploughed stubble, can greatly reduce soil disruption. This method offers environmental advantages, including diminished erosion risks by improving 

soil structure and maintaining plant cover. These strategies not only help in reducing soil erosion but also enhance soil health, crop yield, and ultimately, 

the livelihoods of local communities.It is important to recognize, however, that uncertainties exist in the conditioning factors, and expert judgments may 

introduce a degree of subjectivity. Future assessments of erosion susceptibility should consider incorporating fuzzy logic or machine learning algorithms, 

while also accounting for significant variables like changes in rainfall patterns and intensity under evolving climate change conditions. 
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