

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

On Generalized Birecurrent Finsler Space of Mixed Covariant Derivatives in Cartan Sense

*Adel M. Al- Qashbari ¹ , Alaa A. Abdallah*²& Fatma A. Ahmed ³*

^{1, 3}Department of Mathematics, Faculty of Education, Aden University, Aden, Yemen ²Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

ABSTRACT :

In this paper, we introduce a Finsler space which Cartan's third curvature tensor R_{jkh}^i satisfies the generalized birecurrence property by using the first and second kind of covariant derivatives simultaneously in Cartan sense. Further, we prove that some tensors are non-vanishing. Certain identities belong to main space have been studied.

Keywords: Generalized R^{hv} – mixed birecurrent space, hv –covariant derivative of mixed second order, Cartan's third curvature tensor R^i_{jkh}

Introduction and Preliminaries

Various curvature tensors that satisfy the generalized birecurrent by using two kinds of covariant derivatives in sense of Cartan introduced by [6, 9, 16]. Qasem and Hadi [11-13] discussed Cartan's third curvature tensor R_{jkh}^i , Cartan's fourth curvature tensor K_{jkh}^i and Berwald curvature tensor H_{jkh}^i which are generalized birecurrent in sense of Cartan. Also, Assallal [8] introduced the generalized P^h -birecurrent space.

Let F_n be an *n*-dimensional Finsler space equipped with the metric function $F(x, y)$ satisfying the request conditions [4, 14, 17]. The vectors y_i and y^i defined by

$$
(1.1) \t y_i = g_{ij}(x, y)y^j.
$$

The metric tensor g_{ij} and its associative g^{ij} are connected by

$$
(1.2) \t g_{ij}g^{ik} = \delta_j^k = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}.
$$

In view of (1.1) and (1.2) , we have

(1.3) a) $\delta_j^i y_i = y_j$, b) $\delta^i_j y^j = y^i$, c) $\delta_j^i g_{ir} = g_{jr}$, d) $\delta_j^i g^{jk} = g^{ik}$ and d) $y_i y^i = F^2$.

The (h) hv – torsion tensor which is positively homogeneous of degree -1 in $yⁱ$ and symmetric in all its indices introduced and defined by [5, 15]

$$
C_{ijk} = \frac{1}{2} \partial_i g_{jk} = \frac{1}{4} \partial_i \partial_j \partial_k F^2.
$$

And satisfies

(1.4) a)
$$
C_{ijk} y^i = C_{kij} y^i = C_{jki} y^i = 0
$$
 and b) $C_{jk}^h g_{ih} = C_{ijk}$.

 \hat{E} . Cartan [7] deduced the covariant derivatives of an arbitrary vector field X^i with respect to x^k which given by

$$
(1.5) \tXi \big|_{k} = \partial_{k} X^{i} + X^{r} C_{rk}^{i}
$$

and

(1.6) $X^i_{|k} = \partial_k X^i - (\partial_r X^i) G^r_k + X^r \Gamma^{*i}_{rk}$,

where the function Γ_{rk}^{*i} is defined by $\Gamma_{rk}^{*i} = \Gamma_{rk}^i - C_{mr}^i \Gamma_{sk}^m$ y^s . The functions Γ_{rk}^{*i} and G_k^r are connected by $G_k^r = \Gamma_{sk}^{*r} y^s$ where $\partial_j \equiv \frac{\partial}{\partial x^i}$ $\frac{\partial}{\partial x^j}$, $\dot{\partial}_j \equiv \frac{\partial}{\partial y^j}, \quad G^i_j = \dot{\partial}_j G^i.$

The equations (1.5) and (1.6) give two kinds of covariant differentiations which are called ν -covariant differentiation (Cartan's first kind covariant derivative) and h –covariant differentiation (Cartan's second kind covariant derivative), respectively. So $X^{i}|_{k}$ and X^{i}_{k} are v –covariant derivative and h –covariant derivative of the vector field Xⁱ. Therefore, v –covariant derivative and h –covariant derivative of the vectors y^i , y_i and metric tensors g_{ij} and its associative g^{ij} are satisfied [14]

(1.7) a)
$$
g_{ij}|_k = 0
$$
, b) $g_{ij|k} = 0$, c) $g^{ij}|_k = 0$, d) $g^{ij}_{|k} = 0$,

^{*} *Corresponding author.* E-mail address[: ala733.ala00@gmail.com](mailto:ala733.ala00@gmail.com)

The tensor R_{jkh}^i called *Cartan's third curvature tensor* is positively homogeneous of degree zero in y^i and defined by [1, 14]

 $R^{i}_{jkh} = \partial_h \Gamma^{*i}_{jk} + (\partial_{\ell} \Gamma^{*i}_{jh}) G^{\ell}_{k} + G^i_{jm} (\partial_h G^m_k - G^m_{h\ell} G^{\ell}_{k}) + \Gamma^{*i}_{mh} \Gamma^{*m}_{jk} - h/k,$

This tensor satisfies

(1.8) a) $R^{i}_{jkh} y^{j} = H^{i}_{kh} = K^{i}_{jkh} y^{j}$, b) $R_{ijkh} = g_{rj} R_{ikh}^r$ and c) $R_{jkh}^i = g^{ri} R_{rjkh}$, where R_{ijkh} is the associative tensor of R^{i}_{jkh} .

R –Ricci tensor R_{jk} , deviation tensor R_h^r and curvature scalar R of the curvature tensor R_{jkh}^i are given by [14]

(1.9) a) $R_{jki}^i = R_{jk}$, b) R_{jk} y b) $R_{jk} y^j = R_k$, ,
 c) $R_{ikh}^r g^{ik} = R_h^r$, d) $R_{jk} g^{ij} = R_k^i$ and e) g e) $g^{jk} R_{ik} = R$.

The tensor P_{jkh}^i called *hv –curvature tensor* (*Cartan's second curvature tensor*) is positively homogeneous of degree -1 in y^i and defined by [2, 3, 14]

 $P_{jkh}^i = \partial_h \Gamma_{jk}^{*i} + C_{jr}^i P_{kh}^r - C_{jh|k}^i$. The $\nu(h\nu)$ -torsion tensor P_{kh}^i is given (1.10) $P_{jkh}^i y^j = \Gamma_{jkh}^{*i} y^j = P_{kh}^i = C_{kh|r}^i y^r$,

The associate tensors P_{ijkh} and P_{jkh} of the hv –curvature tensor P_{jkh}^r and $v(hv)$ – torsion tensor P_{kh}^r are given by [14]

$$
(1.11) \text{ a) } P_{ijkh} = g_{ir} P_{jkh}^r \qquad \text{and} \qquad \text{b) } P_{jkh} = g_{jr} P_{kh}^r \, .
$$

P – Ricci tensor P_{jk} , curvature vector P_k and curvature scalar P of Cartan's second curvature tensor P_{jkh}^i are given by

(1.12) a) $P_{jk} = P_{jki}^i$, b) $P_k = P_{ki}^i$ and c) $P = P_k y^k$.

The tensor K_{jkh}^i called *Cartan's fourth curvature tensor* is positively homogeneous of degree zero in y^i and defined by [14]

$$
K_{jkh}^i = \partial_h \Gamma_{kj}^{*i} + (\partial_{\ell} \Gamma_{jh}^{*i}) G_k^{\ell} + \Gamma_{mh}^{*i} \Gamma_{kj}^{*m} - h/k^*.
$$

The associate tensor K_{ijkh} , K –Ricci tensor K_{jk} , curvature scalar K and deviation tensor K_j^i of the curvature tensor K_{jkh}^i are given by

(1.13) a) $K_{ijkh} = g_{rj} K_{ikh}^r$, b) $K_{jki}^{i} = K_{jk}$, c) $K_{jk}g$ $^{ij} = K_k^i$, d) $K_{ik}g^{jk} = K$ $j^k = K$ and e) $K_{jk}y$ $k = K_j$. The Berwald curvature tensor H_{jkh}^i is defined by [14] $H^{i}_{jkh} = \partial_h G^{i}_{jk} + G^{s}_{jk} G^{i}_{sh} + G^{i}_{sjh} G^{s}_{k} - h/k.$ The torsion tensor H_{kh}^i and deviation tensor H_k^i are satisfied (1.14) a) $H^{i}_{jkh} y^{j} = H^{i}_{kh}$ and b) H_{jk}^i ${}_{ik}^{i} y^{j} = H_{k}^{i}.$ H – Ricci tensor H_{ik} , curvature vector H_k and scalar curvature H are given by (1.15) a) $H_{jki}^i = H_{jk}$, b) H_{ki}^i b) $H_{ki}^{i} = H_{k}$ and c) $H_i^i = (n-1) H$.

A Generalized – mixed birecurrent space

This section introduces a Finsler space which R_{jkh}^i satisfies the generalized birecurrence property by using two kinds of covariant derivatives in Cartan sense. Qasem and AL-Qashbari [10] introduced Finsler space F_n which Cartan's third curvature tensor R_{jkh}^i satisfies the generalized recurrence property with respect to Cartan's second kind covariant derivative, i.e. characterized by the condition

(2.1) $R_{jkh|l}^i = \lambda_l R_{jkh}^i + \mu_l (\delta_k^i g_{jh} - \delta_h^i g_{jk})$, $R_{jkh}^i \neq 0$,

where |*l* is the *h* −covariant derivative operator of first order with respect to x^l , also λ_l and μ_l are called recurrence covariant vectors. They called this space and tensor, the *generalized* R^h *-recurrent space* and *generalized* h *-recurrent tensor* and denoted them briefly by GR^h - RF_n and Gh - R, respectively.

In the same vein, let us consider that the Cartan's third curvature tensor R_{jkh}^i satisfies the generalized recurrence property with respect to Cartan's first kind covariant derivative, i.e. characterized by the condition

$$
(2.2) \quad R^i_{jkh}|_m = \lambda_m R^i_{jkh} + \mu_m (\delta^i_k g_{jh} - \delta^i_h g_{jk}), \quad R^i_{jkh} \neq 0,
$$

where $|m|$ is the v – covariant derivative operator of first order with respect to x^m . A Finsler space F_n which R_{jkh}^i satisfies the condition (2.2) will be called a *generalized* −*recurrent space* and the tensor will be called a *generalized* −*recurrent tensor*. This space and tensor denote them briefly by $GR^{\nu} - RF_n$ and $G\nu - R$, respectively.

Now, taking v – covariant derivative for (2.1) and using (1.7a) with respect to x^m , we get

 $R_{jkh|l|m}^i = \lambda_{l|m} R_{jkh}^i + \lambda_l R_{jkh|m}^i + \mu_{l|m} (\delta_k^i g_{jh} - \delta_h^i g_{jk}).$

Using the condition (2.2) in above condition, we get

$$
R_{jkh|l|m}^i = \lambda_{l|m} R_{jkh}^i + \lambda_l [\lambda_m R_{jkh}^i + \mu_m (\delta_k^i g_{jh} - \delta_h^i g_{jk})] + \mu_{l|m} (\delta_k^i g_{jh} - \delta_h^i g_{jk})
$$

Or

$$
R_{jkh|l|m}^i = (\lambda_{l|m} + \lambda_l \lambda_m) R_{jkh}^i + (\lambda_l \mu_m + \mu_{l|m}) (\delta_k^i g_{jh} - \delta_h^i g_{jk}).
$$

The above equation can be written as

(2.3) $R_{jkh|l|m}^i = a_{lm} R_{jkh}^i + b_{lm} (\delta_k^i g_{jh} - \delta_h^i g_{jk}), \quad R_{jkh}^i \neq 0$,

where $|l| m$ is hv –covariant differential operator of second mixed order with respect to x^l and x^m , respectively. Also, $a_{lm} = \lambda_{l|m} + \lambda_l \lambda_m$ and $b_{lm} = \mu_{l|m} + \lambda_l \mu_m$ are non – zero covariant tensors field of second order.

Definition 2.1. A Finsler space F_n which Cartan's third curvature tensor R_{jkh}^i satisfies the condition (2.3) will be called a *generalized* R^{hv} – *mixed birecurrent space* and the tensor will be called a *generalized hv – mixed birecurrent tensor*. This space and tensor denote them briefly by $\frac{G R^{hv}}{h}$ $(M) BRF_n$ and $Ghv - (M) BR$, respectively.

Remark 2.1. The condition $R_{jkh|l|m}^i = a_{lm}R_{jkh}^i$, $R_{jkh}^i \neq 0$, looks as a mixed birecurrent. Also considers as a particular case of the condition (2.3), but it does not do.

Now, transvecting the condition (2.3) by g_{ip} , using (1.8b), (1.7a), (1.7b) and (1.3c), we get

(2.4) $R_{jpkh|l|m} = a_{lm}R_{jpkh} + b_{lm}(g_{kp}g_{jh} - g_{hp}g_{jk}).$

Remark 2.2. Conversely, transvecting (2.4) by the associate metric tensor g^{ip} and using $(1.8c)$, $(1.7c)$, $(1.7d)$ and (1.2) , yields the condition (2.3) i.e. the condition (2.3) is equivalent (2.4), therefore $GR^{hv} - (M)BRR_n$ can represent by the condition (2.4). Thus, we conclude.

Theorem 2.1. $GR^{hv} - (M)BRr_n$ may characterize by (2.4).

Transvecting (2.3) by g^{jk} , using (1.9c), (1.7c), (1.7d) and (1.2), we get

(2.5) $R_{h|l|m}^i = a_{lm} R_h^i$.

Thus, we conclude

 Corollary 2.1. *The behavior of deviation tensor* R_h^i *as mixed birecurrent in* $GR^{hv} - (M)BR_h^i$.

Contracting the indices i and h in the condition (2.3), using (1.9a), (1.3c) and (1.2), we get

$$
(2.6) \quad R_{jk|l|m} = a_{lm}R_{jk} + b_{lm}(1-n)g_{jk}.
$$

Contracting the indices i and h in the condition (2.1), using (1.9a), (1.3c) and (1.2), we get

(2.7) $R_{jk|l} = \lambda_l R_{jk} + \mu_l (1 - n) g_{jk}.$

Now, transvecting (2.6) by y^k , then using (2.7), (1.9b), (1.7e), (1.7f) and (1.1), we get

$$
R_{j|l|m} = a_{lm}R_j + b_{lm}(1-n)y_j + \delta_m^k [\lambda_l R_{jk} + \mu_l (1-n)g_{jk}]
$$

which can written as

(2.8) $R_{j|l|m} = a_{lm}R_j + b_{lm}(1-n)y_j + \lambda_l R_{jm} + \mu_l (1-n)g_{jm}.$

Transvecting (2.6) by g^{jk} , using (1.9e), (1.7c), (1.7d) and (1.2), we get

(2.9) $R_{|l| m} = a_{lm} R + b_{lm} (1 - n).$

From equations (2.6) , (2.8) and (2.9) , we conclude

Theorem 2.2. In $GR^{hv} - (M)BRF_n$, R –Ricci tensor R_{jk} , curvature vector R_j and curvature scalar R of Cartan's third curvature tensor R_{jkh}^i are *non- vanishing .*

.

Now, transvecting (2.3) by y^j , we get

$$
[R^i_{jkh|l|m}]y^j = [a_{lm}R^i_{jkh} + b_{lm}(\delta^i_k g_{jh} - \delta^i_n g_{jk})]y^j
$$

Or

$$
(R^i_{jkh}y^j)_{|l|m} - R^i_{jkh|l}y^j_{|m} = [a_{lm}R^i_{jkh} + b_{lm}(\delta^i_k g_{jh} - \delta^i_k g_{jk})]y^j
$$

Using the condition (2.1) in above equation, then using (1.7e), (1.7f), (1.8a), (1.1) and (1.3c), we get (2.10) $H_{k h |l | m}^{i} = a_{l m} H_{k h}^{i} + b_{l m} (\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k}) + \lambda_{l} R_{m k h}^{i} + \mu_{l} (\delta_{k}^{i} g_{m h} - \delta_{h}^{i} g_{m k})$ Transvecting the condition (2.1) by y^j , using (1.8a) and (1.1), we get (2.11) $H_{k h | l}^{i} = \lambda_{l} H_{k h}^{i} + \mu_{l} (\delta_{k}^{i} y_{h} - \delta_{h}^{i} y_{k}).$ Now, transvecting (2.10) by y^k , we get $[H_{kh|l\,m}^{i}]y^{k} = [a_{lm}H_{kh}^{i} + b_{lm}(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) + \lambda_{l}R_{mkh}^{i} + \mu_{l}(\delta_{k}^{i}g_{mh} - \delta_{h}^{i}g_{mk})]y^{k}$ Or $(H_{kh}^i y^k)_{|l|m} - H_{kh|l}^i y_{|m}^k = [a_{lm} H_{kh}^i + b_{lm} (\delta_k^i y_h - \delta_h^i y_k) + \lambda_l R_{mkh}^i + \mu_l (\delta_k^i g_{mh} - \delta_h^i g_{mk})]y^k.$ Using (2.11), (1.14b), (1.7e), (1.7f), (1.3b), (1.3d), (1.1) and put $(R_{mkh}^i y^k = R_{mh}^i)$ in above equation, we get (2.12) $H_{h|l|m}^i = a_{lm} H_h^i + b_{lm} (y^i y_h - F^2 \delta_h^i) + \lambda_l R_{mh}^i + \lambda_l H_{mh}^i + \mu_l (y^i g_{mh} + \delta_m^i y_h - \delta_h^i y_m)$ Contracting the indices i and h in the condition (2.10), using (1.15b), (1.3a), (1.9a), (1.3c) and (1.2), we get (2.13) $H_{k|l|m} = a_{lm}H_k + b_{lm}(1-n)\mathbf{y}_k + \lambda_l R_{mk} + \mu_l (1-n)g_{mk}$ Contracting the indices *i* and *h* in the condition (2.12), using (1.15c), (1.3d), (1.1), (1.2), (1.15b) and put ($R_{mi}^i = R_m$), we get

(2.14) $H_{|l| m} = a_{lm} H + b_{lm} F^2 + \frac{(2-n)}{n-1}$ $\frac{(2-n)}{n-1}\mu_l y_m + \frac{\lambda_l}{n-1} (R_m + H_m).$

From equations (2.10), (2.12), (2.13) and (2.14), we conclude

Theorem 2.3. In $GR^{hv} - (M)BRF_n$, the torsion tensor H_{kh}^i , deviation tensor H_h^i , curvature vector H_k as mixed birecurrent in $GR^{hv} - (M)BRF_n$ and curvature scalar H of Berwald curvature tensor H^{i}_{jkh} is non - vanishing .

Necessary and sufficient condition for some tensors to be $\bm{G}\bm{R}^{hv} - (\bm{M})\bm{B}\bm{R}\bm{F_n}$

This section concentrates on the necessary and sufficient condition for some tensors to be generalized R^{hv} – mixed birecurrent. We know that Cartan's third curvature tensor R_{jkh}^i and Cartan's fourth curvature tensor K_{jkh}^i are connected by [10]

$$
(3.1) \t R^{i}_{jkh} = K^{i}_{jkh} + C^{i}_{js} H^{s}_{kh}.
$$

Taking hv –covariant derivative of mixed second order for (3.1) with respect to x^l and x^m , successively, we get

$$
R_{jkh|l|m}^i = K_{jkh|l|m}^i + (C_{js}^i H_{kh}^s)_{|l|m}.
$$

Using the condition (2.3) in above equation, then using (3.1) in the resulting equation, we get

$$
(3.2) \t a_{lm} (K_{jkh}^i + C_{js}^i H_{kh}^s) + b_{lm} (\delta_k^i g_{jh} - \delta_h^i g_{jk}) = K_{jkh|l|m}^i + (C_{js}^i H_{kh}^s)_{|l|m}.
$$

This show that

(3.3) $K_{jkh|l|m}^i = a_{lm} K_{jkh}^i + b_{lm} (\delta_k^i g_{jh} - \delta_h^i g_{jk}).$

if and only if

(3.4) $(C_j^i H_{kh}^s)_{|l| m} = a_{lm} (C_j^i H_{kh}^s)$.

Transvecting (3.2) by g_{ip} , using (1.13a), (1.4b), (1.3c), (1.7a) and (1.7b), we get

(3.5) $a_{lm}(K_{jpkh} + C_{jps}H_{kh}^s) + b_{lm}(g_{kp}g_{jh} - g_{hp}g_{jk}) = K_{jpkh|l|m} + (C_{jps}H_{kh}^s)_{|l|m}$

This show that

(3.6) $K_{jpkh|l|m} = a_{lm} K_{jpkh} + b_{lm} (g_{kp}g_{jh} - g_{hp}g_{jk}).$

if and only if

(3.7) $(C_{ips}H_{kh}^s)_{|l|m} = a_{lm} C_{ips}H_{kh}^s$.

From equations (3.3) and (3.6), we obtain

Theorem 3.1. In GR^{hv} – (M)BRF_n, Cartan's four curvature tensor K_{jkh} and its associative tensor K_{jpkh} are generalized hv – mixed birecurrent if and only if the tensors $(C_j^i H_{kh}^s)$ and $(C_{ips} H_{kh}^s)$ behave as mixed birecurrent, respectively.

Contracting the indices i and h in the condition (3.2), using (1.13b) and (1.3c), we get

(3.8) $a_{lm}(K_{jk} + C_{js}^r H_{kr}^s) + b_{lm}(1 - n)g_{jk} = K_{jk|l|m} + (C_{js}^r H_{kr}^s)_{|l|m}$. This show that

(3.9) $K_{ik||m} = a_{lm}K_{ik} + b_{lm}(1 - n)g_{ik}$

if and only if

(3.10) $(C_{js}^r H_{kr}^s)_{|l|m} = a_{lm}(C_{js}^r H_{kr}^s)$.

Theorem 3.2. In $GR^{hv} - (M)BRF_n$, the K-Ricci tensor K_{jk} of Cartan's fourth curvature tensor K_{jkh} is non – vanishing if and only if the tensor $(C_{js}^{r}H_{kr}^{s})$ behaves as mixed birecurrent.

Transvecting (3.8) by y^k , using(1.13e),(1.14b) (1.1), (1.7e) and (1.7f), we get (3.11) $K_{j|l|m} + [(C_{js}^r H_{kr}^s)_{|l|m}]y^k = a_{lm}K_j + b_{lm}(1-n)y_j + K_{jk|l}\delta_m^k + a_{lm}C_{js}^r H_s^s$ This show that (3.12) $(K_{j|l|m}) = a_{lm}K_j + b_{lm}(1-n)y_j$. if and only if (3.13) $[(C_{js}^rH_{kr}^s)_{|l|m}]y^k = a_{lm}C_{js}^rH_r^s + K_{jm|l}$.

Theorem 3.3. In GR^{hv} – (M)BRF_n, the curvature vector K_j of Cartan's fourth curvature tensor K_{jkh}^i is non – vanishing if and only if (3.13) holds.

Transvecting (3.8) by g^{ij} , using (1.13c), (1.2), (1.7c) and (1.7d), we get (3.14) $a_{lm}(K_k^i + g^{ij}C_{js}^r H_{kr}^s) + b_{lm}(1 - n)\delta_k^i = K_{k|l|m}^i + (g^{ij}C_{js}^r H_{kr}^s)_{|l|m}$. This show that (3.15) $K_{k|l|m}^i = a_{lm} K_k^i + b_{lm} (1 - n) \delta_k^i$. if and only if (3.16) $(g^{ij}C_{js}^rH_{kr}^s)_{|l|m} = a_{lm}(g^{ij}C_{js}^rH_{kr}^s)$. Transvecting (3.8) by g^{jk} , using (1.13d), (1.2), (1.7c) and (1.7d), we get (3.17) $a_{lm}(K + g^{jk}C_{js}^r H_{kr}^s) + (1 - n)b_{lm} = K_{|l|m} + (g^{jk}C_{js}^r H_{kr}^s)_{|l|m}$. This show that (3.18) $K_{|l| m} = a_{lm} K + (1 - n) b_{lm}$. if and only if (3.19) $(g^{jk}C_{js}^rH_{kr}^s)_{|l|m} = a_{lm}(g^{jk}C_{js}^rH_{kr}^s)$.

From equations (3.15) and (3.18), we conclude

Theorem 3.4. In GR^{hv} – (M)BRF_n, the deviation tensor K_k^i and curvature scalar K of Cartan's fourth curvature tensor K_{jkh}^i are is non – vanishing if and only if the tensors $(g^{ij}C^r_{js}H_{kr}^s)$ and $(g^{jk}C^r_{js}H_{kr}^s)$ behave as mixed birecurrent.

For a Riemannian space V_4 , Cartan's second curvature tensor P_{jkh}^i and Cartan's third curvature tensor R_{jkh}^i can be expressed as follows [18]

$$
(3.20) \ P_{jkh}^i = R_{jkh}^i - \frac{1}{3} \left(R_{jk} \delta_h^i - R_{jh} \delta_k^i \right).
$$

Taking hv – covariant derivative of mixed second order for (3.20) with respect to x^l and x^m , successively, we get

 $P_{jkh|l|m}^i = R_{jkh|l|m}^i - \frac{1}{3}$ $\frac{1}{3}\left(R_{jk}\delta_{h}^{i}-R_{jh}\delta_{k}^{i}\right)_{|l|m}$.

Using the condition (2.3) in above equation, then using (3.20) in the resulting equation,

(3.21) $P_{jkh|l|m}^i = a_{lm} [P_{jkh}^i + \frac{1}{3}]$ $\frac{1}{3} (R_{jk} \delta^i - R_{jh} \delta^i_k)] + b_{lm} (\delta^i_k g_{jh} - \delta^i_n g_{jk}) - \frac{1}{3}$ $\frac{1}{3}\left(R_{jk}\delta^i_h - R_{jh}\delta^i_k\right)_{|l|,m}.$

This show that

(3.22) $P_{jkh|l|m}^i = a_{lm} P_{jkh}^i + b_{lm} \left(\delta_k^i g_{jh} - \delta_h^i g_{jk} \right)$ if and only if

(3.23) $(R_{jk}\delta^i - R_{jh}\delta^i)_{|l|} = a_{lm}(R_{jk}\delta^i - R_{jh}\delta^i)$.

Transvecting (3.21) by g_{ir} , using (1.11a), (1.3c), (1.7a) and (1.7b), we get

(3.24) $P_{j r k h | l | m} = a_{l m} P_{j r k h} + \frac{1}{3}$ $\frac{1}{3} a_{lm} (R_{jk} g_{rh} - R_{jh} g_{rk}) + b_{lm} (g_{rk} g_{jh} - g_{rh} g_{jk}) - \frac{1}{3}$ $\frac{1}{3} (R_{jk} g_{rh} - R_{jh} g_{rk})_{|l| m}.$

This show that

(3.25) $P_{irkh|l|m} = a_{lm} P_{jrkh} + b_{lm} (g_{rk} g_{jh} - g_{rh} g_{jk})$

if and only if

(3.26) $(R_{jk}g_{rh} - R_{jh}g_{rk})_{|l|m} = a_{lm}(R_{jk}g_{rh} - R_{jh}g_{rk})$.

From equations (3.22) and (3.25), we obtain

Theorem 3.5. In GR^{hv} – (M)BRF_n, Cartan's second curvature tensor P_{jkh} and its associative tensor P_{jrkh} are generalized hv –mixed birecurrent if and only if the tensors $(R_{jk}\delta^i_h - R_{jh}\delta^i_h)$ and $(R_{jk}g_{rh} - R_{jh}g_{rk})$ behave as mixed birecurrent, respectively.

Transvecting (3.21) by y^j , we get

$$
[P_{jkh|l|m}^i]y^j = \{a_{lm}\left[P_{jkh}^i + \frac{1}{3}\left(R_{jk}\delta_h^i - R_{jh}\delta_k^i\right)\right] + b_{lm}\left(\delta_k^i g_{jh} - \delta_h^i g_{jk}\right) - \frac{1}{3}\left(R_{jk}\delta_h^i - R_{jh}\delta_k^i\right)_{|l|m}\}y^j
$$

Or

$$
\left(P_{jkh}^{i}y^{j}\right)_{|l|=m}-P_{jkh|l}^{i}y_{|m}^{j}=\left\{a_{lm}\left[P_{jkh}^{i}+\frac{1}{3}\left(R_{jk}\delta_{h}^{i}-R_{jh}\delta_{k}^{i}\right)\right]+b_{lm}\left(\delta_{k}^{i}g_{jh}-\delta_{h}^{i}g_{jk}\right)-\frac{1}{3}\left(R_{jk}\delta_{h}^{i}-R_{jh}\delta_{k}^{i}\right)_{|l|=m}\right\}y^{j}.
$$

Using the (1.10), (1.9b), (1.1), (1.7e) and (1.7f), we get

(3.27) $P_{kh|l|m}^i = a_{lm} \left[P_{kh}^i + \frac{1}{3} \right]$ $\frac{1}{3}\left(R_k\delta_h^i - R_h\delta_k^i\right)\right] + b_{lm}\left(\delta_k^i y_h - \delta_h^i y_k\right) + P_{jkh|l}^i\delta_m^j - \frac{1}{3}$ $\frac{1}{3}\left(R_k\delta_h^i - R_h\delta_k^i\right)_{|l|}$ _m.

This show that

$$
(3.28) P_{kh|l|m}^i = a_{lm} P_{kh}^i + b_{lm} (\delta_k^i y_h - \delta_h^i y_k)
$$

if and only if

(3.29) $(R_k \delta_h^i - R_h \delta_k^i)_{|l| \, m} = a_{lm} (R_k \delta_h^i - R_h \delta_k^i) + 3 P_{mkh|l}^i$.

Transvecting (3.27) by g_{ir} , using (1.11a), (1.11b), (1.3c), (1.7a) and (1.7b), we get

$$
P_{rkh|l|m} = a_{lm} \left[P_{rkh} + \frac{1}{3} (R_k g_{rh} - R_h g_{rk}) \right] + b_{lm} (g_{rk} y_h - g_{rh} y_k) + P_{rmkh|l} - \frac{1}{3} (R_k g_{rh} - R_h g_{rk})_{|l|m}.
$$

This show that

(3.30) $P_{rk h|l|m} = a_{lm} P_{rk h} + b_{lm} (g_{rk} y_h - g_{rh} y_k).$

if and only if

(3.31) $(R_k g_{rh} - R_h g_{rk})_{|l| \, m} = a_{lm}(R_k g_{rh} - R_h g_{rk}) + 3P_{rm k h | l}$.

Theorem 3.6. *In GR*^{hv} – (*M*)*BRF_n*, *Cartan's covariant derivative of mixed second order for the (v)hv –torsion tensor* P_{kh}^i *and its associative tensor* P_{rkh} *are given by (3.28) and (3.30) if and only if (3.29) and (3.31) hold, respectively.*

Contracting the indices *i* and *h* in (3.27) , using $(1.12a)$, $(1.12b)$, $(1.3a)$, $(1.9b)$ and (1.2) , we get

 $P_{k|l|m} = a_{lm}P_k + \frac{1}{3}$ $\frac{1}{3}a_{lm}(n-1)R_k + b_{lm}(1-n)y_k + P_{mkl|l} - \frac{1}{3}$ $\frac{1}{3}(n-1)R_{k|l|m}$

This show that

(3.32) $P_{k|l|m} = a_{lm}P_k + b_{lm}(1-n)y_k$.

if and only if

(3.33) $(n-1)R_{k|l|m_{\scriptscriptstyle\Box}} = a_{lm}(n-1)R_k + 3P_{mk|l}$.

Theorem 3.7. In GR^{hv} – (M)BRF_n, the curvature vector P_k of Cartan's second curvature tensor P_{jkh}^i is non – vanishing if and only if (3.33) holds.

.

Contracting the indices i and h in (3.21), using (1.12a), (1.3c) and (1.2), we get

$$
P_{jkl|l|m} = a_{lm}P_{jk} + \frac{1}{3}a_{lm}(n-1)R_{jk} + b_{lm}(1-n)g_{jk} - \frac{1}{3}(n-1)R_{jk|l|m}
$$

This show that

(3.34) $P_{ik|l|m} = a_{lm}P_{jk} + b_{lm}(1-n)g_{jk}$.

if and only if

(3.37) $R_{jk|l|m} = a_{lm}R_{jk}$.

 Corollary 3.1. *In GR*^{hv} – (*M*)*BRF_n*, *the behavior of R* – *Ricci tensor R_{jk}</sub> as mixed birecurrent if and only if P* – *Ricci tensor P_{jk}</sub> is non* – *vanishing.*

Conclusion :

We discussed the necessary and sufficient condition for different tensors which satisfy the generalized R^{hv} – mixed birecurrent space. Also, some tensors behave as mixed birecurrent. Furthermore, we concluded that the R –Ricci tensor R_{jk} , curvature scalar R , torsion tensor H_{kh}^i , deviation tensor H_h^i , curvature vector H_k , curvature scalar H, K–Ricci tensor K_{jk} , deviation tensor K_k^i , curvature vector K_j and curvature scalar K are non-vanishing in $GR^{hv} - (M) BRF_n$.

REFERENCES :

- 1. A. A. Abdallah, Study on the relationship between two curvature tensors in Finsler spaces, Journal of Mathematical Analysis and Modeling, 4(2), (2023), 112-120.
	- A. Abdallah, A. A. Navlekar & K. P. Ghadle, Analysis for Cartan's second curvature tensor in Finsler space, International Journal of Advanced Research in Science, Communication and Technology, 2(3), (2022), 1-5.
- 2. Abdallah, A. A. Navlekar, K. P. Ghadle & A. A. Hamoud, Decomposition for Cartan's second curvature tensor of different order in Finsler spaces, Nonlinear Functional Analysis and Applications, 27(2), (2022), 433-448.
- 3. Abdallah, A. A. Navlekar, K. P. Ghadle & B. Hardan, Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2), (2022), 27-38.
- 4. Abdallah, A. A. Navlekar, K. P. Ghadle & B. Hardan, Several forms of $h(hv)$ –torsion tensor C_{jkh} generalize βP –birecurrent space, International Journal of Advanced Research in Science, Engineering and Technology, 9(7), (2022), 19505-19510.
- 5. M. Al Qashbari, Certain types of generalized recurrent in Finsler space, Ph.D. Thesis, University of Aden (2016), Yemen.
- 6. É. Cartan, Les espaces de Finsler, Actualités, Paris, 79 (1934), 2nd edit. (1971).
- 7. F. A. Assallal, On certain generalized *h* −birecurrent of curvature tensor, Master's Thesis Aden University (2018), Yemen.
- 8. F. Y. Qasem, On transformations in Finsler spaces, D. Phil. Thesis, University of Allahabad (2000), India.
- 9. F. Y. Qasem & A. M. Al Qashbari, Certain identities in generalized R^h –recurrent Finsler space, International Journal of Innovations Science and Mathematics, 4(2), (2016), 66-69.
- 10. F. Y. Qasem & W. H. Hadi, On a generalized R^h -birecurrent Finsler space, International Journal of Mathematics and physical Sciences Research, 3(2), (2016), 93-99.
- 11. F. Y. Qasem & W. H. Hadi, On a generalized K^h -birecurrent Finsler space, International Journal of Mathematics And its Applications, 4(1), (2016), 33-40.
- 12. F. Y. Qasem & W. H. Hadi, On a generalized H^h -birecurrent Finsler space, International Journal of Sciences Basic and Applied Research, 25(2), (2016), 207-217.
- 13. H. Rund, The differential geometry of Finsler space, Spring −Verlag, Berlin Gottingen − Heidelberg, (1959); 2nd edit. (in Russian), Nauka, (Moscow), (1981)
- 14. M. Matsumoto, On h Isotropic and C^h recurrent Finsler, J. Math. Kyoto Univ., 11 (1971), 1-9.
- 15. P. N. Pandey, Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad (1993), India.
- 16. S. I. Ohta, Comparison Finsler geometry, Springer International Publishing, license to Springer Nature Switzerland, (2021).
- 17. Zafar and A. Musavvir, On some properties of W-curvature tensor, Palestine Journal of Mathematices, 3(1), (2014), 61–69.