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ABSTRACT 

In this research, stationarity is the most important property of time series. This research examines the inference of parameterization of modified models of different 

orders. Derivation of parameters of Linear and Nonlinear time series models of first, second and third order were obtained. Inverse Smooth Transition Autoregressive 

(ISTAR), Exponential Smooth Transition Autoregressive (ESTAR), and Trigonometric Smooth Transition Autoregressive (TSTAR) models were modified from 

Autoregressive model. The goal of this research is to derive the parameters of the updated models utilizing the maximum likelihood approach, computational 

features of stationarity, and modified ordinary differential equations of time series models. 

Keywords: Modified models, Stationarity, Properties, Smooth Transition Autoregressive and   Autoregressive model. 

1.0 Introduction 

Time series models are utilized to predict future events by analyzing past events that have been observed and collected at regular time intervals. According 

to Box and Pierce (1970), a time series model typically consists of the mean component and the conditional variance component. Time series refers to a 

sequence in which data points are measured chronologically throughout time. Time series data specifically consists of an assortment of both temporal 

and numerical values. A sequence of clearly defined procedures is followed to implement autoregressive, moving average, exponential, seasonal, and 

autoregressive moving average modelling. The first step is figuring out who the model is. Finding the right structure, such as Smooth Transition 

Autoregressive, Exponential Smooth Autoregressive, Trigonometric, and Autoregressive (AR) models, depends on whether the model is stationary or 

non-stationary under distributions. This is the identification process. Analyzing autocorrelation and partial autocorrelation function graphs can be one 

method of identification. An alternative method for achieving identification is an automated iterative procedure that fits several possible model structures 

and ranks them. We then use a goodness-of-fit statistic to find the best model. 

To represent the persistence or autocorrelation in a time series, autoregressive mathematical models are utilized, such as moving average and smooth 

transition models. These models are commonly employed in sciences, engineering, econometrics, and other fields. There are several reasons for utilizing 

autoregressive (AR) models, smooth transition autoregressive (STAR) models, exponential smooth autoregressive models, and trigonometric models for 

data analysis. Modeling clarifies the underlying mechanisms that lead to the series' perceived persistence, providing important insights into the physical 

system. Based on past values, these models can also be used to forecast how a time series or set of econometric data will behave. This forecast can be 

used as a benchmark for evaluating the possible importance of other variables in the system. They are frequently utilized to predict economic and industrial 

time series. Autoregressive (AR) models, Smooth Transition Autoregressive (STAR) models, Exponential Smooth Autoregressive models, and 

Trigonometric models are also applicable for simulation purposes. These approaches enable the creation of synthetic series that resemble an observed 

series' persistence structure. When establishing confidence ranges for statistics and estimated econometric quantities, simulations are especially helpful.  

Autoregressive, autoregressive moving average, moving average, seasonal, and exponential modelling follow a clear set of steps. Identifying the model 

is the initial step. Identification entails determining the appropriate structure for the model, whether it is stationary or non-stationary under various 

distributions. This can be done using various models such as Autoregressive (AR) models, Smooth Transition Autoregressive models, Exponential 

Smooth Autoregressive models, and Trigonometric models. By examining the plots of the autocorrelation and partial autocorrelation functions, 

identification can be achieved. Identification is commonly accomplished by employing an automated iterative procedure that entails fitting different 

model structures and ordering. Subsequently, A goodness-of-fit statistic is used to determine which model is the most suitable.  

http://www.ijrpr.com/
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2.0 Literature Review 

The autoregressive (AR) model is widely employed as the conventional model for the mean component. It is common practice while analyzing time 

series data to investigate the concept of stationarity, which refers to the pattern that a specific variable displays over time. Stationarity consists of three 

components. The series demonstrates a stationary mean, suggesting that there is no inherent tendency for the average of the series to change over time. 

Furthermore, it is assumed that the variability of the series remains constant over time. It is commonly believed that the autocorrelation pattern remains 

stable throughout the series. Many non-linear time series models have been proposed in the last twenty years. Among these are the random coefficient of 

AR model by (Ratnasingam,S.,& Ning,W (2020)), the amplitude dependent exponential AR (EX PAR) model by Maulana, A., & Slamet, I. (2020), the 

threshold AR model by Fan, J.Q. (2019), and the bilinear model by Granger and Andersen (1978), among several others.  

Nevertheless, fluctuations in data do not consistently adhere to a linear pattern, hence posing challenges in accurately analysing and forecasting future 

outcomes using certain time series modelling methodologies. Hence, for such data, it would not be practicable to expect a single, linear model to capture 

these distinct behaviours. Linear relationships and various combinations of them are frequently insufficient for accurately characterising the behaviour of 

such data. Time series analysis reveals a multitude of nonlinear features, including cycles, thresholds, bursts, chaos, heteroscedasticity, asymmetries, and 

various combinations of these. Tong (1990), Granger and Ter¨asvirta (2019), Franse, and van Dijk (2020), Tsay(2020) and Kim and Nelson (2019) have 

discussed the different models that can be formulated in these forms. 

The key assumption in analyzing time series data is stationarity. Stationarity means that the statistical properties that influence the behavior of the process 

remain constant over time. Essentially, the process is in statistical equilibrium. A process 𝑌𝑡 is considered strictly stationary if the joint distribution of 𝑌𝑡 

is identical to that of 𝑌𝑡−𝑘 for any values of t and k. 

 t = 1, 2,… k. In other words, the Y’s are (marginally) identically distributed (Tsay and Kung-Sik, (2018). It follows that 𝐸(𝑌𝑡) = 𝐸(𝑌𝑡−𝑘) for all t and k 

so that the mean function is constant for all time. Furthermore, 𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝑌𝑡−𝑘) for all t and k so that the variance is also constant over time. The 

fundamental premise of a stationary time series is that it exhibits white noise, meaning that the error term of the model must follow a normal distribution 

with a mean of zero and a specific variance σ2. 

Imagine a collection of time-ordered data points, denoted as {𝑦1, 𝑦2 ⋯ ⋯ ⋯ ⋯ 𝑦𝑛}, that are derived from observations of a particular phenomenon. Time 

series data consists of observations that are measured over time, either continuously or at specific time intervals (Kim, 2022). One of the key aspects in 

model fitting, particularly when dealing with econometrics and time series data, is understanding the most effective methods to employ. AR models, 

Smooth Transition Autoregressive, Exponential Smooth Autoregressive model and Trigonometric model. The fundamental premise of these models is 

the need of stationarity, meaning that the data being applied to them must exhibit stationarity. 

Autoregressive Smooth transition and moving average models are mathematical models that capture the persistence, or autocorrelation, in a time series. 

The models are extensively utilized in the fields of econometrics, hydrology, engineering, and other related disciplines. There are multiple reasons for 

using Autoregressive (AR) models, Smooth Transition Autoregressive (STAR) models, Exponential Smooth Autoregressive models, and Trigonometric 

models to data. Modelling can enhance comprehension of the physical system by providing insights into the underlying physical mechanism that imparts 

persistence to the series. The models can also be utilized to forecast the behavior of a time series or econometric data based on historical values. This 

forecast can serve as a benchmark for assessing the potential significance of other variables in the system. They are extensively utilized for forecasting 

economic and industrial time series. Autoregressive (AR) models, Smooth Transition Autoregressive (STAR), Exponential Smooth Autoregressive 

model, and Trigonometric model can be used for simulation. This involves generating synthetic series that have the same persistence structure as an 

observed series. Simulations are particularly valuable for determining confidence ranges for statistical measures and estimated values in econometrics. 

These studies suggest that, in trying to decide by classical methods whether economic data are stationary or integrated, it would be useful to perform tests 

of the null hypothesis of stationarity as well as tests of the null hypothesis of a unit root. This paper provides a straight forward test of the null hypothesis 

of stationarity against the alternative of a unit root at different order of autoregressive and moving average and various sample sizes. There have been 

surprisingly few previous attempts to test the null hypothesis of stationarity. Park and Mahdi (2020) consider a test statistic which is essentially the F 

statistic for ‘superfluous’ deterministic trend variables; this statistic should be close to zero under the stationary null but not under the alternative of a unit 

root. Zhang and Zhou (2022) consider the Dickey-Fuller test statistics, but estimates both trend-stationery and difference-stationary models and then uses 

the bootstrap to evaluate the distribution of these statistics. 

3.0 Material and Methods 

In this section, we modified new models from an existing model (Autoregressive) in order to increase the accuracy of an existing models, the new models 

are Inverse Smooth Transition Autoregressive model (ISTAR), Exponential Smooth Transition Autoregressive model (ESTAR) and Trigonometric 

Smooth Transition Autoregressive model (TSTAR). Derivation of Variance of modified models across orders and Autoregressive model were obtained.  

AR(p) is Yt =   𝜙1Yt−1 + 𝜙2Yt−2 + . . . + 𝜙pYt−p + et, 𝑒𝑡~𝑊𝑁(0, 𝜎2) .by Terasvirta.T and Granger.C.WS, (2022) 

Where et  is white noise process with zero mean and variance (𝜎2) Where Yt is variable of interest at time (t), are the coefficient that define the unit root. 

 MODIFIED MODELS are: 
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Yt = ∅1Yt−1 + ∅2Yt−2 + . . . + ∅pYt−p + et, --------------------- 3.0 is an existing model, where et is white noise process with a mean of zero and variance 

𝜎2. ∅1, ∅2, … ∅p are autoregressive parameters that define the unit root. The mathematical model for existing and proposed models are 

ISTAR(p) is Yt = 
1

𝜙1Yt−1+𝜙2Yt−2 + ...+ 𝜙pYt−p+et
 -------------------- 3.1 is called Inverse Smooth Transition Autoregressive model. Where et is white noise 

process with zero mean and variance(𝜎2), Yt is variable of interest at time (t),  𝜙1, 𝜙2, … 𝜙p are the coefficient that define the unit root. 

ESTAR(p) is Yt =𝑒𝜙1Yt−1+𝜙2Yt−2 + ...+ 𝜙pYt−p+et ---------------------- 3.2 is called Exponential Smooth Transition Autoregressive model. 

TSTAR(p) is Yt = 𝑆𝑖𝑛𝜙1Yt−1 + 𝑆𝑖𝑛𝜙2Yt−2 + ⋯ + 𝑆𝑖𝑛𝜙pYt−p + et ---------------------- 3.3 is called Trigonometric Smooth Transition Autoregressive 

model. 

Derivation of Parameters of Modified models of different orders 

Modified Models are; 

1. ISTAR = 𝑌𝑡 =
1

𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+⋯.+𝜙𝑝𝑌𝑡−𝑝+𝑒𝑡
 Is called Inverse Smooth Transition Autoregressive model. 

2. ESTAR = 𝑌𝑡 =  𝑒𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+⋯.+𝜙𝑝𝑌𝑡−𝑝+𝑒𝑡is called Exponential Smooth Transition Autoregressive model. 

3. TSTAR = 𝑌𝑡 = 𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑠𝑖𝑛𝜙2𝑌𝑡−2 + ⋯ + 𝑠𝑖𝑛𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 is called Trigonometric Smooth Transition Autoregressive model. 

𝑒𝑡~𝑊𝑁 (0, 𝜎2). Where 𝑒𝑡 is white noise process with a constant mean and variance (𝜎2). Yt is variable of Interest and time (t) and ϕ1, ϕ2,… ϕp are the 

coefficient that define the unit root. 

(Bature et al,2024) proposed model under time series model for Linear and Nonlinear time series under stationarity and non-Stationarity. 

Derivation of Variance of the First order for the Inverse Smooth Transition Autoregressive Model (ISTAR(1)).  The model can be written as, 

𝑌𝑡 =
1

𝜙1𝑌𝑡−1 + 𝑒𝑡

 

𝑒𝑡~𝑊𝑁 (0, 𝜎2). Where 𝑒𝑡 is white noise. 

Assumption of Time series, Since the model formulated were firstly assumed to be stationary, And it follows that; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−𝑖) = (𝜎𝑡𝑖
2), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1,2 … 𝑘, 𝑎𝑛𝑑 𝑉𝑎𝑟 (𝑒𝑡) = (𝜎𝑒

2) 

We can obtain the parameters of ISTAR model by taking the variance of the model. 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟 [
1

𝜙1𝑌𝑡−1 + 𝑒𝑡

] … … … … … … … … … 1 

𝑉𝑎𝑟(𝑌𝑡) = [
1

𝜙1𝑉𝑎𝑟(𝑌𝑡−1) + 𝑉𝑎𝑟(𝑒𝑡)
] … … … … … … … … … 2 

𝑉𝑎𝑟(𝑌𝑡) = [
1

𝜙1
2𝜎𝑡−1

2 + 𝜎𝑒
2

] … … … … … … … …   … 3 

Recall that 𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−𝑖) = (𝜎𝑡
2) 

Therefore,  

𝑉𝑎𝑟(𝑌𝑡) = [
1

𝜙1
2𝜎𝑡

2 + 𝜎𝑒
2

] … … … … … … … … … 4 

𝜎𝑡
2 =

1

𝜙1
2𝜎𝑡

2 + 𝜎𝑒
2

… … … … … … … … … 5 

𝜎𝑡
2(𝜙1

2𝜎𝑡
2 + 𝜎𝑒

2) = 1 … … … … … … … … … 6 

Differentiate the equation 6 with respect to 𝜎𝑡
2 

Then the equation 6 can be written as; 

�̂�𝑡
2 =  

−𝜎𝑒
2

2𝜙1
2 , 𝜙1 ≠ 0 

The variance of ISTAR (1) is 
−𝜎𝑒

2

2𝜙1
2 

Derivation of Variance of the second order for the Inverse Smooth transition Autoregressive ISTAR (2)) model. 

𝑌𝑡 =
1

𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑒𝑡

 

𝑒𝑡~𝑊𝑁 (0, 𝜎2). Where 𝑒𝑡 is white noise. 

taking the variance of the model. 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟 [
1

𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑒𝑡

] … … … … … … … … … 7 

Recall that 𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−𝑖) = (𝜎𝑡
2) 
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𝜎𝑡
2 = [

1

𝜙1
2𝑉𝑎𝑟(𝑌𝑡−1) + 𝜙2

2𝑉𝑎𝑟(𝑌𝑡−2) + 𝑉𝑎𝑟(𝑒𝑡)
] … … … … … … … … … 8 

 

Therefore,  

𝜎𝑡
2 =

1

𝜙1
2𝜎𝑡−1

2 + 𝜙2
2𝜎𝑡−2

2 + 𝜎𝑒
2

… … … … … … … … … 9 

𝜎𝑡
2 =

1

𝜙1
2𝜎𝑡

2 + 𝜙2
2𝜎𝑡

2 + 𝜎𝑒
2

… … … … … … … … … 10 

Therefore,  

𝜎𝑡
2(𝜙1

2𝜎𝑡
2 + 𝜙2

2𝜎𝑡
2 + 𝜎𝑒

2) = 1 … … … … … … … 11 

Also, Differentiate the equation 11 with respect to 𝜎𝑡
2the equation would be written as: 

𝜎𝑡
2 =

−𝜎𝑒
2

2(𝜙1
2 + 𝜙2

2)
 𝑤ℎ𝑒𝑟𝑒 𝜙1, 𝜙2 ≠ 0 

Hence, the variance of ISTAR(2)  model = 
−𝜎𝑒

2

2(𝜙1
2+𝜙2

2)
. 

Derivation of Variance of the third order for the Inverse Smooth transition Autoregressive (ISTAR(3)) model. 

𝑌𝑡 =
1

𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝜙3𝑌𝑡−3 + 𝑒𝑡

… … … … … … … …  12 

𝑒𝑡~𝑊𝑁 (0, 𝜎2). Where 𝑒𝑡 is white noise. 

taking the variance of the model. 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟 [
1

𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2+𝜙3𝑌𝑡−3 + 𝑒𝑡

] … … … … … … … … … 13 

𝑉𝑎𝑟(𝑌𝑡) = [
1

𝜙1
2𝑉𝑎𝑟(𝑌𝑡−1) + 𝜙2

2𝑉𝑎𝑟(𝑌𝑡−2) + 𝜙3
3𝑉𝑎𝑟(𝑌𝑡−3) + 𝑉𝑎𝑟(𝑒𝑡)

] 

𝑉𝑎𝑟(𝑌𝑡) =
1

𝜙1
2𝜎𝑡−1

2 + 𝜙2
2𝜎𝑡−2

2 + 𝜙3
2𝜎𝑡−3

2 + 𝜎𝑒
2

… … … … … … … … … 14 

Recall from stationarity property, 𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = 𝑉(𝑌𝑡−2) 

𝑉(𝑌𝑡−𝑘) = 𝜎𝑡
2𝑎𝑛𝑑 𝑉(𝑒𝑡) = 𝜎𝑒

2 

Therefore,  

𝜎𝑡
2 =

1

𝜙1
2𝜎𝑡

2 + 𝜙2
2𝜎𝑡

2 + 𝜙3
2𝜎𝑡

2 + 𝜎𝑒
2
 

𝜎𝑡
2(𝜙1

2𝜎𝑡
2 + 𝜙2

2𝜎𝑡
2 + 𝜙3

2𝜎𝑡
2 + 𝜎𝑒

2) = 1 … … … … … … … 15 

Also, Differentiate the equation 15 with respect to 𝜎𝑡
2the equation can be written as: 

𝜎𝑡
2 =

−𝜎𝑒
2

2(𝜙1
2 + 𝜙2

2 + 𝜙3
2)

 𝑤ℎ𝑒𝑟𝑒 𝜙1, 𝜙2, 𝜙3 ≠ 0 

Hence, the variance of ISTAR(3)  model =
−𝜎𝑒

2

2(𝜙1
2+𝜙2

2+𝜙3
2)

. 

Derivation of Variance of the First Order for the Exponential Smooth Transition Autoregressive (ESTAR(1)) model. 

𝑌𝑡 = 𝑒𝜙1𝑌𝑡−1+𝑒𝑡 … … … … … … … … … … … 16 

Take the variance of the model; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉𝑎𝑟 [𝑒𝜙1𝑌𝑡−1+𝑒𝑡] … … … … … … .17 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑒𝜙1
2𝑉𝑎𝑟(𝑌𝑡−1)+𝑉𝑎𝑟(𝑒𝑡) … … … … … … .18 

From the assumption of time series, the formulated model assumed to be stationary where; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = … 𝑉(𝑌𝑡−𝑘) = 𝜎𝑡
2𝑎𝑛𝑑 𝑉(𝑒𝑡) = 𝜎𝑒

2 

The equation 18 can be written as 

𝜎𝑡
2 = 𝑒𝜙1

2𝜎𝑡
2+𝜎𝑒

2
… … … … … … … . 19 

Take the natural log of equation 19, 
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ln 𝜎𝑡
2 =  ln[𝑒𝜙1

2𝜎𝑡
2+𝜎𝑒

2
] … … … … … … … 20 

ln 𝜎𝑡
2 =  𝜙1

2𝜎𝑡
2 + 𝜎𝑒

2, 𝑅𝑒𝑐𝑎𝑙 𝑡ℎ𝑎𝑡 ln 𝑒 = 1 

Differentiate the equation 20 with respect to 𝜎𝑡
2; 

1

𝜎𝑡
2 = 𝜙1

2 ⇒ 𝜎𝑡
2 =

1

𝜙1
2  𝑁𝑜𝑡𝑒 𝜙1 ≠ 0 

Derivation of Variance of the Second order for the Exponential Smooth Transition Autoregressive (ESTAR(2)) model. 

𝑌𝑡 = 𝑒𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+𝑒𝑡 … … … … … … … … … … … 21 

where 𝑒𝑡~𝑊𝑁 (0, 𝜎2). and 𝑒𝑡 is white noise. 

Take the variance of the model; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉𝑎𝑟 [𝑒𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+𝑒𝑡] … … … … … … .22 

From the property of stationarity, 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = … 𝑉(𝑌𝑡−𝑘) = 𝜎𝑡
2 𝑎𝑛𝑑 𝑉(𝑒𝑡) = 𝜎𝑒

2 

The equation 22 can be written as 

𝜎𝑡
2 = 𝑒𝜙1

2𝜎𝑡
2+𝜙2

2𝜎𝑡
2+𝜎𝑒

2
… … … … … … … . 23 

Take the natural log of equation 23, 

ln 𝜎𝑡
2 =  ln[𝑒𝜙1

2𝜎𝑡
2+𝜙2

2𝜎𝑡
2+𝜎𝑒

2
] … … … … … … … 24 

Equation 24 can be written as; 

ln 𝜎𝑡
2 =  𝜙1

2𝜎𝑡
2 + 𝜙2

2𝜎𝑡
2 + 𝜎𝑒

2, 𝑤ℎ𝑒𝑟𝑒 ln 𝑒 = 1 

Differentiate the above equation with respect to 𝜎𝑡
2; 

1

𝜎𝑡
2 = 𝜙1

2 + 𝜙2
2 

⇒ 𝜎𝑡
2(𝜙1

2 + 𝜙2
2) = 1 

𝜎𝑡
2 =

1

(𝜙1
2 + 𝜙2

2)
 𝑊ℎ𝑒𝑟𝑒 𝜙1, 𝜙2 ≠ 0.  𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐸𝑆𝑇𝐴𝑅(2) 𝑚𝑜𝑑𝑒𝑙 

Derivation of Variance of the Third Order for the Exponential Smooth Transition Autoregressive (ESTAR)(3)) model. 

The model can be written as; 

𝑌𝑡 = 𝑒𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+𝜙3𝑌𝑡−3+𝑒𝑡 

where 𝑒𝑡~𝑊𝑁 (0, 𝜎2). and 𝑒𝑡 is white noise. 

Take the variance of the model; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉𝑎𝑟 [𝑒𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2+𝜙3𝑌𝑡−3+𝑒𝑡] … … … … … … .25 

Recall From the property of stationarity, 

 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = 𝑉(𝑌𝑡−2) = 𝑉(𝑌𝑡−3) = 𝜎𝑡
2  

The equation 25 can be written as 

𝜎𝑡
2 = 𝑒𝜙1

2𝜎𝑡
2+𝜙2

2𝜎𝑡
2+𝜙3

2𝜎𝑡
2+𝜎𝑒

2
… … … … … … … . 26 

Take the natural log of equation 26, 

ln 𝜎𝑡
2 =  ln[𝑒𝜙1

2𝜎𝑡
2+𝜙2

2𝜎𝑡
2+𝜙3

2𝜎𝑡
2+𝜎𝑒

2
] … … … … … … … 27 

Equation 27 can be written as; 

ln 𝜎𝑡
2 =  𝜙1

2𝜎𝑡
2 + 𝜙2

2𝜎𝑡
2 + 𝜙3

2𝜎𝑡
2 + 𝜎𝑒

2, 𝑤ℎ𝑒𝑟𝑒 ln 𝑒 = 1 

Differentiate the above equation with respect to 𝜎𝑡
2; 

1

𝜎𝑡
2 = 𝜙1

2 + 𝜙2
2 + 𝜙3

2 
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𝜎𝑡
2(𝜙1

2 + 𝜙2
2 + 𝜙3

2) = 1 … … … … … … … 28 

Therefore, 

 𝜎𝑡
2 =

1

(𝜙1
2+𝜙2

2+𝜙3
2)

 𝑊ℎ𝑒𝑟𝑒 𝜙1, 𝜙2, 𝜙3 ≠ 0 𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐸𝑆𝑇𝐴𝑅(3) 

Derivation of Variance of the first order for the Trigonometric Smooth Transition Autoregressive (TSTAR(1)) model. 

TSTAR(1) model is given below as; 

𝑌𝑡 = 𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑒𝑡 … … … … … … … … . 29 

where 𝑒𝑡~𝑊𝑁 (0, 𝜎2). and 𝑒𝑡 is white noise. 

Take the variance of the model 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟[𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑒𝑡] … … … … . 30 

From the property of stationarity, 

; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝜙1
2𝑠𝑖𝑛2𝑉𝑎𝑟(𝑌𝑡−1) + 𝑉𝑎𝑟(𝑒𝑡) … … … . .31 

𝜎𝑡
2 = 𝜙1

2𝑠𝑖𝑛2𝜎𝑡−1
2 + 𝜎𝑒

2 … … … … … … … .32 

Differentiate equation 32 with respect to 𝜎𝑡
2 

                                                  1=𝜙1
22𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2,  recall that 2𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2 =  𝑠𝑖𝑛2𝜎𝑡

2from trigonometric identities 

1 = 𝜙1
2𝑠𝑖𝑛2𝜎𝑡

2 … … … … … … .33 

The equation 33 can be written as; 

𝑠𝑖𝑛2𝜎𝑡
2 =

1

𝜙1
2 

𝜎𝑡
2=𝑎𝑟𝑐 𝑠𝑖𝑛 [

1

2𝜙1
2] … … … … … … … … … … 34 

 is variance of TSTAR(1)  

 

Derivation of Variance of the second order for the Trigonometric Smooth Transition Autoregressive (TSTAR(2)) model. 

TSTAR(2) model is given below as; 

𝑌𝑡 = 𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑠𝑖𝑛𝜙2𝑌𝑡−2 + 𝑒𝑡 … … … … … … … … . 35 

where 𝑒𝑡~𝑊𝑁 (0, 𝜎2). and 𝑒𝑡 is white noise. 

Take the variance of the model 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟[𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑠𝑖𝑛𝜙2𝑌𝑡−2 + 𝑒𝑡] … … … … . 36 

From the property of stationarity; 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = … 𝑉(𝑌𝑡−𝑘) = 𝜎𝑡
2 𝑎𝑛𝑑 𝑉(𝑒𝑡) = 𝜎𝑒

2 

Therefore, 

𝑉𝑎𝑟 (𝑌𝑡) = 𝜙1
2𝑠𝑖𝑛2𝑉(𝑌𝑡−1) + 𝜙2

2𝑠𝑖𝑛2𝑉(𝑌𝑡−2) + 𝑉𝑎𝑟(𝑒𝑡) 

𝜎𝑡
2 = 𝜙1

2𝑠𝑖𝑛2𝜎𝑡
2 + 𝜙2

2𝑠𝑖𝑛2𝜎𝑡
2 + 𝜎𝑒

2 … … … … … … … .37 

Differentiate equation 37 with respect to 𝜎𝑡
2 

1 = 𝜙1
22𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2 + 𝜙2

22𝑠𝑖𝑛𝜎𝑡
2𝑐𝑜𝑠𝜎𝑡

2, recall that 2𝑠𝑖𝑛𝜎𝑡
2𝑐𝑜𝑠𝜎𝑡

2 =  𝑠𝑖𝑛2𝜎𝑡
2from trigonometric identities 

1 = 𝑠𝑖𝑛2𝜎𝑡
2(𝜙1

2 + 𝜙2
2) … … … … … … .38 

Hence the variance of TSTAR(2) is;  

                                                           𝑎𝑟𝑐 𝑠𝑖𝑛 [
1

2(𝜙1
2+𝜙2

2)
] .Where 𝜙1and 𝜙2 ≠ 0 

Derivation of Variance of the third order for the Trigonometric Smooth Transition Autoregressive (TSTAR(3)) model. 
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TSTAR(3) model is given below as; 

𝑌𝑡 = 𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑠𝑖𝑛𝜙2𝑌𝑡−2 + 𝑠𝑖𝑛𝜙3𝑌𝑡−3 + 𝑒𝑡 

where 𝑒𝑡~𝑊𝑁 (0, 𝜎2). and 𝑒𝑡 is white noise. 

Take the variance of the model, 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟[𝑠𝑖𝑛𝜙1𝑌𝑡−1 + 𝑠𝑖𝑛𝜙2𝑌𝑡−2 + 𝑠𝑖𝑛𝜙3𝑌𝑡−3 + 𝑒𝑡] … … … … . 39 

 From the property of stationarity, 

𝑉𝑎𝑟 (𝑌𝑡) = 𝑉(𝑌𝑡−1) = … 𝑉(𝑌𝑡−𝑘) = 𝜎𝑡
2 𝑎𝑛𝑑 𝑉(𝑒𝑡) = 𝜎𝑒

2 

Therefore, 

𝑉𝑎𝑟 (𝑌𝑡) = 𝜙1
2𝑠𝑖𝑛2𝑉(𝑌𝑡−1) + 𝜙2

2𝑠𝑖𝑛2𝑉(𝑌𝑡−2) + 𝜙3
2𝑠𝑖𝑛2𝑉(𝑌𝑡−3) + 𝑉𝑎𝑟(𝑒𝑡) 

𝜎𝑡
2 = 𝜙1

2𝑠𝑖𝑛2𝜎𝑡
2 + 𝜙2

2𝑠𝑖𝑛2𝜎𝑡
2 + 𝜙3

2𝑠𝑖𝑛2𝜎𝑡
2 + 𝜎𝑒

2 … … … … … … … .40 

Differentiate equation 40 with respect to 𝜎𝑡
2 

1 = 𝜙1
22𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2 + 𝜙2

22𝑠𝑖𝑛𝜎𝑡
2𝑐𝑜𝑠𝜎𝑡

2 + 𝜙3
22𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2,     𝑟𝑒𝑐𝑎𝑙𝑙 𝑡ℎ𝑎𝑡 2𝑠𝑖𝑛𝜎𝑡

2𝑐𝑜𝑠𝜎𝑡
2 =  𝑠𝑖𝑛2𝜎𝑡

2  from trigonometric identities 

1 = 𝑠𝑖𝑛2𝜎𝑡
2(𝜙1

2 + 𝜙2
2 + 𝜙3

2) … … … … … … .41 

Hence the variance of TSTAR(3) is;  

𝑎𝑟𝑐 𝑠𝑖𝑛 [
1

2(𝜙1
2 + 𝜙2

2 + 𝜙3
2)

] 

Where 𝜙1, 𝜙2and 𝜙3 ≠ 0. 

RESULTS and DISCUSSION 

Estimation of Parameters for the Different Order Forms.  

The parameter values were estimated for the first, second and third order of Autoregressive functions selected as follows: 

Estimation of Parameter for the First Order. 

From the pth- order of autoregressive [AR(p)] given in equation of the first order [AR(1)] were deduced as follows; 

          Yt = 𝜙1𝑌𝑡−1 + 𝑒𝑡                                                                   … 3.0 

where 𝑒𝑡 is white noise process with a mean of zero mean and variance . Where Yt is variable of interest at time (t),  is the coefficient that define the unit 

root. 

Based on the assumptions stated in chapter two that in stationary autoregressive models, the E(Yt) = E(Yt− k) and Var(Yt) = Var(Yt− k) for all t and k so that 

the mean and variance functions are constants for all time. Since the models formulated were firstly assumed to be stationary, it follows that; 

                   V(Yt)= V(Yt-i) =  𝜎𝑡,
2𝑖 = 0, 1, 2, … and V(et )=𝜎𝑒

2                                      …3.1 

Based on these we can easily obtain the parameter of the AR(1) model as follows; 

                                     𝑉(𝑌𝑡) = 𝜙1
2𝑉(𝑌𝑡−1) +  𝑉(𝑒𝑡)                                                    …3.2 

                                                      𝜎𝑡
2 =  𝜙1

2𝜎𝑡−1 
2 + 𝜎𝑒

2                                                   …3.3 

And since V(Yt)= V(Yt-i) = , the above equation (1.3) can be written as 

              𝜎𝑡
2 =

𝜎𝑒
2

1−𝜙1
2                                                                                                         …3.4 

When the autoregressive first order is derived from the characteristic equation, it is stationary if and only if the roots of the AR(p) characteristic equation 

do not exceed 1 in absolute value. 

Estimation of Parameter for the Second Order. 

From the pth- order of Autoregressive [AR(p)] given in equation of second order [AR(2)] were deduced as follows; 

                                            𝑌𝑡 =  𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝑒𝑡                                                 …3.5 

where is white noise process with zero mean and variance . Where Yt is variable of interest at time (t),   are the coefficient that define the unit root. 
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            𝑉(𝑌𝑡) = 𝜙1
2𝑉(𝑌𝑡−1) + 𝜙2

2𝑉(𝑌𝑡−2) +   𝑉(𝑒𝑡)                                                         …3.6 

𝜎𝑡
2 =  𝜙1

2𝜎𝑡−1 
2 + 𝜙2

2𝜎𝑡−2 
2 +  𝜎𝑒

2                                                                                           …3.7 

following the same procedure that and assumptions of time series;   

 𝑉(𝑌𝑡) = 𝑉(𝑌𝑡−1) = 𝑉(𝑌𝑡−2) = 𝜎𝑡
2                                                                                    …3.8                                                                       

𝜎𝑡
2 =

𝜎𝑒
2

1−𝜙1
2−𝜙2

2                                                                                                                     …3.9 

For the second order Autoregressive Model we introduced the autoregressive characteristic polynomial 𝜙(𝑌) = 1 − 𝜙1(𝑌) − 𝜙2(𝑌2)                                                                         

…3.2.0                                                                                                                                                                   

and the corresponding AR(2) characteristic polynomial equation: 

                                             1 − 𝜙1𝑌 − 𝜙2𝑌2 = 0 𝑂𝑅    𝜙2𝑌2 + 𝜙1𝑌 − 1 = 0              …3.2.1 

It can be demonstrated that, under the condition that et is not influenced by Yt− 1, Yt− 2, Yt− 3,..., A stationary solution to equation 1.4 is present only if the 

roots of the AR characteristic equation have an absolute value (modulus) less than or equal to 1. Occasionally, it is said that the roots ought to be situated 

beyond the boundaries of the unit circle in the complex plane. This assertion will apply universally to the pth-order scenario without any modifications. 

In the second-order case, the roots of the quadratic characteristic equation (3.4) are easily found to be 

The characteristics solution  = 
−𝜙1±√(𝜙1

2+4𝜙2)

2𝜙2
                                                                      …3.2.2 

The AR(2) is stationary if the absolute value of (3.2.2) does not exceed 1. 

Jonathan and Kung-Sik, (2018) showed that this will be true if and only if three conditions are satisfied. 

Estimation of Parameter for the Third Order. 

From the pth- order of autoregressive [AR(p)] given in equation of the third order [AR(3)] were deduced as follows; 

                    𝑌𝑡 =  𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝜙3𝑌𝑡−3 + 𝑒𝑡                                                           …3.21 

where is white noise process with zero mean and variance. Where Yt is variable of interest at time (t),   are the coefficient that define the unit root.                                                                 

𝑉(𝑌𝑡) = 𝐸[(𝜙1
2𝑌𝑡−1

2 + 𝜙2
2𝑌𝑡−2

2 + 𝜙3
2𝑌𝑡−3

2 + 2𝜙1𝜙2𝑌𝑡−1𝑌𝑡−2 + 2𝜙1𝜙3𝑌𝑡−1𝑌𝑡−3 + 2𝜙2𝜙3𝑌𝑡−2𝑌𝑡−3 + 𝑒𝑡
2)]                                                                                                       

…3.22 

following the same procedure that;   

𝑉(𝑌𝑡) =  𝜙1
2 𝐸(𝑌𝑡−1

2 ) + 𝜙2
2𝐸(𝑌𝑡−2

2 ) + 𝜙3
2𝐸(𝑌𝑡−3

2 ) + 2𝜙1𝜙2𝐸(𝑌𝑡−1𝑌𝑡−2) + 2𝜙1𝜙3𝐸(𝑌𝑡−1𝑌𝑡−3) + 2𝜙2𝜙3𝐸(𝑌𝑡−2𝑌𝑡−3) +

𝐸(𝑒𝑡
2)                                                                                                                                                 …3.23 

γ0 − 𝜙1
2𝛾0 − 𝜙2

2𝛾0 − 𝜙3
2𝛾0 = 𝜎𝑒

2                                                                                               …3.24 

Var(Y𝑡) = γ0 =
𝜎𝑒

2

(1−𝜙1
2−𝜙2

2−𝜙3
2)

                                                                                                  …3.25 

The AR(3) is stationary if the absolute value of (3.21) does not exceed 1. 

Mahdi. E, Jonathan and Kung-Sik, (2020) showed that this will be true if and only if the following three conditions are satisfied. 

|𝜙2| < 1, | 𝜙1 + 𝜙2+𝜙3
| < 1, 𝑎𝑛𝑑 | 𝜙1 − 𝜙2 − 𝜙3| < 1 

Table 1a     Inference of Derivation of Variance of Autoregressive model and Modified models of different orders. 

Models First Order Second Order Third Order 

AR(p) 𝜎𝑒
2

1 − 𝜙1
2 

𝜎𝑒
2

(1 − 𝜙1
2 − 𝜙2

2)
 

𝜎𝑒
2

(1 − 𝜙1
2 − 𝜙2

2 − 𝜙3
2)

 

ISTAR(p) −𝜎𝑒
2

2(𝜙1
2)

 
−𝜎𝑒

2

2(𝜙1
2 + 𝜙2

2)
 

−𝜎𝑒
2

2(𝜙1
2 + 𝜙2

2 + 𝜙3
2)

 

ESTAR(p) 1

(𝜙1
2)

 
1

(𝜙1
2 + 𝜙2

2)
 

1

(𝜙1
2 + 𝜙2

2 + 𝜙3
2)

 

TSTAR(p) 
𝑎𝑟𝑐 𝑠𝑖𝑛 [

1

2(𝜙1
2)

] 𝑎𝑟𝑐 𝑠𝑖𝑛 [
1

2(𝜙1
2 + 𝜙2

2)
] 𝑎𝑟𝑐 𝑠𝑖𝑛 [

1

2(𝜙1
2 + 𝜙2

2 + 𝜙3
2)

] 
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CONCLUSION 

This study utilised time series' computational characteristics to derive the parametrization of both modified and existing models. The aim was to enhance 

the accuracy of the existing model by considering the first, second, and third order of stationarity. Also, Autoregressive (AR) model is employed to 

forecast future values by using historical data. This research modified Autoregressive model in order to improved the accuracy of an existing model. 
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