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ABSTRACT : 

PD and AD are two major challenges in neurodegenerative disorders, a group of diseases or conditions caused by progressive atrophy or cell death of neurons. 

Newly emerging evidence on environmental agents as inducers of damage to developing and mature nervous systems in the etiology and progression of 

neurodegenerative diseases is impressive. 

Epigenetic modifications are thus central to the complex interplay of genetic predisposition and environmental influences. These heritable modifications refer to 

changes in gene expression that are independent of those in DNA-coding sequence. These epigenetic changes include methylation of DNA, histone modification, 

and other related processes, which have been seen to exert strong control over the neurodegenerative transcriptional landscape. 

From heavy metal exposure to dietary folate intake, environmental factors epigenetically act to alter expressions in genes involved in neurodegenerative processes, 

predisposing the individual to a late-onset neurodegenerative disease. A growing body of research into genetic regulation of DNA methylation identifies allelic 

imbalances at a significant repertoire of genes, illuminating how an individual's genetic background might affect or modify vulnerability to neurodegeneration by 

the impact of environmental factors. Preliminary studies performed in cell culture systems and initial transgenic animal models provide encouragement regarding 

the therapeutic potential of pan-epigenetic modifiers against common neurodegenerative diseases. In such scenarios, interventions might have dramatic protective 

effects through the coordination of pervasive epigenetic changes dampening AD, PD, and related diseases. Genetic predisposition, conditioned through epigenetic 

mechanisms and complex in its interplay with environmental influences, underlines the multifaceted etiology of neurodegenerative diseases. Exploring this 

knowledge offers huge potential to develop new therapeutics that could mitigate suffering from these devastating disorders at a global health level. 
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1. Introduction : 

Understanding Neurodegeneration: Parkinson's and Alzheimer's Disease 

In neurodegenerative diseases, a category of disorders characterized by the progressive degeneration or loss of neurons, there is gradual loss of those 

physiological functions governed by afflicted regions of the nervous system[1]. Indeed, AD accounts for the greatest burden of neurodegeneration, though 

a spectrum of related diseases with distinct clinical manifestations and neuropathological features includes PD and frontotemporal dementias that share 

underlying genetic predispositions. 

The integrity of the developing and mature nervous systems is significantly influenced by environmental exposures, thereby playing a role in the 

pathogenesis of neurodegenerative diseases. More specifically, gene expression that has a hereditary basis but does not involve an alteration in the DNA 

coding sequence is called epigenetics. According to one hypothesis, environmental factors can perturb gene regulation through epigenetic alterations, 

resulting in late-onset neurodegenerative diseases. 

http://www.ijrpr.com/
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Parkinson's disease 

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, with a lifetime occurrence reaching approximately 2% in 

subjects over 65 years old. Clinically, PD is marked by a triad of motor symptoms consisting of tremor, bradykinesia, and rigidity. Neuropathologically, 

PD is associated with widespread degeneration of dopaminergic neurons in the substantia nigra and Lewy bodies—a kind of cytoplasmic inclusions 

containing the insoluble protein aggregate alpha-synuclein[12]. 

Genetically, Parkinson's disease displays marked heterogeneity, with mutations in six genes thought to be responsible for autosomal inherited forms of 

the disease. Autosomal dominant Parkinson's disease can also be the result of missense mutations and gene-duplication events of the SNCA gene 

product[13,14], suggesting an important role of alpha-synuclein aggregation in the disease[15]. Another autosomal dominant mutation has been described 

to occur in the LRRK2 gene[16,17], but the function of the protein is not well defined. 

Recessive forms of PD are often supported by deletions or compound heterozygous mutations in the Parkin gene [19], hence implicating impairment of 

proteasomal activity in disease onset. In this respect, mutations of PINK1 and DJ-1 [20] genes further support the role of cellular and oxidative stress 

responses in pathogenesis of PD. The ATP13A2 gene, associated with Kufor Rakeb disease and recessive early-onset PD [21], is believed to modulate 

metal homeostasis and interacts with alpha-synuclein [22]. While other candidate genes such UCHL1 [23] and GIGYF2 [24] have been suggested as 

being loci causative to PD, these remain tentative whilst awaiting further investigation and replication in independent studies. 

Alzheimer’s disease 

Alzheimer's disease is the most common progressive neurodegenerative disorder; about 13% of individuals are affected at age 80 years. AD, from its 

clinical presentation, shows the first memory deficits at its onset, and subsequently, gradual loss in cognitive abilities. Diagnosis relies on two key 

neuropathological hallmarks: senile plaques and neurofibrillary tangles. Senile plaques, occurring in the extracellular space between neurons, are 

essentially composed of fibrils of amyloid beta surrounded by degenerated neurites and glial cells. These plaques are a result of the proteolytic cleavage 

of amyloid precursor protein (APP) [3] by a family of enzymes called secretases. Neurofibrillary tangles, composed of hyperphosphorylated Tau protein, 

reside inside neurons [2]. According to the amyloid cascade hypothesis, Ab generation is the primary instigator of AD pathology [4]; these neurofibrillary 

tangles then lead to formation of cell death and dementia. Several genes, APP,, PSEN1,, and PSEN2,, have been associated with the early-onset AD, and 

more than 100 different mutations have been described in affected families. Most of these mutations increase the secretion of the amyloidogenic Ab1-42 

peptide. 

The amyloid-Tau connection is thought to involve changes in kinase and phosphatase activity. Diminished methylation of PP2A, a major brain 

phosphatase, is associated with increased Tau phosphorylation and augmented amyloid production. This biochemical characterization further supports 

the amyloid cascade hypothesis by underscoring the complex interplay between the generation of amyloid and Tau phosphorylation in AD pathogenesis. 

2.  Exploring PD and AD Susceptibility Genes 

The relation of genetic variants in the candidate genes to the risk of Alzheimer's disease or Parkinson's disease has been under study by hundreds of 

association studies over the past years, but the results usually contradict each other, pointing to genetic diversity of populations under study and limited 

sample sizes. 

One of the most strongly replicated susceptibility loci for AD is the APOE gene. Those who inherit two copies of the ApoE ε4 allele have an approximate 

15-fold increased risk of late-onset AD compared with the ApoE ε3 allele[25]. The ApoE ε4 has been associated with higher plasma cholesterol levels 

and increased deposition of Aβ[26].  On the other hand, genetic studies have identified two genes associated with PD: SNCA, which contains a 

polymorphic dinucleotide repeat sequence in its promoter that seems to affect gene transcription, and MAPT, encoding a molecule that is considered an 

important stabilizer of tubulin cytoskeletal structures[27,28]. 

While mutations in MAPT cause frontotemporal dementia[29], they have failed to show a causative effect for AD or PD. However, meta-analyses of 

association studies do identify significant effects of the variants of MAPT on the risks for late-onset AD and PD; in particular, the H1 haplotype is 

associated with an increase in the expression of the MAPT[30,33] gene. Additionally, genome-wide association studies have also found that both MAPT 

and SNCA participate in PD[32,34] as susceptibility genes. More recently, interest has focused on epistasis, or gene-gene interactions, as a major 

confounding factor in mapping susceptibility genes. Specifically, a significant gene-gene interaction between GSK3b and MAPT has been identified in 

AD [37] and PD, with replication in separate studies[39,40]. 

3. Epigenetic Changes in Neurodegeneration 

The changes in the gene expression that can be heritable and are not specifically in the DNA-encoding sequence are termed as Epigenetic. These changes 

include DNA methylation, histone modification changing chromatin structure, RNAmediated changes involving noncoding RNAs like microRNAs 

(miRNA) [41]. DNA methylation involves the addition of methylation at the fifth position of the pyrimidine ring, carried out by DNA methyltransferases 

(DNMTs), in vertebrates. This specifically occurs in the cytosine base of CpG pairs. In human DNA, a majority, standing at 70% of the CpG dinucleotides 

is constitutively, in vertebrates and particularly in mammals, methylated; and the remaining is most concentrated in CpG islands. DNA methylation 

through human evolution has been reported to interfere with the binding proteins of clustered methylated CpGs, like MeCP2, leading to gene transcription 

silencing. 

Another field in which epigenetic changes are very important is the dynamics of chromatin, through the identification of post-translational histone 

modifications such as acetylation, ubiquitinylation, and phosphorylation. Such modifications modulate chromatin contacts and the recruitment of 

nonhistone proteins, which ultimately influences chromatin structure and function, thereby regulating gene expression. Epigenetic modifications have 
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been found to play a pivotal role in such developmental findings as X inactivation, genomic imprinting, and neuronal development. Besides, important 

human pathologies, such as cancer and neurodegenerative diseases[44], are linked to abnormal epigenetic regulation. 

It is hypothesized that environmental factors, metals, and dietary components might induce life-long perturbations in gene regulation via epigenetic 

modifications. The modifications would begin during the early stage of development but show up pathologically later in life and add to the disease episode 

of late-onset neurodegenerative diseases. 

4. Epigenetic Dysregulation in Parkinson's Disease 

Initial insights into the molecular link of Parkinson's disease to epigenetic dysregulation came from Drosophila. Kontopoulos et al. demonstrated that, in 

a Drosophila model of PD, the primary molecule involved in PD, a-synuclein, interacts with histones to reduce levels of acetylated histone H3 and inhibit 

the activity of HAT [51]. Jowaed et al. further evidenced that methylation of the SNCA promoter is a regulator of gene expression in cultured cells and 

showed hypomethylation in PD brains compared with normal tissue[52]. Further evidence is also found for a protective effect of smoking against PD[53], 

while showing epigenetic alteration of the signature of specific genes by smoking. Whereas nicotine in cigarette smoke was thought to offer 

neuroprotection with respect to the dopaminergic nigrostriatal system, Parain et al. examined the neuroprotective effects of cigarette smoke and nicotine 

in a mouse model for PD after induction by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine[54]. Cigarette smoking has also been related to changes in 

global DNA methylation [55], including epigenetic silencing of the gene encoding monoamine oxidase A, which is involved in the regulation of the 

serotonergic system and psychiatric disorders [56]. 

5. Exploring Global DNA Methylation in Alzheimer's Disease 

Epigenetic research in the field of cancer development now emphasizes its role in both neurogenesis and neurodegeneration. Studies of identical twins 

have demonstrated a "drift" in DNA methylation levels with aging. Fraga et al. demonstrated a drift of concordance in DNA methylation levels of 30% 

among identical twins between the ages of 3–74 years [45]. 

There have been substantial changes reported in DNA methylation in Alzheimer's disease. Mastroeni et al. reported reduced immunohistological staining 

for DNA methylation maintenance factors DNMT1 and MBD2 in AD cases versus normal brains[46]. Global DNA methylation decreases were similarly 

noted in monozygotic twins discordant for AD. Further, studies that demonstrate Ab production to be induced by global hypomethylation provide a 

causative link between Ab and dysregulated methylation observed in AD brains. However, efforts to associate site-specific epigenetic modifications with 

neurodegeneration have yielded mixed result[47,48]. Wang et al. looked into DNA methylation in the promoter regions of 12 potential AD susceptibility 

loci and found no significant differences in individual gene-specific methylation between AD patients and controls[49]. Combined analysis revealed, 

however, an age-dependent drift in AD compared to controls. Similarly, Barrachina et al. analyzed the DNA methylation status of candidate genes in AD 

and PD brains and did not find any significant differences in DNA methylation percentages between the disease and control samples or among the 

different pathological entities in any of the analyzed brain regions[50]. 

6. Environmental Influence on Epigenetic Modification in Neurodegeneration 

Environmental factors can also cause damage in the developing and mature nervous systems to result in neurodegenerative diseases. Other than the 

genetic risk factors, there are several other variables that appear to impact on susceptibility to disease and include gender, educational level, inflammation, 

stroke, smoking, head trauma, infection, vitamin deficiencies, diet, and chemical exposure[44]. 

Gene-environment interactions may have a central role in determining an individual's susceptibility to diseases related to the exposure of both endogenous 

and exogenous agents. Only a few environmental risk factors have been associated with Alzheimer's disease[57], although current research does point to 

a large role for diet and education levels in its pathogenesis. In contrast, many environmental factors have been related to an increased risk of Parkinson's 

disease. New evidence points to the role of environmental factors in the etiology of late-onset neurodegenerative diseases, including heavy metals and 

dietary components that may cause long-term perturbations in gene expression through epigenetic modifications and hence contribute to their 

development[59]. 

6.1 Heavy Metal Exposure 

Some rodent studies have demonstrated that Pb exposure during periods of brain development influences the expression and regulation of AD-related 

genes in later life. Wu et al. showed that the expression of AD-related genes APP and PSEN1, and its transcriptional regulator SP1, was increased in aged 

monkeys exposed to Pb during infancy. Similarly, Basha et al. reported increased APP expression, along with its amyloidogenic Ab product, following 

Pb exposure during development, which extended into old age. This was said to be due to the inhibition of DNMTs by Pb, resulting in hypomethylation 

at AD-associated gene promoters. 

Furthermore, Wu et al. [59] proposed that environmental factors during neurodevelopment alter the methylation pattern of the APP promoter, thus leading 

to a latent increase in APP and Ab levels. Stewart et al. found a association between historical Pb exposure in adults and a loss in brain volume, and also 

white matter hyperintensities assessed by magnetic resonance imaging. Their findings were supported by their longitudinal study indicating an association 

between Pb exposure and decline in cognitive ability [62]. 
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6.2 Dietary intake 

Dietary components thus make an important epigenetic and genomic modulator that has the potential to affect the risk of several diseases[63], including 

neurodegenerative disorders. In one of the prospective studies of dietary patterns with respect to risk of PD[64], it has been shown that high intake of 

fruits, vegetables, whole grains, fish, and poultry with moderate alcohol consumption and low levels of saturated fats is protective against PD. 

Vitamins B12 and folate[65] are essential in the methionine/homocysteine cycle[66] and influence the amount of S-adenosylmethionine—a major cofactor 

of epigenetic gene regulation—produced. In AD, epigenetic alterations to the genes associated with AD take place, where low levels of folate and SAM 

and high homocysteine[67] can be observed. These findings from Fuso et al. [68-70] and Chan and Shea [71] show that a dietary deficiency in folate 

increases the expression of proteins related to AD, such as APP, BACE, PSEN1, with consequent accelerated cognitive decline and altered methylation 

patterns in gene promoters. Single nucleotide polymorphisms in the gene MTHFR, controlling folate levels, are associated with an increased risk of late-

onset AD [72-74]. 

Excessive alcohol intake has been reported to be associated, especially in combination with low levels of folate, with gene hypermethylation implicated 

in colorectal cancer [75] and with global DNA hypermethylation [76]. DNA methylation is increased after alcohol exposure in embryonic development 

and associated with hypermethylation of the promoter of SNCA in alcoholism patients, which may contribute to neurodegenerative diseases [77]. 

6.3 Pesticides, Oxidative Stress, and Neurodegeneration 

The primary model to probe environmental insults in PD is MPTP-induced models of free radical injury. The metabolite of MPTP, MPP+, selectively 

accumulates in dopaminergic terminals and mitochondrial complexes in the SN, inhibiting complex I of the electron transport chain, producing oxidative 

stress similar to that seen in PD[78] patients. Paraquat, structurally similar to MPTP, has been associated with an increased risk of PD[78]. Exposure to 

MPTP, paraquat, or rotenone promotes acute, irreversible parkinsonism, underscoring the role of oxidative stress in aging and neurodegenerative diseases. 

Environmental insults, such as lead exposure during development, could thus accelerate AD neurodegeneration through oxidative damage, resulting in 

APP gene hypomethylation and the overproduction of Ab and reactive oxygen species[80]. Similar insults might also silence genes for ROS scavengers 

involved in altering SAM biosynthesis and DNA methylation patterns. These epigenetic modifications, for instance histone acetylation, can also be 

induced by pesticide exposure. For instance, the disrupted function of proteasomal machinery led to dieldrin-induced histone hyperacetylation, 

dopaminergic cell apoptosis, and mice apoptosis. These findings point toward the induction of neurodegenerative disease by environmental factors via 

epigenetic mechanisms[80-83]. 

7. Global Epigenetic Harmonies at the Genotypic Level 

It is thus imperative to learn the ways in which epigenetic data are to be interpreted with respect to disease processes. Recent publications have shown 

that a subset of autosomal genes are subject to random monoallelic expression that is independent of parent-of-origin imprinting [84]. In cases of DNA 

methylation, until recently it had been presumed that there was an equal distribution to both alleles genomewide. Two major publications showed allelic 

skewing of DNA methylation and the subsequent effects on gene expression. The first one was done by Schalkwyk et al., where in a lymphocyte sample, 

allelic skewing of DNA methylation was conducted in a genome-wide survey against SNP microarray data for allele-specific DNA methylation. More 

than 35,000 sites where allele-specific DNA methylation may occur were revealed across the genome [85,86]. In other words, Zhang et al. map 

methylation quantitative trait loci for a number of CpG sites in human cerebellum samples and reveal 736 CpG sites that are significantly associated with 

SNPs. Among those, ten genes showed three-way association, such that the very same SNP was significantly related to DNA methylation and gene 

expression, and DNA methylation correlates to gene expression [86]. 

These findings support the purported genetically driven DNA methylation-gene expression variation relationship[49,50]. However, most studies into 

neurodegenerative diseases are not genotype-directed. Global measures of changes in DNA methylation, currently assessed by technological surveys such 

as the Illumina Infinium Beadchip, cover only about 27,000 CpG dinucleotides that are represented in approximately 50% of transcribed genes, missing 

many CpGs relevant to epigenetic regulation. Such technological barriers must be overcome in order to fully realize an understanding of epigenetic 

modifications. 

8. Epigenetic Therapeutics for Neurodegenerative Diseases 

Therapeutic developments for neurodegeneration have focused on two main epigenetic modifications: DNA methylation and histone modification. DNA 

methylation, catalyzed by DNA methyltransferase (DNMT), and histone acetylation/deacetylation, regulated by histone acetyltransferase (HAT) and 

histone deacetylases (HDACs) respectively, play key roles in gene regulation. In vitro studies of HDAC inhibition have identified protective genes and 

pathways, including cell cycle protein p21[87] and the molecular chaperone HSP70[88,89]. HDAC inhibitors have shown promise in models of spinal 

muscle atrophy, where they reverse hypermethylation and downregulation of SMN2 gene promoter, potentially restoring gene expression levels[90]. In 

neurodegenerative disorders like Alzheimer's (AD) and Parkinson's disease (PD), neuropathological intraneuronal aggregates interfere with transcription, 

causing deficits in synaptic plasticity and cognition[91]. Tsai et al. demonstrated that HDAC inhibitors restored histone acetylation status, learning, and 

memory in a mouse model of neurodegeneration[92] 

Recent studies suggest that HDAC inhibitors may be promising for PD treatment, rescuing a-synuclein-induced toxicity[93]. Several drugs targeting 

DNA methylation and histone deacetylation enzymes have been approved for cancer treatment, making them potential candidates for neurodegenerative 

disorders[94,95]. It's worth noting that HDAC inhibitors alter only a small subset of genes (<10% of the genome)[96,97] and are associated with specific 

genetic signatures. Thus, specific HDAC inhibitors could potentially increase the expression of neuroprotective genes without altering pathogenic gene 

levels[98]. 
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Another avenue of investigation is how lifestyle factors, such as diet, may ameliorate neurodegenerative disorders[63,65]. Folate, for instance, has been 

studied due to its potential to modulate DNA methylation[99]. A recent study demonstrated that folic acid increased genomic DNA methylation in 

lymphocytes, although the effect was site and gene-specific. This observation suggests that only certain alleles of neurodegenerative genes may respond 

to folate supplementation, possibly explaining why a large clinical trial of AD patients failed to show a significant protective effect[100-102]. 

9. Future outlook 

Epigenetics offers a fresh perspective in neuroscience, holding the promise of novel therapies by targeting reversible changes in gene expression. This 

opens the door to interventions at the intersection of our genes and environment, potentially mitigating the impact of harmful neurodegenerative genes. 

However, a key challenge lies in developing HDAC inhibitors that selectively enhance neuroprotective gene expression without inadvertently boosting 

known neurodegenerative genes. 

In the realm of 'nutrigenomics,' [103]personalized diets tailored to individual genetic profiles show great potential for optimizing health. For instance, 

variations in the MTHFR gene influence folate metabolism, impacting disease risk and highlighting the power of personalized nutrition[104]. Expanding 

upon this approach, advanced genotyping combined with microarray technology can unveil how environmental factors shape the epigenetic landscape at 

an allelic level. Understanding how factors like diet, smoking, and pesticide exposure interact with our unique genetic makeup can provide comprehensive 

insights into disease risk via epigenetic mechanisms. 
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