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ABSTRACT 

Seismic imaging has revolutionized our understanding of subsurface structures and led to significant advances in geophysical exploration and hydrocarbon recovery. 

This article reviews recent innovations in seismic imaging technologies, particularly applications of full waveform inversion (FWI) and machine learning (ML). 

These cutting-edge techniques improve the resolution and accuracy of subsurface models, enabling more efficient and precise resource extraction. We examine 

recent case studies from major basins, including the North Sea, the Gulf of Mexico and the Niger Delta, and show how these technologies have been successfully 

used to improve exploration results. By comparing traditional methods with these advanced techniques, we highlight the significant added value they offer, such 

as: higher detection accuracy, lower exploration costs and increased security. The paper also highlights the need for operators in the Niger Delta Basin to adopt 

these innovations to remain competitive and environmentally compliant. By integrating FWI and ML into their exploration workflows, operators can achieve more 

reliable seismic interpretations, resulting in better decision making and optimized resource management. 

1.0 INTRODUCTION 

Seismic imaging is a cornerstone of geophysical exploration. It provides important insights into subsurface structures and facilitates the discovery and 

extraction of hydrocarbon resources. Traditional seismic imaging techniques, while effective, often struggle with limitations in resolution and accuracy, 

particularly in complex geological environments. Recent advances in full waveform inversion (FWI) and machine learning (ML) have significantly 

improved seismic imaging capabilities, providing unprecedented detail and precision. Machine learning (ML) is also increasingly being applied to seismic 

imaging, improving the capabilities of FWI (Brown et al., 2019). ML algorithms can help reduce cycle skipping, improve start up models, and even create 

autonomous velocity models (Dickinson et al., 2017). Integrating ML with FWI has the potential to revolutionize seismic imaging and enable the industry 

to better understand complex geological structures, improve hydrocarbon recovery and reduce exploration risks (Landolsi et al., 2016). This article 

examines these technological advances, their applications in different basins and their potential impact on exploration and production activities in the 

Niger Delta Basin. The growing size of data sets (Arrowsmith et al., 2022), on the one hand the need to shorten the time from collection to delivery, and 

on the other hand the increasing power of computing systems have made the use of data-driven methods an attractive tool for industry and researchers 

(Farbod. et al., 2023). The exploration and production of hydrocarbon reserves depends heavily on accurate imaging of the subsurface. Seismic imaging 

was the cornerstone of this effort. It provided insights into the subsurface structure and helped identify potential reservoirs. However, traditional seismic 

imaging methods have limitations, especially in complex geological environments. The need for greater accuracy and resolution has driven the 

development of new technologies, and two approaches have emerged as game-changers: Full Waveform Inversion (FWI) and Machine Learning (ML). 

Full-Waveform Inversion (FWI) 

FWI is an advanced seismic imaging technique that uses complete waveform data to create high-resolution subsurface models. Full Waveform Inversion 

(FWI) is a velocity model creation tool that utilizes the entire seismic waveform to produce high-resolution subsurface images (Kato et al., 2018). By 

minimizing the difference between recorded and modelled data, FWI can accurately capture subtle changes in seismic wave fields, resulting in better 

imaging results (Gauthier et al., 1986). FWI has the potential to overcome the limitations of traditional seismic imaging methods and provide greater 

resolution and accuracy in complex geological environments (Williamson, 1990). The beauty of FWI Imaging lies in its ability to adapt to various 

geophysical survey scenarios and handle complex subsurface conditions. As a model fitting technique that minimizes differences between observed and 

modelled seismic waveforms, it can reproduce more features of the actual model that are not always well illuminated by traditional seismic imaging due 

to survey design, illumination gaps, noise, residual multipliers, etc. FWI iteratively incorporates these features into the model to better fit the different 

types of measured waves (Adriana et al., 2023). Below is an example of seismic imaging using FWI. 
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Fig.1: a) Original Kirchhoff PSDM line (no deghosting applied) from 2010 overlaid with the tomography-based velocity model from 2010 (the mass 

transport complexes in the shallow section generate signal absorption and scattering). b) Latest 2023 hi-res DM FWI (40Hz) derived velocity model and 

associated FWI Image (enhanced image resolution with increased S/N, better illumination, and improved amplitude consistency) (Adriana et al., 2023). 

In recent years, FWI has helped industry solve complex imaging challenges such as: e.g., seeing through gas clouds, resolving heterogeneities at shallow 

velocities (channels), etc. However, most applications reported to date have used models simply parameterized using P-wave velocity and density with 

the extension to include simple anisotropic media representations (e.g. VTI). Incorporating other effects necessary to explain realistic wave propagation 

(e.g. attenuation, elasticity) into modelling and inversion schemes remains a significant challenge for future FWI development and real data applications, 

especially since even the simplest acoustic FWI case suffers from data quality issues, lack of low frequency signal, lack of sufficiently long offsets and 

illumination angles. Therefore, the FWI workflow is highly data dependent and is often adapted to the geology we are trying to image. Another challenge 

we face is the transition from transmission regime FWI to migration-like FWI to obtain short-wave perturbations in subsurface parameters. The basic 

principle of FWI can be formulated as an optimization problem. Given the observed seismic data dobs and the synthetic data design dsyn generated from a 

model m, the goal is to minimize the difference between dobs and design: 

minm ||dobs - dsyn(m)||2. 

This involves iteratively updating the model m to reduce the misfit. The inversion process is controlled by the gradient of the misfit function, which can 

be calculated using adjoint state methods. FWI has made significant advances in computational algorithms and hardware that enable more efficient and 

accurate inversions. Recent studies such as Virieux and Operto (2021) have demonstrated the effectiveness of FWI in complex geological environments, 

including salt diapirs and fault zones. Case studies from the North Sea and Gulf of Mexico have demonstrated significant improvements in image 

sharpness and depth resolution. 

Machine Learning in Seismic Imaging 

Machine learning has become a powerful tool in geophysical exploration, offering new possibilities for processing and interpreting seismic data. ML 

algorithms can automatically detect patterns and anomalies in seismic datasets, significantly reducing the time and effort required for manual 

interpretation. These technologies help interpret large data sets by identifying patterns and anomalies that may be difficult for human analysts to detect. 

Machine learning algorithms can help with denoising seismic data, automatic fault detection, and even predicting reservoir properties based on historical 

data. ML algorithms are constantly being implemented for almost all steps in the seismic processing and interpretation workflow, primarily for 

automation, reducing processing time, efficiency, and in some cases improving results. Several ML techniques have been applied to seismic imaging, 

including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and unsupervised learning methods. These techniques have been 

used for fault detection, horizon selection and reservoir characterization. For example, Araya-Polo et al., (2018) used CNNs to automate fault detection 

in 3D seismic volumes, achieving remarkable accuracy and consistency compared to traditional manual methods. Similarly, Zhang et al., (2020) used 

RNNs for seismic facies classification and demonstrated significant improvements in computational efficiency and interpretation accuracy. The main 

reason for moving to fully data-driven methods is to mitigate some of the disadvantages of current technologies and methods, which can be divided into 

three categories. The first aspect is efficiency. 

Currently we use complex workflows that require many parameters and solutions that require an experienced operator based on analysis, testing and 

evaluation carried out with a Galilean approach (trial and error). This process requires time and expertise. It's nice to have technologies that can deliver 

results directly in a computer-based process without making decisions. The second aspect is bias. Different technologies and different operators produce 

different results, which are distorted in an uncontrolled manner by the decisions made during the process. The goal of an ML application would be to 

obtain results that are more repeatable and, in a sense, more “objective” because they come from a process that only addresses the precise information in 

the data. The third aspect is effectiveness. Every processing and interpretation technique have intrinsic limitations, and depending on the method and 

choice, the results allow us to “see” different things. The aim is to have methods that automatically deliver high-quality results and reflect comprehensive 

information about the subsurface. All these limitations are the reasons for investing in ML techniques. This idea undoubtedly represents a revolution in 

the way we perform seismic processing and interpretation, but many issues related to ML implementation need to be addressed (Farbod et al., 2023).  For 
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example, wave propagation inside the Earth is much more complex than wave propagation in human organs used for medical imaging. Therefore, fine-

tuning already trained ML models from other disciplines (also called transfer learning) is useless for seismic processing and interpretation tasks in most 

cases. Additionally, training ML models from scratch relies heavily on abundant labelled data, which is challenging in seismic exploration as there is no 

solid foundation for accurate data. 

2. Case Studies 

The North Sea basin: This has been a testing ground for many advanced seismic imaging techniques. Recent applications of FWI have resulted in 

improved imaging of complex salt structures, which are critical for accurate hydrocarbon exploration. According to a study by (Warner et al., 2017), the 

implementation of FWI in the North Sea resulted in a 30% increase in drilling success rates, highlighting the practical benefits of this technology. 

Gulf of Mexico: FWI and ML techniques have been widely used to improve subsurface imaging in Deepwater environments in the Gulf of Mexico. A 

notable case is the Mad Dog field, where FWI was used to resolve complex subsurface structures, resulting in the identification of new drill targets and 

a subsequent increase in reserve estimates by 20%. 

Niger Delta: The Niger Delta basin, with its complex deltaic and turbiditic systems, poses significant challenges to traditional seismic imaging methods. 

However, recent studies have shown that FWI and ML can significantly improve image accuracy in this region. A study by Olowookere et al., (2022) 

demonstrated the successful application of FWI in resolving deep hydrocarbon traps in the Niger Delta, resulting in more accurate reservoir delineation 

and improved hydrocarbon recovery. For operators in the Niger Delta Basin, the use of FWI and ML technologies is not only beneficial but also essential. 

The complex geology of the region, characterized by intricate fault systems and heterogeneous sedimentary layers, requires advanced imaging techniques 

to ensure successful exploration and production activities. By using these technologies, operators can achieve improved hydrocarbon recovery and reduced 

environmental impact. 

3. IMPORTANCE OF FWI AND ML IN SEISMIC IMAGING. 

Noise removal in raw data prior to wavelet processing: ML proves crucial for denoising raw seismic data before applying wavelet processing. The 

Real Image Denoising Network (RIDNet), a convolutional neural network (CNN), is used because of its efficiency in noise attenuation. Case studies 

from the Eastern Mediterranean, the Faroese Shetland Basin and off the coast of Malaysia show significant noise reduction and improved wave field 

generation. These examples can all be seen in the First Break article (Julien-Oukili et al., 2024). An example from Malaysia is shown below. 

 

Fig 2: Shots were gathered from shallow water Sarawak, offshore Malaysia. RIDNet was applied to hydrophone data. The raw hydrophone data shows 

towing noise at far offsets and spurious noisy traces (Julien-Oukili et al., 2024). 

Enhanced Detection Accuracy: The main advantage of FWI and ML is their ability to provide high-resolution subsurface images, allowing for more 

accurate detection of hydrocarbon deposits. This increased accuracy leads to better drilling decisions and reduces the risk of dry wells. Additionally, FWI 

and ML help with noise attenuation in the image area after migration. Migration noise, often problematic in seismic images, is effectively mitigated using 

ML techniques. A CNN-based denoising approach, particularly the U-Net architecture, is showing success in offshore Newfoundland and Norway. This 

technique significantly improves the signal-to-noise ratio, improves structural interpretation, and supports quantitative interpretation workflows (Julien-

Oukili et al., 2024). 

Cost Reduction: These advanced techniques reduce the need for extensive exploratory drilling by improving the precision of subsurface models, thereby 

reducing operating costs. ML algorithms can also automate many aspects of seismic data interpretation, reducing time and labour costs. 

Environmental and Safety Benefits: Accurate subsurface imaging also contributes to safer drilling operations by identifying potential hazards such as 

overpressure zones and unstable formations. This protects the environment and ensures the safety of personnel and equipment. 
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3. CONCLUSION 

The integration of full waveform inversion and machine learning into seismic imaging represents a significant advance in geophysical exploration. These 

technologies offer significant accuracy, efficiency and safety improvements, making them invaluable tools for operators worldwide. For the Niger Delta 

Basin in particular, the adoption of these advanced techniques is critical to optimizing resource management and ensuring sustainable development. As 

the geophysical community continues to innovate, the future of seismic imaging is promising for unlocking new opportunities in hydrocarbon exploration 

and beyond. 
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