

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

User Engagement Analysis For Restaurant Success

Syed Tathahir Uddin ¹,Syed Irfan²,Quazi Mohammad Ashfaq Uddin Siddiqui³

¹Student of Bachelors Of Engineering (Information Technology)

Nawab Shah Alam Khan College Of Engineering And Technology (16-4-1, New Malakpet, Near Railway Station, Hyderabad, Telangana, Pin Code: 500024, India)

Email: syedtathahiruddin@gmail.com

Phone No: +91 6304443960

² Student of Bachelors Of Engineering (Information Technology)

Nawab Shah Alam Khan College Of Engineering And Technology (16-4-1, New Malakpet, Near Railway Station, Hyderabad, Telangana, Pin Code: 500024, India)

Email: magicalirfan786@gmail.com

Phone No: +91 86396 66091

³ Student of Bachelors Of Engineering (Information Technology)

Nawab Shah Alam Khan College Of Engineering And Technology (16-4-1, New Malakpet, Near Railway Station, Hyderabad, Telangana, Pin Code: 500024, India)

Email: <u>quazi.ashfaq04@gmail.com</u> Phone No: +91 94901 63501

ABSTRACT :

In a competitive market like the restaurant industry, understanding the factors that influence business success is crucial for stakeholders. Utilizing the Yelp dataset, this project aims to investigate the relationship between user engagement (reviews, tips, and check-ins) and business success metrics (review count, ratings) for restaurants.

Problem Statement :

Understanding the factors that influence business success is crucial for stakeholders in the restaurant industry. This project aims to investigate the relationship between user engagement (reviews, tips, and check-ins) and business success metrics (review count, ratings) for restaurants using the Yelp dataset.

Research Objectives :

- 1. **Quantify the correlation between user engagement (reviews, tips, check-ins) and review count/average star rating:** This will help us determine if restaurants with higher user engagement experience a corresponding increase in reviews and ratings.
- 2. Analyze the impact of sentiment on review count and average star rating: We will investigate if positive sentiment in reviews and tips translates to higher star ratings and potentially influences the total number of reviews left.
- 3. **Time trends in User Engagement:** We will explore if consistent user engagement over time is a stronger indicator of long-term success compared to sporadic bursts of activity.

Hypothesis Testing :

- Higher levels of user engagement (more reviews, tips, and check-ins) correlate with higher review counts and ratings for restaurants.
- Positive sentiment expressed in reviews and tips contributes to higher overall ratings and review counts for restaurants.
- Consistent engagement over time is positively associated with sustained business success for restaurants.

Importing Libraries :

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime import numpy as np import sqlite3
import folium
import pandas as pd
from geopy.geocoders import Nominatim
from matplotlib.colors import LinearSegmentedColormap
from IPython.display import display
import warnings
warnings.filterwarnings('ignore')

Database Connection

- This dataset is a subset of Yelp and has information about businesses across 8 metropolitan areas in the USA and Canada.
- The original data is shared by Yelp as JSON files.
- The five JSON files are business, review, user, tip and checkin.
- The JSON files are stored in the database for easy retrieval of data.

creating database connection

conn = sqlite3.connect('yelp.db')

tables in the database

tables = pd.read_sql_query("SELECT name FROM sqlite_master WHERE type='table'",conn)

tables

name

0	business
1	review
2	user
3	tip
4	checkin
#	explore what type of data available in the tables
fo	r table in tables['name']:
	print('-'*50,f'{table}','-'*50)
	display(pd.read_sql_query(f"select * from {table} limit 5",conn))
	business
	business_id name \
0	Pns2l4eNsfO8kk83dixA6A Abby Rappoport, LAC, CMQ
1	mpf3x-BjTdTEA3yCZrAYPw The UPS Store
2	tUFrWirKiKi_TAnsVWINQQ Target
3	MTSW4McQd7CbVtyjqoe9mw St Honore Pastries
4	mWMc6_wTdE0EUBKIGXDVfA Perkiomen Valley Brewery
	address city state postal_code \
0	1616 Chapala St, Ste 2 Santa Barbara CA 93101
1	87 Grasso Plaza Shopping Center Affton MO 63123
2	5255 E Broadway Blvd Tucson AZ 85711
3	935 Race St Philadelphia PA 19107
4	101 Walnut St Green Lane PA 18054
	latitude longitude stars review_count is_open \
0	34.426679 -119.711197 5.0 7 0
1	38.551126 -90.335695 3.0 15 1
2	32.223236 -110.880452 3.5 22 0
3	39.955505 -75.155564 4.0 80 1
4	40.338183 -75.471659 4.5 13 1
~	categories
0	Doctors, Traditional Chinese Medicine, Naturop
1	Shipping Centers, Local Services, Notaries, Ma
2	Department Stores, Shopping, Fashion, Home & G
3	Restaurants, Food, Bubble Tea, Coffee & Tea, B
4	Brewpubs, Breweries, Food
	review
^	review_10 user_10 Dusiness_10 \ KUL_OSudC6apr/Og_VgAEgdg_mb_gM76V5DLWb7uISDbwA_VOfwVwDg.v0762_CbbE5Vw
1	KU_OSUGGOZZXOG-VCAEOOg mneMZOKSKLWNZYISBNWA AQIWVWDF-V0ZS5_CDDESAW
1	BilunyQ/3a19wBnpK9DZGw Oy0GAe/OKpvoSyGZ15g//Q /AT Ij11gM5jUlt4UM51ypQ
2	SaUSA_uIIIIXKIC V10/Z4JIg 8g_IVIIISIWIK VIIDP2eiKUA 1JU wPp10HAC550IWP-10ZA
3 1	Adremieeors025_auesxiA_/0H0190uis_nHc_QoguQ KXA250es40-D52QBKiMKIA
4	Sx81MOwENubWei-openioA ocjoaEodDog4jkN191neEQ e4vwirdi-wpj1wesgvdgxQ
	stars useful funny cool \
0	30 0 0 0
1	5.0 1 0 1
2	30 0 0 0
-3	5.0 1 0 1
4	4.0 1 0 1
ľ	···· · · ·
	text date
0	If you decide to eat here, just be aware it is 2018-07-07 22:09:11
1	I've taken a lot of spin classes over the year 2012-01-03 15:28:18
2	Family diner. Had the buffet. Eclectic assortm 2014-02-05 20:30:30
3	Wow! Yummy, different, delicious. Our favo 2015-01-04 00:01:03
4	Cute interior and owner (?) gave us tour of up 2017-01-14 20:54:15

user_id name review_count yelping_since useful $\$

0	qVc8ODYU5SZjKXVBgXdI7w Walker	585 2007-01-25 16:47:26 7217
1	j14WgRoU2ZE1aw1dXrJg Daniel	4333 2009-01-25 04:35:42 43091
2	2WnXYQFK0hXEoTxPtV2zvg Steph	665 2008-07-25 10:41:00 2086
3	SZDeASXq7o05mMNLshsdIA Gwen	224 2005-11-29 04:38:33 512
4	hA5lMy-EnncsH4JoR-hFGQ Karen	79 2007-01-05 19:40:59 29
	<u> </u>	••

	funny	cool	elite
0	1259	5994	2007
1	13066	27281	2009,2010,2011,2012,2013,2014,2015,2016,2017,2
2	1010	1003	2009,2010,2011,2012,2013
3	330	299	2009,2010,2011
4	15	7	

friends fans ... \backslash

0 NSCy54eWehBJyZdG2iE84w, pe42u7DcCH2QmI81NX-8qA... 267 ...

1 ueRPE0CX75ePGMqOFVj6IQ, 52oH4DrRvzzl8wh5UXyU0A... 3138 ...

2 LuO3Bn4f3rlhyHIaNfTlnA, j9B4XdHUhDfTKVecyWQgyA... 52 ...

 $3\ enx1vVPnfdNUdPho6PH_wg, 4wOcvMLtU6a9Lslggq74Vg...\ 28\ ...$

4 PBK4q9KEEBHhFvSXCUirIw, 3FWPpM7KU1gXeOM_ZbYMbA... 1 ...

compliment_more compliment_profile compliment_cute compliment_list \

0	65	55	56	18
1	264	184	157	251
2	13	10	17	3
3	4	1	6	2
4	1	0	0	0

compliment_note compliment_plain compliment_cool compliment_funny \

0	232	844	467	467
1	1847	7054	3131	3131
2	66	96	119	119
3	12	16	26	26
4	1	1	0	0

compliment_writer compliment_photos

0	239	180
1	1521	1946
2	35	18
3	10	9
4	0	0

user_id

[5 rows x 22 columns]

------ tip ------

business_id \setminus

0 AGNUgVwnZUey3gcPCJ76iw 3uLgwr0qeCNMjKenHJwPGQ

1 NBN4MgHP9D3cw--SnauTkA QoezRbYQncpRqyrLH6Iqjg

2 -copOvldyKh1qr-vzkDEvw MYoRNLb5chwjQe3c_k37Gg

3 FjMQVZjSqY8syIO-53KFKw hV-bABTK-glh5wj31ps_Jw

4 ld0AperBXk1h6UbqmM80zw _uN0OudeJ3Z1_tf6nxg5ww

text date \

0 Avengers time with the ladies. 2012-05-18 02:17:21

1 They have lots of good deserts and tasty cuban... 2013-02-05 18:35:10

2 It's open even when you think it isn't 2013-08-18 00:56:08

3 Very decent fried chicken 2017-06-27 23:05:38

4 Appetizers.. platter special for lunch 2012-10-06 19:43:09

compliment_count

0 0

1 0

2	0		
3	0		
4	0		
		checkin	-
	business_id	date	
0	kPU91CF4Lq2-WlRu9Lw	2020-03-13 21:10:56, 2020-06-02 22:18:06, 2020	
1	0iUa4sNDFiZFrAdIWhZQ	2010-09-13 21:43:09, 2011-05-04 23:08:15, 2011	
2	30_8IhuyMHbSOcNWd6D	Q 2013-06-14 23:29:17, 2014-08-13 23:20:22	
3	7PUidqRWpRSpXebiyxTg	2011-02-15 17:12:00, 2011-07-28 02:46:10, 2012	
4	7jw19RH9JKXgFohspgQw	2014-04-21 20:42:11, 2014-04-28 21:04:46, 2014	

Data Analysis

total business count

pd.read_sql_query("select count(*) from business ",conn)

count(*)

0 150346

restaurants business that are open

business_id = pd.read_sql_query("select business_id, review_count from business WHERE LOWER(categories) LIKE '%restaurant%' and is_open = 1",conn)

business_id

business_id review_count

0 MTSW4McQd7CbVtyjqoe9mw 80

- 1 CF33F8-E6oudUQ46HnavjQ 6
- 2 bBDDEgkFA1Otx9Lfe7BZUQ 10
- 3 eEOYSgkmpB90uNA7lDOMRA 10

4 il_Ro8jwPlHresjw9EGmBg 28

...

34999	w_4xUt-1AyY2ZwKtnjW0Xg	998
35000	l9eLGG9ZKpLJzboZq-9LRQ	11
35001	cM6V90ExQD6KMSU3rRB5ZA	33
35002	WnT9NIzQgLlILjPT0kEcsQ	35
35003	2O2K6SXPWv56amqxCECd4w	14

[35004 rows x 2 columns]

•

Out of 150k businesses, 35k are restaurants business and are open.

What is the descriptive stats for review count and star rating for businesses? pd.read_sql_query(f"""SELECT AVG(review_count) AS average_review_count, MIN(review_count) AS min_review_count, MAX(review_count) AS max_review_count, (SELECT review_count FROM business ORDER BY review_count LIMIT 1 OFFSET (SELECT COUNT(*) FROM business) / 2) AS median_review_count, AVG(stars) AS average_star_rating,

MIN(stars) AS min_star_rating, MAX(stars) AS max_star_rating, (SELECT stars FROM business ORDER BY stars LIMIT 1 OFFSET (SELECT COUNT(*) FROM business) / 2) AS median_star_rating

FROM business

WHERE business_id IN {tuple(business_id['business_id'])};

""",conn).transpose() 0

average_review_count104.097789min_review_count5.000000max_review_count7568.000000median_review_count15.000000average_star_rating3.523969min_star_rating1.000000

max_star_rating 5.000000

median_star_rating 3.500000

- Analyzing the median and maximum review count revealed a significant number of restaurants with much higher review counts compared to
 others. This could skew further analysis.
- To address this, we decided to remove restaurants with outlier review counts.
- We will implement to identify and remove outliers using the Interquartile Range (IQR) method.

function for removing outliers using interquartile range

def remove_outliers(df, col):

 $\begin{array}{l} q1 = df[col].quantile(0.25) \\ q3 = df[col].quantile(0.75) \\ iqr = q3 - q1 \\ lower_bound = q1 - 1.5 * iqr \\ upper_bound = q3 + 1.5 * iqr \\ df = df[(df[col] >= lower_bound) \& (df[col] <= upper_bound)] \\ \textbf{return} df \end{array}$

business_id = remove_outliers(business_id,'review_count')

check for the outliers removed pd.read_sql_query(f'''''SELECT AVG(review_count) AS average_review_count, MIN(review_count) AS min_review_count, MAX(review_count) AS max_review_count, (SELECT review_count FROM business ORDER BY review_count LIMIT 1 OFFSET (SELECT COUNT(*) FROM business) / 2) AS median_review_count,

AVG(stars) AS average_star_rating, MIN(stars) AS min_star_rating, MAX(stars) AS max_star_rating, (SELECT stars FROM business ORDER BY stars LIMIT 1 OFFSET (SELECT COUNT(*) FROM business) / 2) AS median_star_rating

FROM business

WHERE business_id IN {tuple(business_id['business_id'])};

""",conn).transpose()

0 average_review_count 55.975426 min_review_count 5.000000 max_review_count 248.000000 median_review_count 15.000000 average_star_rating 3.477281 min_star_rating 1.000000 max_star_rating 5.000000 median_star_rating 3.500000

After removing outliers, now we are getting average review count as 55 for the restaurants business.

Which restaurants have the highest number of reviews? pd.read_sql_query(f"""SELECT name, SUM(review_count) as review_count, AVG(stars) AS avg_rating FROM business WHERE business_id IN {tuple(business_id['business_id'])} GROUP BY name ORDER BY review_count DESC LIMIT 10;""",conn) name review_count avg_rating 0 McDonald's 16490 1.868702 1 Chipotle Mexican Grill 9071 2.381757 Taco Bell 8017 2.141813 2 3 Chick-fil-A 7687 3.377419 4 First Watch 6761 3.875000 5 Panera Bread 6613 2.661905

6 Buffalo Wild Wings 6483 2.344828

```
7
      Domino's Pizza
                           6091 2.290210
8
           Wendy's
                        5930 2.030159
9
           Chili's
                      5744 2.514706
# Which restaurants have the highest raing?
pd.read_sql_query(f"""SELECT name, SUM(review_count) as review_count, AVG(stars) AS avg_rating
FROM business
WHERE business_id IN {tuple(business_id['business_id'])}
GROUP BY name
ORDER BY avg_rating DESC
LIMIT 10;
""",conn)
                  name review_count avg_rating
0
                 ā café
                              48
                                     5.0
1
             two birds cafe
                                 77
                                        5.0
2
   the brewers cabinet production
                                       13
                                               5.0
3
           taqueria la cañada
                                  17
                                          5.0
4
                la bamba
                                44
                                       5.0
5
            la 5th av tacos
                                24
                                        5.0
  el sabor mexican and chinese food
                                         21
                                                5.0
6
       eat.drink.Om...YOGA CAFE
                                          7
                                                5.0
7
8
        d4 Tabletop Gaming Cafe
                                       8
                                              5.0
                                     12
9
        cabbage vegetarian cafe
                                            5.0
          No Direct Correlation: Higher ratings do not guarantee a higher review count, and vice versa.
     ٠
          Review count reflects user engagement but not necessarily overall customer satisfaction or business performance.
          Success in the restaurant business is not solely determined by ratings or review counts.
# Do restaurants with higher engagement tend to have higher ratings?
review_count_df = pd.read_sql_query(f"""SELECT total.avg_rating as rating,
AVG(total.review_count) as avg_review_count,
AVG(total.checkin_count) as avg_checkin_count,
AVG(total.tip_count) as avg_tip_count
FROM
(SELECT
  b.business id,
  SUM(b.review_count) AS review_count,
  AVG(b.stars) AS avg_rating,
  SUM(LENGTH(cc.date) - LENGTH(REPLACE(cc.date, ',', ")) + 1) AS checkin_count,
  SUM(tip.tip_count) as tip_count
FROM
  business b
LEFT JOIN
  checkin cc ON b.business_id = cc.business_id
LEFT JOIN
  (select business_id, count(business_id) as tip_count from tip GROUP BY business_id ORDER BY tip_count) as tip on b.business_id =
tip.business id
WHERE b.business_id IN {tuple(business_id['business_id'])}
GROUP BY
  b.business_id) as total
GROUP BY total.avg_rating
""",conn)
display(review_count_df)
colors = ['#FFF1E5', "#F8862C", "#CB754B"]
custom_cmap = LinearSegmentedColormap.from_list("mycmap", colors)
sns.heatmap(review_count_df.corr(), cmap = custom_cmap, annot = True, linewidths=0.5, linecolor = 'black')
plt.figure(figsize=(15,5))
plt.title('AVG Engagement based on Rating\n\n')
```

plt.yticks([])

plt plt plt plt plt for	xticks(subplot title('Re barh(re gca().sp i, value plt.text(]) (1,3,1) eview Count') view_count_df[' pines['right'].set_ e in enumerate(re value+3, i, str(ro	rating'].astype('si _visible(False) eview_count_df[und(value)), colo	tr'), review_count_df['avg_review_count'], edgecolor = 'k', color = '#CB754B') ''avg_review_count']): or='black', va='center')
plt	xticks(])		
pit plt	.subpiot title('Cl	(1,5,2) heckin Count')		
plt	.barh(re	view count df['	rating'].astype('s	tr'), review count df['avg checkin count'], edgecolor = 'k', color = '#F8862C')
plt	.gca().sp	oines['right'].set_	visible(False)	
for	i, value	e in enumerate(re	eview_count_df['avg_checkin_count']):
1	olt.text(value+3, i, str(ro	und(value)), colo	pr='black', va='center')
plt plt plt plt for	xticks(subplot title('Ti barh(re i, value plt.text(]) (1,3,3) p Count') view_count_df[' e in enumerate(rev value+0.05, i, str	rating'].astype('st eview_count_df[c(round(value)), c	tr'), review_count_df['avg_tip_count'], edgecolor = 'k',color='#E54F29') 'avg_tip_count']): color='black', va='center')
plt	xticks(])		
plt	.show()			
r	ating av	vg_review_count	t avg_cneckin_c	2 781512
1	1.0	24 358459	34 480060	2.781515
2	2.0	27 759629	52 386515	4 581058
3	2.5	36.631037	79.349429	6.325225
4	3.0	48.054998	105.970405	8.301950
5	3.5	63.730125	125.781702	10.320786
6	4.0	73.136954	127.139075	11.329362
7	4.5	65.282554	86.177605	8.995201

8 5.0

- Data shows a general increase in average review, check-in, and tip counts as ratings improve from 1 to 4 stars.
- Restaurants rated 4 stars exhibit the highest engagement across reviews, check-ins, and tips, suggesting a peak in user interaction.
- Interestingly, engagement metrics (reviews, check-ins, tips) dip for restaurants rated 4.5 and significantly more at 5 stars.
- The drop in engagement at 5.0 stars might suggest either a saturation point where fewer customers feel compelled to add their reviews, or a selectivity where only a small, satisfied audience frequents these establishments.

Is there a correlation between the number of reviews, tips, and check-ins for a business?

is more a correlation between the number of reviews, tips, and check this for a business.
engagement_df = pd.read_sql_query(f"""SELECT
b.business_id,
SUM(b.review_count) AS review_count,
AVG(b.stars) AS avg_rating,
SUM(LENGTH(cc.date) - LENGTH(REPLACE(cc.date, ',', ")) + 1) AS checkin_count,
SUM(tip.tip_count) as tip_count,
(CASE WHEN b.stars >= 3.5 THEN 'High-Rated' ELSE 'Low-Rated' END) as rating_category
FROM
business b
LEFT JOIN
checkin cc ON b.business_id = cc.business_id
LEFT JOIN
(select business_id, count(business_id) as tip_count from tip GROUP BY business_id ORDER BY tip_count) as tip on b.business_id
tip.business_id
WHERE b.business_id IN {tuple(business_id['business_id'])}
GROUP BY
b.business_id
ORDER BY
review_count DESC,
checkin_count DESC;

""",conn).dropna()

 $engagement_df = remove_outliers(engagement_df, 'checkin_count')$

display(engagement_df)

sns.heatmap(engagement_df[['review_count','checkin_count','tip_count']].corr(), cmap = custom_cmap, annot = True, linewidths=0.5, linecolor = 'black')

	business_id review_count	avg_rating	checkin	$_count \$
14	30OhTA38fp8xuqW4O2D6Eg	248	4.0	296.0
15	Aw9Tldxcg5ifodzn0R2O6g	248	4.0	252.0
16	9iSoPNBV54dj6L0rxO4RWw	248	3.5	219.0
17	HI1zbZuujFH9yPBKP1GH6g	248	4.5	214.0
18	7dbUShu3yTUVNhTrdnF0FQ	248	4.0	166.0
3138	9 v2xhzKIW-1bySJw5UPy8Jw	5	2.5	1.0
3139	2 wp_fwjX8JJC85F-sgb7ASg	5	5.0	1.0
3139	3 x3eNFvMD1LaqpBnJSD6A9Q	Q 5	3.0	1.0
3139	7 yeJAs2OrnRRhsbywHPGMeQ	5	5.0	1.0
3139	8 z00F0RSAGimvSU9IrTevOw	5	1.0	1.0

tip	_count r	ating_category
14	14.0	High-Rated
15	18.0	High-Rated
16	7.0	High-Rated
17	21.0	High-Rated
18	16.0	High-Rated
31389	1.0	Low-Rated
31392	1.0	High-Rated
31393	1.0	Low-Rated
31397	3.0	High-Rated
31398	1.0	Low-Rated

[25473 rows x 6 columns]

<Axes: >

Is there a difference in the user engagement (reviews, tips, and check-ins) between high-rated and low-rated businesses? engagement_df.groupby('rating_category')[['review_count', 'checkin_count', 'tip_count']].mean()

review_count checkin_count tip_count

rating_category

High-Rated	63.099378	80.71859	8.069794
Low-Rated	37.152862	64.84321	5.456341

- The dataset shows a strong positive correlation among review counts, check-in counts, and tip counts.
- These correlations suggest that user engagement across different platforms (reviews, tips, and check-ins) is interlinked; higher activity in one area tends to be associated with higher activity in others.
- Businesses should focus on strategies that boost all types of user engagement, as increases in one type of engagement are likely to drive increases in others, enhancing overall visibility and interaction with customers.

function to calculate the success score based on the avg rating and total review count

def calculate_success_metric(df):

success_score = []

for index, row in df.iterrows():

score = row['avg_rating'] * np.log(row['review_count'] + 1)

success_score.append(score)

return success_score

How do the success metrics (review_count or avg_rating) of restaurants vary across different states and cities?

city_df = pd.read_sql_query(f"""SELECT state,city, latitude, longitude, AVG(stars) AS avg_rating, SUM(review_count) as review_count, COUNT(*) as restaurant_count FROM business WHERE business_id IN {tuple(business_id['business_id'])} GROUP BY state, city ORDER BY review_count DESC limit 10;""",conn)

city_df['success_score'] = calculate_success_metric(city_df)
display(city_df)
Create a base map
m = folium.Map(location=[city_df['latitude'].mean(), city_df['longitude'].mean()], zoom_start=4)

Define a color scale

Add markers to the map

for index, row in city_df.iterrows():
 folium.CircleMarker(
 location=[row['latitude'], row['longitude']],
 radius=5,
 color=color_scale(row['success_score']),
 fill=True,
 fill_color=color_scale(row['success_score']),
 fill_opacity=0.7,
 popup=f"Success Score: {row['success_score']}"
).add_to(m)

Add color scale to the map

m.add_child(color_scale)

st	tate	city latitude longitude avg_rating review_co	ount \
0	PA	Philadelphia 39.955505 -75.155564 3.532156	175487
1	FL	Tampa 27.890814 -82.502346 3.571429	104376
2	IN 1	Indianapolis 39.637133 -86.127217 3.412111	92639
3	AZ	Tucson 32.338572 -111.010760 3.386187	91613
4	TN	Nashville 36.208102 -86.768170 3.493590	87070
5	LA	New Orleans 29.963974 -90.042604 3.693676	69239
6	MO	Saint Louis 38.583223 -90.407187 3.414303	51490
7	NV	Reno 39.476518 -119.784037 3.479626	48393
8	AB	Edmonton 53.436403 -113.604288 3.509379	45916
9	ID	Boise 43.611192 -116.206275 3.558824	36104

restaurant_count success_score

0	3001	42.651934
1	1715	41.270588
2	1701	39.022521
3	1419	38.688341
4	1404	39.737764
5	1012	41.167252
6	811	37.042331
7	589	37.535187
8	1546	37.671748
9	561	37.346958

<folium.folium.Map at 0x156514e50>

- Philadelphia emerges as the top city with the highest success score, indicating a combination of high ratings and active user engagement.
- Following Philadelphia, Tampa, Indianapolis, and Tucson rank among the top cities with significant success scores, suggesting thriving restaurant scenes in these areas.
- The success metrics vary significantly across different states and cities, highlighting regional differences in dining preferences, culinary scenes, and customer engagement levels.

 Identifying cities with high success scores presents opportunities for restaurant chains to expand or invest further, while areas with lower scores may require targeted efforts to improve ratings and increase user engagement.

Are there any patterns in user engagement over time for successful businesses compared to less successful ones? # Are there any seasonal trends in the user engagement for restaurants?

$high_rated_engagement = pd.read_sql_query(f^{"""}$

SELECT review.month_year, review.review_count, tip.tip_count FROM (SELECT strftime('%m-%Y', date) AS month_year, COUNT(*) AS review_count FROM review WHERE business_id IN {tuple(business_id['business_id'])} and stars >= 3.5 GROUP BY month_year ORDER BY month_year) as review JOIN (SELECT AVG(b.stars), strftime('%m-%Y', tip.date) AS month_year, COUNT(*) AS tip_count FROM tip JOIN business as b on tip.business_id = b.business_id WHERE tip.business_id IN {tuple(business_id['business_id'])} and b.stars >= 3.5 GROUP BY month_year ORDER BY month_year os tip

on review.month_year = tip.month_year
;""",conn)

$low_rated_engagement = pd.read_sql_query(f'''''$

SELECT review.month_year, review.review_count, tip.tip_count FROM (SELECT strftime('%m-%Y', date) AS month_year, COUNT(*) AS review_count FROM review WHERE business_id IN {tuple(business_id['business_id'])} and stars < 3.5 GROUP BY month_year ORDER BY month_year) as review JOIN (SELECT AVG(b.stars), strftime('%m-%Y', tip.date) AS month_year, COUNT(*) AS tip_count FROM tip JOIN business as b on tip.business_id = b.business_id WHERE tip.business_id IN {tuple(business_id['business_id'])} and b.stars < 3.5 GROUP BY month_year ORDER BY month_year

on review.month_year = tip.month_year
;""",conn)

time_rating = pd.read_sql_query(f"""SELECT strftime('%m-%Y', date) AS month_year, AVG(stars) as avg_rating
FROM review
WHERE business_id IN {tuple(business_id['business_id'])}
GROUP BY month_year
ORDER BY month_year
;""",conn)
time_rating['month_year'] = pd.to_datetime(time_rating['month_year'])
time_rating.sort_values('month_year',inplace = True)
time_rating = time_rating[time_rating['month_year']>'2017']

high_rated_engagement['month_year'] = pd.to_datetime(high_rated_engagement['month_year']) high_rated_engagement.sort_values('month_year',inplace = True) high_rated_engagement = high_rated_engagement[high_rated_engagement['month_year']>'2017']

low_rated_engagement['month_year'] = pd.to_datetime(low_rated_engagement['month_year'])
low_rated_engagement.sort_values('month_year',inplace = True)
low_rated_engagement = low_rated_engagement[low_rated_engagement['month_year']>'2017']

high_rated_engagement['avg_rating'] = time_rating['avg_rating'].values

plt.figure(figsize = (15,8)) plt.subplot(3,1,1) plt.title('Tip Engagement Over Time') plt.plot(high_rated_engagement['month_year'],high_rated_engagement['tip_count'], label = 'High Rated', color = '#E54F29') $plt.plot(low_rated_engagement['month_year'], low_rated_engagement['tip_count'], label = 'low Rated', color = '\#F8862C') and the stated and the state of the sta$ plt.legend() plt.subplot(3,1,2) plt.title('Review Engagement Over Time') plt.plot(high_rated_engagement['month_year'],high_rated_engagement['review_count'], label = 'High Rated', color = '#E54F29') plt.plot(low_rated_engagement['month_year'],low_rated_engagement['review_count'], label = 'Low Rated', color = '#F8862C') plt.legend() plt.subplot(3,1,3) plt.title('Avg Rating Over Time') plt.plot(time_rating['month_year'],time_rating['avg_rating'], color = '#E54F29') plt.tight_layout() plt.show()

plt.rcParams.update({'figure.figsize': (16,12)})
multiplicative_decomposition.plot()
plt.show()

 $multiplicative_decomposition = seasonal_decompose(review_high_rated,$

model='multiplicative', period = 12)

plt.rcParams.update({'figure.figsize': (16,12)})
multiplicative_decomposition.plot()
plt.show()

- Successful businesses, particularly those with higher ratings (above 3.5), exhibit consistent and possibly increasing user engagement over time.
- High rated restaurants maintain a steady or growing level of user engagement over time, reflecting ongoing customer interest and satisfaction.
- Tip count is showing a downward trend whereas review count is showing an upward trend with time.
- Year starting and year ending from around November and March is highly engaging and seasonal.
- # How does the sentiment of reviews and tips (useful, funny, cool) correlate with the success metrics of restaurants?

 $sentiment_df = pd.read_sql_query(f"""SELECT b.business_id, AVG(b.stars) as avg_rating, SUM(b.review_count) as review_count, as avg_rating, SUM(b.review_count) as review_count, as avg_rating, SUM(b.review_count) as review_count, and as avg_rating, SUM(b.review_count) as review_count, and as avg_rating, sum_count, sum_cou$

SUM(s.useful_count) as useful_count, SUM(s.funny_count) as funny_count, SUM(s.cool_count) as cool_count FROM (SELECT business_id, SUM(useful) as useful_count, SUM(funny) as funny_count, SUM(cool) as cool_count FROM review GROUP BY business_id) as s JOIN business as b on b.business_id = s.business_id

WHERE b.business_id IN {tuple(business_id['business_id'])} GROUP BY b.business_id ORDER BY review_count""",conn)

sentiment_df = remove_outliers(sentiment_df,'review_count')
sentiment_df = remove_outliers(sentiment_df,'useful_count')
sentiment_df = remove_outliers(sentiment_df,'funny_count')
sentiment_df = remove_outliers(sentiment_df,'cool_count')

sentiment_df['success_score'] = calculate_success_metric(sentiment_df)

sns.heatmap(sentiment_df.iloc[:,2:].corr(), cmap = custom_cmap, annot = True, linewidths=0.5, linecolor = 'black')

plt.show()

- "useful, " "funny, " and "cool" are attributes associated with user reviews. They represent the feedback provided by users about the usefulness, humor, or coolness of a particular review.
- Higher counts of useful, funny, and cool reviews suggest greater user engagement and satisfaction, which are key factors contributing to a restaurant's success.

```
# Is there any difference in engagement of elite users and non elite users?
elite_df = pd.read_sql_query("""SELECT
  elite,
  COUNT(*) AS row_count,
  SUM(review_count) AS total_review_count
FROM
  (SELECT
    CASE
       WHEN elite = " THEN 'Not Elite'
      ELSE 'Elite'
    END AS elite.
    u.review_count
  FROM
    user u) AS user_elite
GROUP BY
  elite:
""",conn)
elite_df
    elite row_count total_review_count
0
   Elite 91198
                         20484441
1 Not Elite 1896699
                            26021235
plt.figure(figsize=(10,6))
plt.subplot(1,2,1)
plt.title('User Distribution')
plt.pie(elite_df['row_count'], labels = elite_df['elite'], autopct='%.2f', startangle = 180, colors = ['#E54F29', '#F8862C'])
```

plt.subplot(1,2,2)

plt.title('Review Distribution')

plt.pie(elite_df['total_review_count'], labels = elite_df['elite'], autopct='%.2f', startangle = 90, colors = ['#E54F29', '#F8862C']) plt.show()

- Elite users are individuals who have been recognized and awarded the "Elite" status by Yelp for their active and high-quality contributions to the platform, such as frequent and detailed reviews, photos, and check-ins, among other criteria.
- Elite users, despite being significantly fewer in number, contribute a substantial proportion of the total review count compared to non-elite users.
- Elite users often provide detailed and insightful reviews, which can influence other users' perceptions and decisions regarding a business.
- Reviews from elite users may receive more attention and visibility on the Yelp platform due to their status, potentially leading to higher exposure for businesses.
- Establishing a positive relationship with elite users can lead to repeat visits and loyalty, as they are more likely to continue supporting businesses they have had good experiences with.

```
# What are the busiest hours for restaurants?
review_engagement = pd.read_sql_query("""SELECT
 cast (strftime('%H',date) as integer)
 as hour,
 COUNT(*) AS review_count
FROM
 review
GROUP BY
hour;
""",conn)
tip_engagement = pd.read_sql_query("""SELECT
cast (strftime('%H',date) as integer)
 as hour,
COUNT(*) AS tip_count
FROM
tip
GROUP BY
hour;
""",conn)
checkin = pd.read_sql_query("""SELECT date FROM checkin""",conn)
checkin_engagement = []
for i in checkin['date']:
  checkin_engagement.extend([datetime.strptime(j.strip(),"%Y-%m-%d%H:%M:%S").strftime("%H") for j in i.split(',')])
checkin_engagement = pd.DataFrame(checkin_engagement).astype('int').groupby(0)[[0]].count()
plt.figure(figsize = (10,6))
plt.subplot(3,1,1)
plt.title('Tip Engagement')
plt.bar(tip_engagement['hour'],tip_engagement['tip_count'], color = '#E54F29')
plt.subplot(3,1,2)
plt.title('Review Engagement')
plt.bar(review_engagement['hour'], review_engagement['review_count'], color = '#F8862C')
plt.subplot(3,1,3)
plt.title('Checkin Engagement')
plt.bar(checkin\_engagement.index, checkin\_engagement[0], \ color = '\#CB754B')
plt.tight_layout()
plt.show()
```


- The busiest hours for restaurants, based on user engagement, span from 4 pm to 1 am.
- Knowing the peak hours allows businesses to optimize their staffing levels and resource allocation during these times to ensure efficient
 operations and quality service delivery.
- The concentration of user engagement during the evening and night hours suggests a higher demand for dining out during these times, potentially driven by factors such as work schedules, social gatherings, and leisure activities.

Recommendations :

- Utilizing insights from the analysis of various metrics such as user engagement, sentiment of reviews, peak hours, and the impact of elite users, businesses can make informed decisions to drive success.
- Understanding customer preferences, behavior, and satisfaction levels is paramount. Businesses should focus on delivering exceptional experiences to meet customer expectations.
- By leveraging data on peak hours and user engagement, businesses can optimize staffing levels, resource allocation, and operating hours to
 ensure efficiency and quality service delivery during high-demand periods.
- Positive reviews from elite users and high user engagement can boost a business's online visibility and reputation. Maintaining active
 engagement with customers and responding promptly to feedback is crucial for building credibility and attracting new customers.
- Collaborating with elite users and leveraging their influence can amplify promotional efforts, increase brand awareness, and drive customer acquisition. Building strong relationships with key stakeholders, including loyal customers, can further strengthen a business's position in the market.
- · Businesses can adjust their operating hours or introduce special promotions to capitalize on the increased demand during peak hours.
- Less successful businesses may need to focus on strategies to enhance user engagement over time, such as improving service quality, responding to customer feedback.
- Cities with high success scores presents opportunities for restaurant chains to expand or invest further.

Acknowledgements

We would like to express our gratitude to Yelp for providing the dataset used in this analysis. We also appreciate the support and guidance from our colleagues and mentors throughout this research project. Special thanks to our respective institutions for their resources and facilities that made this study possible. Lastly, we thank our families and friends for their continuous encouragement and support.

REFERENCES :

- 1. Anderson, C. (2012). The impact of social media on lodging performance. Cornell Hospitality Report, 12(15), 6-11.
- Luca, M. (2016). Reviews, reputation, and revenue: The case of Yelp.com. *Harvard Business School NOM Unit Working Paper No. 12-016*.
 Kang, J., & Hsu, C. (2014). Empirical study on the influence of data characteristics on the performance of business recommendation system
- using Yelp. Journal of Business Research, 67(8), 1666-1670.
- McAuley, J., & Leskovec, J. (2013). From amateurs to connoisseurs: Modeling the evolution of user expertise through online reviews. In Proceedings of the 22nd International Conference on World Wide Web (pp. 897-908).
- 5. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167.
- 6. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, 2(1-2), 1-135.