International Journal of Research Publication and Reviews Journal homepage: www.ijrpr.com ISSN 2582-7421 # Simultaneous Estimation of Acetaminophin and Benzhydrocodone by RP-HPLC Method Dr. Meruva Sathish Kumar, Ch. Ajay Kumar, Naik Parth Pravin, N. Swarnalatha, Afsheen Nida M.N.R College of Pharmacy, Fasalwadi, and Sangareddy: 502294 Sathishmeruva85@gmail.com #### ABSTRACT: A RP-HPLC procedure is developed, validated and applied for simultaneous estimation of Acetaminophen and Benzhydrocodone in tablets. Procedure is based on separation and analysis of acetaminophen and benzhydrocodone in C18 column and 0.1M K2HPO4: methanol (70:30 v/v) mixture as stationary and mobile phase, respectively. The elution time values for acetaminophen and benzhydrocodone were 3.6 min and 4.9 min, respectively. Linear ranges for acetaminophen and benzhydrocodone are $162.5-487.5 \mu g/ml$ and $3.06-9.18 \mu g/ml$, respectively. The values of sensitivity were $0.311 \mu g/ml$ (LOD) and $1.035 \mu g/ml$ (LOQ) for acetaminophen and 0.036 (LOD) $\mu g/ml$ and $0.121 \mu g/ml$ (LOQ) for benhydrocodone. Validation parameters are tested using guidelines of ICH. The validation values obtained are well acceptable. The method proved as suitable procedure for assay of acetaminophen and benzhydrocodone in tablet dosage forms with good assay percent values. #### INTRODUCTION: N-(4-hydroxyphenyl) acetamide is an Acetaminophin. It has possible Antipyretic, Analgesic, Nonsteroidal Activity. It acts by blocking prostaglandin synthesis from Arachidonic Acid by inhibiting Cox1 and Cox2 Enzymes. 6,7-didehydro- $4,5\alpha$ -epoxy-3-methoxy-17-methylmorphinan-6-yl benzoate is Benzhydrocodone. It has possible Analgesic Activity. It is a full agonist of Opioid Receptors with a higher affinity for mucopioid receptor. #### Materials: Reference drug material of acetaminophen and benzhydrocodone was collected from Lara Drugs Private Limited, Telangana, India. Apadaz tablets: strength - 325 mg acetaminophen and 6.12 mg benzhydrocodone. Methanol (HPLC grade) from Merck specialties Ltd, India Dipotassium hydrogen phosphate (Analytical grade) from SD Fine-Chem Limited, India. ## ${\bf Chromatographic\ conditions\ for\ assay:}$ All analyses were done using an Waters Alliance HPLC system 2695 model, HPLC column C18 (250×4.6) mm, ($5 \mu m$), column oven and auto sampler were employed all through the analysis by HPLC. Solutions were injected using volumes of 20 μ l at flow rate 1.0ml\min and a wavelength of 270 nm. #### **Method Development:** The conditions for assay were optimized for type of column, mobile phase composition, column temperature, flow rate and wavelength. Detection wavelength was set as ultraviolet absorption maxima shown by acetaminophen and benzhydrocodone (270 nm). Table 1. Conditions used in different trails | Trail | Column | MP | FR | CT | IV | |-------|--------------|--|-----|----|----| | 1 | Waters C18 | 0.1% OPA: Methanol (50:50) | 1.0 | 25 | 10 | | 2 | Inertsil C18 | 0.1M Na ₂ HPO ₄ : Methanol (50:50) | 1.0 | 25 | 10 | | 3 | Zodiac C18 | 0.1M Na ₂ HPO ₄ : Methanol (50:50) | 1.0 | 25 | 10 | |---|------------|--|-----|----|----| | 4 | Hibar C18 | 0.1M K ₂ HPO ₄ : Methanol (55:45) | 1.0 | 25 | 10 | | 5 | Hibar C18 | 0.1M K ₂ HPO ₄ : Methanol (65:35) | 1.0 | 25 | 10 | MP-mobile phase, FR-flow rate (ml/min), CT-column temperature (°C), IV-injection volume (μ l) Table 2. Results obtained in different trails | Trail | Drug | RT | PA | RS | PT | PC | |-------|------|-----|---------|------|------|-------| | 1 | ACT | 3.3 | 3669715 | - | 1.88 | 4787 | | | BEN | 3.6 | 346413 | 1.75 | 3.00 | 8512 | | 2 | ACT | 3.2 | 3729921 | - | 0.85 | 2352 | | | BEN | 3.7 | 724340 | 1.71 | 1.25 | 2698 | | 3 | ACT | 3.4 | 3635546 | - | 1.26 | 6709 | | | BEN | 3.9 | 707826 | 2.50 | 1.57 | 4332 | | 4 | ACT | 4.3 | 3761134 | - | 0.99 | 8845 | | | BEN | 5.0 | 905965 | 3.16 | 1.25 | 5589 | | 5 | ACT | 3.7 | 3893993 | - | 1.28 | 11142 | | _ | BEN | 4.9 | 974580 | 6.85 | 1.31 | 8135 | ACT-acetaminophen, BEN benzhydrocodone, RT-retention time, PA-peak area, RS-resoltuion, PC-plate count, PT-peak tailing Figure 1:Trail chromatogram ## System suitability: Acetaminophen (330 $\mu g/ml$) and benzhydrocodone (6.15 $\mu g/ml$) solution injected five times. Criteria used for acceptance of system suitability are: - Plate count > 2000 - Resolution -> 2.0 - Peak tailing ≤ 2.0 - RSD for peak area ≤ 2.0 Table 3: Benzhydrocodone data during system suitability | | SAMPLE | | RT | AREA | USP PLATE | USP | USP | |------|--------|-----------------|-------|-----------|-----------|------------|---------| | | NAME | PEAK NAME | | | COUNT | RESOLUTION | TAILING | | 1 | STD2 | BENZHYDROCODONE | 4.946 | 1013280 | 8071 | 6.80 | 1.36 | | 2 | STD2 | BENZHYDROCODONE | 4.944 | 1023461 | 8046 | 6.82 | 1.36 | | 3 | STD2 | BENZHYDROCODONE | 4.945 | 1014063 | 8022 | 6.82 | 1.36 | | 4 | STD2 | BENZHYDROCODONE | 4.948 | 1017599 | 8107 | 6.84 | 1.37 | | 5 | STD2 | BENZHYDROCODONE | 4.945 | 1016863 | 8067 | 6.84 | 1.36 | | Mean | | | | 1017053.2 | | | | | %RSD | | | | 0.4 | | | | Table 4: Acetaminophen data during system suitability | | SAMPLE
NAME | PEAK NAME | RT | AREA | USP PLATE
COUNT | USP
TAILING | |------|----------------|---------------|-------|-----------|--------------------|----------------| | 1 | STD2 | ACETAMINOPHEN | 3.685 | 3943605 | 1175 | 1.29 | | 2 | STD2 | ACETAMINOPHEN | 3.683 | 3974661 | 11233 | 1.28 | | 3 | STD2 | ACETAMINOPHEN | 3.683 | 3962823 | 11251 | 1.29 | | 4 | STD2 | ACETAMINOPHEN | 3.685 | 3963022 | 11259 | 1.29 | | 5 | STD2 | ACETAMINOPHEN | 3.683 | 3969532 | 11231 | 1.29 | | Mean | | | | 3962728.4 | | | | %RSD | | | | 0.3 | | | Figure 2 :Chromatograms of system suitability #### Selectivity: Mobile phase blank, placebo blank, working solution (acetaminophen 330 μ g/ml and benzhydrocodone - 6.15 μ g/ml) and tablet solution were injected. Checked for interference peaks at the retention times of acetaminophen and benzhydrocodone. No interfering peaks were seen. Figure 3: Selectivity chromatograms #### Linearity: The assay method linearity of acetaminophen and benzhydrocodone were determined in range from 50%, 75%, 100%, 125% and 150% proportional to concentration relative to standard concentration prescribed 330 μ g/ml (acetaminophen) and 6.15 μ gml (benzhydrocodone). The curves of acetaminophen and benzhydrocodone were linear over 162.5 – 487.5 μ g/ml and 3.06 – 9.18 μ g/ml, respectively and exhibited a good regression coefficient ($R^2 = > 0.9990$). Table 5. Acetaminophen and benzhydrocodone linearity data | Conc % | Acetaminophen | Benzhydrocodone | | | |---------|---------------|-----------------|-----------|-------| | Cone /u | Peak area | μg/ml | Peak area | μg/ml | | 50 | 1987907 | 162.5 | 508696 | 3.06 | | 75 | 2979936 | 243.75 | 762481 | 4.59 | | 100 | 3967196 | 325.00 | 1013570 | 6.12 | | 125 | 4954061 | 406.25 | 1274750 | 7.65 | | 150 | 5943775 | 487.5 | 1522204 | 9.18 | Figure 4: Acetaminophen linearity curve #### Limit of detection and limit of quantification: Limit of detection (LOD) and limit of quantitation (LOQ) calculated as signal to noise ratio 3.1 and 10.1, respectively. LOD was 0.311 μ g/ml for acetaminophen and 0.036 μ g/ml for benzhydrocodone. LOQ was 1.035 μ g/ml for acetaminophen and 0.121 μ g/ml for benzhydrocodone. Figure 5 LOD and LOQ chromatograms Peak Name: Acetaminophin | | SAMPLE NAME | PEAK NAME | RT | AREA | s/n | |---|-------------|---------------|-------|-------|-------| | 1 | LOD | ACETAMINOPHEN | 3.715 | 13204 | 3.50 | | 2 | LOQ | ACETAMINOPHEN | 3.728 | 80207 | 10.29 | Peak Name: Benzhydrocodone | | SAMPLE NAME | PEAK NAME | RT | AREA | s/n | |---|-------------|-----------------|-------|-------|-------| | 1 | LOD | BENZHYDROCODONE | 5.013 | 4424 | 3.95 | | 2 | LOQ | BENZHYDROCODONE | 5.052 | 24637 | 10.39 | #### Precision and accuracy: In this, standard solutions containing 330 μ g/ml of acetaminophen and 6.15 μ g/ml of benzhydrocodone were prepared, and injected 6 times into the HPLC system. Mean of peak areas and % RSD values of peak area and mean percent assay values were calculated to show precision and accuracy, respectively. Acceptable criteria are: - Precision %RSD ≤ 2.0 - Accuracy percent assay 80-120% Table 6: Acetaminophen and benzhydrocodone precision and accuracy results | Sample | Peak area | Peak area | Percent assay of | Percent assay | |--------|------------------|--------------------|------------------|--------------------| | No. | of acetaminophen | of benzhydrocodone | acetaminophen | of benzhydrocodone | | i | 3964203 | 1017773 | 99.74 | 99.67 | | ii | 3968526 | 1013573 | 99.85 | 99.26 | | iii | 3961837 | 1017638 | 99.68 | 99.66 | | iv | 3966868 | 1019607 | 99.8 | 99.85 | | v | 3965045 | 1012037 | 99.76 | 99.11 | | vi | 3964217 | 1018343 | 99.74 | 99.73 | | Mean | 3965116 | 1016495.17 | 99.762 | 99.547 | | SD | 2328 | 2982 | 0.06 | 0.3 | | RSD | 0.06 | 0.29 | 0.06 | 0.29 | Figure 6: chromatograms for precision and accuracy testing #### Recovery: Recovery was tested by spiking 50, 100 and 150% of acetaminophen and benzhydrocodone standards to pre analyzed tablet solution in triplicates. The percent recovery was determined. An acceptance criterion is between 80% - 120% recovery value. Table 7: Acetaminophen recovery results | | T | | | T | | |-------------------|------------------|-----------------------|-----------------------|--------------------|--------| | Spiked
Percent | Peak area of ACE | µg/ml of ACE
added | μg/ml of ACE
found | % of ACE Recovered | % Mean | | 50% | 1985177 | 162.500 | 162.32 | 99.89 | | | 50% | 1983911 | 162.500 | 162.22 | 99.83 | 99.96 | | 50% | 1989290 | 162.500 | 162.66 | 100.10 | | | 100% | 3965075 | 325.000 | 324.22 | 99.76 | | | 100% | 3963716 | 325.000 | 324.11 | 99.72 | 99.7 | | 100% | 3968061 | 325.000 | 324.46 | 99.83 | | | 150% | 5944048 | 487.500 | 486.03 | 99.70 | | |------|---------|---------|--------|-------|------| | 150% | 5945780 | 487.500 | 486.18 | 99.73 | 99.7 | | 150% | 5944996 | 487.500 | 486.11 | 99.72 | | Table 8: Benzhydrocodone recovery results | Spiked
Percent | Peak area of
BEN | μg/ml of BEN
added | μg/ml of BEN
found | % of BEN Recovered | % Mean | |-------------------|---------------------|-----------------------|-----------------------|--------------------|--------| | 50% | 508694 | 3.060 | 3.05 | 99.63 | | | 50% | 508056 | 3.060 | 3.04 | 99.51 | 99.6 | | 50% | 508299 | 3.060 | 3.05 | 99.56 | | | 100% | 1018778 | 6.120 | 6.11 | 99.77 | | | 100% | 1012284 | 6.120 | 6.07 | 99.13 | 99.6 | | 100% | 1019727 | 6.120 | 6.11 | 99.86 | | | 150% | 1525047 | 9.180 | 9.14 | 99.57 | | | 150% | 1525809 | 9.180 | 9.14 | 99.61 | 99.6 | | 150% | 1526563 | 9.180 | 9.15 | 99.66 | | Figure $\,$ 7: chromatograms at 50, 100 and 150% spiked levels ## Robustness: Small deliberate changes are made in the following: - Ratio of methanol changed by ±5% - pH of buffer changed by ± 0.2 units - Flow rate changed by ± 0.1 ml/min - Column temperature changed by ± 2 °C; - Wavelength changed by $\pm 2 \text{ nm}$ In above changed conditions, acetaminophen and benzhydrocodone solution is injected. System suitability parameters determined. Criteria used for acceptance of system suitability are: - Plate count > 2000 - Resolution -> 2.0 - Peak tailing ≤ 2.0 - RSD for peak area ≤ 2.0 Table 9: Acetaminophen robustness | Conditions | Value Change | Tailing
factor | Theoretical plate | Resolution | |---------------------------|--------------|-------------------|-------------------|------------| | Column's temperature (°C) | 23 | 1.30 | 9720 | - | | | 27 | 1.29 | 10432 | - | | Flow rate run (ml/min) | 0.9 | 1.31 | 11691 | - | | | 1.1 | 1.32 | 12342 | - | | Mobile phase pH (units) | 4.4 | 1.30 | 9720 | - | | | 4.6 | 1.31 | 11691 | - | | Ratio of methanol (%) | 30 | 1.29 | 11205 | - | | | 40 | 1.29 | 11133 | - | | Wavelength (nm) | 268 | 1.28 | 11210 | - | | | 272 | 1.29 | 11218 | - | Table 10: Benzhydrocodone robustness | Conditions changed | Changed | Tailing | Theoretical plate | Resolution | |---------------------------|---------|---------|-------------------|------------| | | value | factor | Theoretical plate | | | Column's temperature (°C) | 23 | 1.33 | 7214 | 6.54 | | | 27 | 1.34 | 7768 | 6.86 | | Flow rate run (ml/min) | 0.9 | 1.38 | 8478 | 7.16 | | | 1.1 | 1.40 | 9180 | 7.46 | | Mobile phase pH (units) | 4.4 | 1.33 | 7214 | 6.54 | | Woone phase pir (units) | 4.6 | 1.38 | 8478 | 7.16 | | Ratio of methanol (%) | 30 | 1.36 | 8073 | 6.85 | | Ratio of inclination (70) | 40 | 1.37 | 8023 | 6.82 | | Wavelength (nm) | 268 | 1.37 | 7999 | 6.82 | | marciengui (mii) | 272 | 1.37 | 8068 | 6.82 | ## Application of method to assay acetaminophen and benzhydrocodone in tablets: The content of acetaminophen and benzyhydrocodone was determined in (strength - 330 mg acetaminophen and 6.15 mg benzhydrocodone) by proposed method. The assay percent (nearer to 100%) and relative standard deviation (less than 2%) values are acceptable. Table 11: Assay of acetaminophen and benzhydrocodone in tablet | Drug content in tablet (mg) | Drug determined (μg/ml) | Drug Assayed (%) | Statistical assessment | |-----------------------------|-------------------------|------------------|------------------------| | Acetaminophen | | <u> </u> | | | 330 | 324.81 | 99.94 | Mean: 99.8% | | 330 | 324.25 | 99.77 | RSD: 0.120% | | 330 | 324.06 | 99.71 | - | | Benzhydrocodone | | 1 | | | 6.15 | 6.094 | 99.57 | Mean: 99.6% | | 6.15 | 6.095 | 99.59 | RSD: 0.020% | | 6.15 | 6.096 | 99.61 | - | Figure 8: Chromatograms of tablet assay #### **CONCLUSION:** Acetaminophen and benzhydrocodone were simultaneously separated and quantified successfully in the tablets using the developed RP-HPLC method with good precision and accuracy. The RP-HPLC method has adequate sensitivity and selectivity ### REFERENCE - 1. Octavian Calinescu, Irinel A. Badea1, Luminita Vladescu, Viorica Meltzer and Elena Pincu. HPLC Separation of Acetaminophen and its Impurities Using A Mixed-modeReversed-Phase/Cation Exchange Stationary Phase. Journal of Chromatographic Science (2012);50;335-342 - 2.Eglal A. Abdelaleem and Nada S. Abdelwahab.Validated stability indicating RP-HPLC method for determination of Paaracetamol Methocarbamol and their related substance. Journal of Analytical Method(2013);5; 541-545 - 3.T.A. Phazna Devi, Aravind Setti, S. Srikanth, Sivaramaiah Nallapeta, Smita C. Pawar and J. Venkateshwara Rao. Method development and validation of Paracetamol drug by RP-HPLC. Journal of J. Med Allied Science (2013);3(1);8-14 - 4. NIEF RAHMAN AHMED.HPLC Method for Determination of Paracetamol in Pharmaceutical Formulations and Environmental Water Samples. Journal of Chemical Science Transcations(2019);8(2);237-243 - 5.Telma Encarnação, António Aguiar, Cátia Palito, Alberto A.C.C. Pais, Maria G. Campos, Abílio J.F.N. Sobral and Hugh D. Burrows. Development and validation of a RP-HPLC method for the simultaneous analysis of Paracetamol, Ibuprofen, Olanzapine, and Simvastatin during Microalgae Bioremediation. Journal of Methods X(2020);7; 1-12 - 6.Ahmaya A. Mustafa , Robin Rajan , Jennifer D.Suarez and Saeed K. Alzghari. A Review of the Opioid Analgesic Benzhydrocodone-Acetaminophen.Journal of Cureus(2018); 10(6). - 7. Raffaeli W, Arnaudo E. Pain as a disease: an overview. Journal of Pain Research, 10, 2017, 2003–2008. - 8. Merriam-Webster, MedlinePlus, definition of disease. Accessed 2019. Available from: http://c.merriamwebster.com/medlineplus/disease. - 9. Jackson T, Stabile V, McQueen K. The global burden of chronic pain. Accessed 2019. Available from: http://monitor.pubs.asahq.org/article.aspx?articleid=2432061. - 10. Eyler EC. Chronic and acute pain and pain management for patients in methadone maintenance treatment. American Journal on Addictions, 22(1), 2013, 75-83. - 11.. Zinck L, Sonne NM, Madsen SL, Nikolajsen L. Analgesic management of acute pain in patients receiving methadone or buprenorphine. UgeskrLaeger, 177(10), 2015, V10140557. - 12. Dueñas M, Ojeda B, Salazar A, Mico JA, Failde I. A review of chronic pain impact on patients, their social environment and the health care system. Journal of Pain Research, 9, 2016, 457–467. 13. Langley PC, Ruiz-Iban MA, Molina JT, De Andres J, Castellon JR. The prevalence, correlates and treatment of pain in Spain. Journal of Medical Economics, 14(3), 2011, 367–380. - 14. Whitten CE, Cristobal K. Chronic Pain is a Chronic Condition, Not Just a Symptom. The Permanente journal, 9(3), 2005, 43-51. - 15. Swieboda P, Filip R, Prystupa A, Drozd M. Assessment of pain: types, mechanism and treatment. Annals of Agricultural and Environmental Medicine, 1, 2013, 2-7. - 16. Bennett M, Kaasa S, Barke A, Korwisi B, Rief W, Treede RD. The IASP classification of chronic pain for ICD11: chronic cancer-related pain. Pain. 160(1), 2019, 38-44. - 17. Nugraha B, Gutenbrunner C, Barke A, Karst M, Schiller J, Schäfer P, Falter S, Korwisi B, Rief W, Treede RD, The IASP classification of chronic pain for ICD-11: functioning properties of chronic pain. Pain, 160(1), 2019, 88-94. - 18. Amaya F, Izumi Y, Matsuda M, Sasaki M. Tissue injury and related mediators of pain exacerbation. Current Neuropharmacology, 11(6), 2013, 592–597. - 19. Sutherland SP, Cook SP, McCleskey EW. Chemical mediators of pain due to tissue damage and ischemia. Progress in Brain Research, 129, 2000, 21-38 - 20.https://www.pdr.net/drug-summary/Acetaminophen-and-Codeine-Phosphate-Tablets-acetaminophen-codeinephosphate-3188 - 21. https://www.cincinnatic hildrens.org/health/a/acetamin ophen-code ine - 22. https://www.rxlist.com/tylenol-codeine-drug.htm#description - 24.B.Ramu et al, Formulation Of Lamotrigine Orodispersible Tablets By Using New Generation Superdisintegrants World Journal Of Pharmacy And Pharmaceutical Sciences Volume 4,2015, Issue 06, 631-643. - 25.Ramu B, Sathish Kumar M, Ramakrishna M (2015) Current Regulatory Scenario for Conducting Clinical Trials in India. Pharmaceut Reg Affairs. 4:137. doi: 10.4172/2167-7689.1000140. - 26.Mounika, I y Ramu, B. 2018. "Lifestyle drugs: concept and impact on society." Journal of Human Virology & Retrovirology, 6(2): 46-49. https://doi.org/10.15406/jhvrv.2018.06.00194 - 27. Ramu B, Saibaba SV. Role of community pharmacist in management of anaemia. Pharm Pharmacol Int J., 2018; 6(3): 216–220. DOI: 10.15406/ppij.2018.06.00178.