

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

COMPUTATIONAL EVALUATION OF PARANGIPATTAI KASAYAM TARGETING GABA RECEPTORS FOR SPASTICITY MANAGEMENT IN CEREBRAL PALSY (SIRAKAMBAVATHAM) – A MOLECULAR DOCKING STUDY

Priyanka T¹, Shanmuga Priya C², Satheesh Kumar A³

¹PG Scholar, Department of PG Kuzhanthai Maruthuvam, Government Siddha Medical College, Chennai.
²Head of the Department, Department of PG Kuzhanthai Maruthuvam, Government Siddha Medical College, Chennai.
³Lecturer II, Department of PG Kuzhanthai Maruthuvam, Government Siddha Medical College, Chennai.
Corresponding author mail ID: priyankasiddha92@gmail.com
DOI:<u>https://doi.org/10.5281/zenodo.12591060</u>

ABSTRACT :

BACKGROUND:

The Siddha system of medicine, one of the world's oldest traditional healing practices, is renowned for its holistic approach, addressing not just physical ailments but also mental and spiritual well-being. Siddha system classifies diseases into 4448 types. Among them is Vatha diseases which were subdivided into 80 types. Sirakambavatham one among them is compared with Cerebral palsy a neurological disorder that affects movement, muscle tone and posture. Early intervention and ongoing support can greatly improve outcomes for individual child with Cerebral palsy. This article explains in detail about the molecular docking analysis of Parangipattai kasayam against GABA receptors in management of spasticity in Cerebral palsy children.

AIM & OBJECTIVE:

To evaluate the efficacy of Parangipattai Kasayam against GABA receptors in management of spasticity in Cerebral palsy through molecular docking analysis.

MATERIALS AND METHODS:

Parangipattai kasayam was mentioned in Siddha literature Pillaipini vagadam Part-2 to manage all vatha diseases was taken for the study to evaluate the property of reducing spasticity. A well-defined in silico computational study of the selected Compounds using various bioinformatics software such as Chem3D pro 12.0, MGL AutoDock Tools, AutoDock Vina, Molegro Molecular Viewer, Discovery Studio Visualizer. Online resources such as RCSB-Protein Data Bank(PDB), PubChem database, SwissADME, Active site prediction tool, etc., were used in this study. Overall, the molecular docking provide a computational framework for predicting and analyzing ligand-receptor interactions, facilitating drug discovery.

RESULT:

From the molecular docking study three compounds had docking score more than -8.0 kcal/mol, nine compounds had -7 to -8 kcal/mol, eleven compounds had -6 to -7 kcal/mol and fourteen compounds had -5 to -6 kcal/mol with the GABA receptor protein. The present insilico study shows that phytochemicals of Parangipattai kasayam shows that the number of phyto compounds and standard drug Baclofen had no violation of Lipinski rule of five. Out of forty six compounds selected 34 phytochemicals had no Lipinski violation, 8 phytochemical had one violation, 3 phytochemical had two violations and one phytochemical had three violations.

CONCLUSION:

Based on the insilico study of Parangipattai kasayam it was concluded that the bioactive compounds of this polyherbal medicine possess significant binding affinity against the target GABA receptors. Hence, it was proved that Parangipattai kasayam enhances the muscle relaxant property against the GABA receptors by supporting the Cerebral palsy children to manage the spasticity.

KEY WORDS: Sirakambavatham, Parangipattai kasayam, GABA receptor.

INTRODUCTION:

Cerebral palsy (CP) is a neurological disorder characterized by motor impairment and often accompanied by spasticity, which significantly impacts the quality of life of affected individuals. Spasticity, a condition marked by increased muscle tone and stiffness, contributes to difficulties in movement and coordination, posing challenges in daily activities. Despite various treatment modalities available, there is a need for novel therapeutic approaches to effectively manage spasticity in CP. Parangipattai Kasayam, a traditional herbal formulation used in Siddha medicine, has gained attention for its potential therapeutic effects in neurological disorders. It contains a combination of herbs known for their neuroprotective and muscle relaxant properties. One promising avenue for its application is through its interaction with gamma-aminobutyric acid (GABA) receptors. GABA receptors are key mediators of inhibitory neurotransmission in the central nervous system and play a crucial role in regulating muscle tone. Modulation of GABA receptor activity can lead to muscle relaxation, offering a potential mechanism for alleviating spasticity in CP. Molecular docking, a computational technique, provides valuable insights into the interaction between small molecules and target receptors at the molecular level. By simulating the binding of Parangipattai Kasayam components to GABA receptors, molecular docking analysis can predict the likelihood and strength of their interactions, aiding in the identification of potential therapeutic candidates. In this study, we present a molecular docking analysis of Parangipattai Kasayam constituents against GABA receptors, aiming to elucidate their binding affinities and potential as spasticity management agents in cerebral palsy. This research contributes to the exploration of alternative treatment strategies for improving the quality of life of individuals with CP.

Materials and methods:

The Parangipattai kasayam, mentioned in Siddha literature Pillaipini Vagadam Part-2, is known for managing various vatha diseases. The current study was aimed to evaluate its potential in reducing spasticity. They conducted a comprehensive computational analysis using various bioinformatics software tools. Firstly, Chem3D Pro 12.0 was employed to generate molecular structures of the selected compounds. Then, MGL AutoDock Tools and AutoDock Vina were utilized for molecular docking studies, predicting the binding interactions between the compounds and target receptors. To visualize the results, tools like Molegro Molecular Viewer and Discovery Studio Visualizer were employed, to analyze the ligand-receptor interactions in detail. In addition to these software tools, the study also utilized online resources such as the RCSB-Protein Data Bank (PDB) and PubChem database for obtaining protein structures and compound information. SwissADME was utilized for assessing the pharmacokinetic properties of the compounds. Furthermore, an active site prediction tool was used to identify potential binding sites on the target receptors. Overall, molecular docking provided a computational framework for predicting and analyzing ligand-receptor interactions, which can greatly facilitate the process of drug discovery and development.

Computational tools and Web servers:

A well-defined *in silico* computational study of the selected Compounds using various bioinformatics software such as Chem3D pro 12.0, MGL AutoDock Tools, AutoDock Vina, Molegro Molecular Viewer, Discovery Studio Visualizer. Online resources such as RCSB-Protein Data Bank(PDB), PubChem database, SwissADME, Active site prediction tool, etc., were used in this study.^[1-5]

ADMET study:

The Absorption, Distribution, Metabolism and excretion (ADME) properties of the compounds were performed using SWISSADME online server. The Drug likeness property was evaluated by Lipinski's rule of five. According to the Lipinski rule of five, molecular weight should be less than 500 daltons, Hydrogen bond donor should be less than 5, Hydrogen bond acceptor should be less than 10 and Partition coefficient (LogP) should be less 5,16,71

Protein and Ligand Preparation:

The drug target proteins were retrieved from the RCSB-PDB database with higher resolution. The Crystal structure of GABA(B) receptor (PDB ID 4MS4) was predicted by X-ray diffraction method, resolution with 1.90 Å. The retrieved proteins were prepared by removal of cocrystallized ligand and water molecules using Molegro Molecular Viewer and saved as the PDB file format. The fourty six ligand molecules SMILES were obtained from Pubchem database. The 2D structure of Ligand molecules was sketched by Chemsketch software and saved in mol file format. These sketched structures of the ligand molecules were energy minimized by Chem3D pro 12.0 software and saved as the PDB file format. The Physicochemical properties of the molecules were calculated using SWISSADME online server.^[8-12]

Activite site prediction and Molecular docking:

The Active site of the selected two target proteins was predicted by the Supercomputing Facility for Bioinformatics & Computational Biology, IIT Delhi. The phytochemical compounds of the Parangipattai Kasayam were docked to GABA receptor of drug target protein. The molecular docking to find the potential binding affinity of phytochemical compounds with target protein. The molecular docking of the ligands with the target proteins involves the following steps, Protein Preparation, Ligand Preparation, Grids Generation and ligand docking. The molecular docking of the drug target was performed using AutoDock Vina. The Binding interaction of the protein-ligands complex was visualized and analyzed using Biovia Discovery Studio visualizer 2021.^[14,15]

S.No	Plant Name	Phytoconstituent
1.	Smilax china	Protocatechuic acid, 5-O-Caffeoylquinic acid,
	(Parangipattai)	Quercitrin
2.	Azima tetracantha (Sangam verpattai)	Friedelin, Rhamnetin
3.	Capparis decidua (Sengathari)	Capparisinine, Codonocarpine
4.	Andrographis paniculata (Nilavembu)	Andrographolide, Neoandrographolide
5.	Azadirachta indica (Veppam pattai)	Azadirachtin, Nimbolinin A
6.	Piper longum (Thippili)	Piperine, Piperlongumine
7.	Piper nigrum (Milagu)	Piperidine, Pyrrolidine
8.	Terminalia bellerica (Thandripattai)	Quinic acid, Chebulic acid, Shikimic acid
9.	Cuminum cyminum (Seeragam)	Cumin aldehyde, p-Mentha-1,4-dien-7-al
10.	Elettaria cardamomum (Elam)	Alpha-Terpineol, Eucalyptol, Alpha-Terpinyl acetate
11.	Messua ferrea (Sirunagapoo)	Beta-Amyrin, β-sitosterol
12.	Eugenia caryphyllata (Lavangam)	Eugenol, Isoeugenol
13.	Cinnamomum zeylanicum (Lavangapattai)	Cinnamaldehyde, Cinnamyl acetate
14.	Zingiber officinale (Sukku)	Shogaol, Zingerone, Gingerol
15.	Myristica fragrans (Jathikai)	Myristicin, Elemicin, Macelignan
16.	Casia fistula (Lavanga pathiri)	Chrysophanol, Sennosides, Kaempferol
17.	Alpinia galanga (Arathai)	Galangal acetate, beta-Sitosterol-d-glucoside, Alpha-Bergamotene
18.	Saussurea lappa (Kostam)	Dehydrocostus lactone, Costunolide
19.	Trianthema portulacastrum (Saranai)	7-Hydroxy-3-methylflavone, 3,4-Dimethoxycinnamic acid, Acetyl aleuritolic acid
20.	Standard drug	Baclofen

Table No.1 The list of plants and its phytocompounds

Table No.2 The SMILES and structures of the selected phytocompounds . .

÷				
	S.No	Phytochemical name	SMILE	Structure
	1.	Protocatechuic acid	C1=CC(=C(C=C1C(= <u>O)O</u>)O)O	он но он
	2.	5-O- Caffeoylquinic acid	C1C(C(C(CC1(C(= <u>0)0</u>)0)0C(=0) C=CC2=CC(=C(C=C2)0)0)0)0	но н

3.	Quercitrin	CC1C(C(C(C(O <u>1)OC</u> 2=C(OC3=CC (=CC(=C3C2=O)O)O)C4=CC(=C(C =C4)O)O)O)O)O	но
			но о о о о о о о о о о о о о о о о о о
4.	Friedelin	$CC1C(=\underline{O})CCC_2C1(CCC_3C_2(CCC_4(C_3(CCC_5(C_4CC(CC_5)(C)C)C)C)C_2)C)C)C$	
5.	Rhamnetin	COC1=CC(=C2C(=C <u>1)OC</u> (=C(C2= O)O)C3=CC(=C(C=C3)O)O)O	он он он он он он
6.	Capparisinine	COC1=CC2=CC(=C1C=CC(= <u>O)NC</u> <u>CCCNCCCNC</u> (=O)C=CC3=CC(=C (C=C3)O)O2)OC	NH- NH O HN O OH
7.	Andrographolide	CC12CCC(C(C1CCC(= <u>C)C</u> 2CC=C 3C(COC3=O)O)(C)CO)O	но с с с с с с с с с с с с с с с с с с с
8.	Neoandro grapholide	CC1(CCCC2(C1CCC(= <u>C)C</u> 2CCC3 =CCOC3=0)C)COC4C(C(C(C(O4) CO)O)O)O	HO HO HO HO HO HO HO HO HO HO HO HO HO H
9.	Azadirachtin	CC=C(C)C(= <u>O)OC</u> 1CC(C2(COC3C 2C14COC(C4C(C3O)(C)C56C7CC(C5(O6)C)C8(C=COC8O7)O)(C(=O)OC)O)C(=O)OC)OC(=O)C	
10.	<u>Nimbolinin</u> A	CC1=C2C(CC1C3=COC=C <u>3)OC</u> (C C4C2(C(C5C6C4(C(CC(C6(CO5)C))OC(=O)C)OC(=O)C)OC(=O)C)OC(=O)C)OC(=O)C7 =CC=CC=C7)C)O	i for for for the former of th
11.	Piperine	C1CCN(CC <u>1)C</u> (=0)C=CC=CC2=C C3=C(C=C2)OCO3	

12.	Piperlongumine	COC1=CC(=CC(=C1 <u>OC)OC</u>)C=CC (=O)N2CCC=CC2=O	
13.	Piperidine	C1CCNCC1	NH
14.	Pyrrolidine	C1CCNC1	
15.	Quinic acid	C1C(C(C(CC1(C(= <u>0)0</u>)0)0)0)0	но он
16.	Shikimic acid	C1C(C(C(C=C1C(= <u>O)O</u>)O)O)O	он но он
17.	Chebulic acid	C1=C2C(=C(C(=C1 <u>0)0</u>)O)C(C(OC 2=O)C(=O)O)C(CC(=O)O)C(=O)O	
18.	Cuminaldehyde	CC(C)C1=CC=C(C=C <u>1)C</u> =O	
19.	p-Mentha-1,4- dien-7-al	CC(C)C1=CCC(=CC <u>1)C</u> =O	
20.	Alpha-Terpineol	CC1=CCC(CC <u>1)C</u> (C)(C)O	HO
21.	Eucalyptol	CC1(C2CCC(O <u>1)(</u> CC2)C)C	C C
22.	Alpha- <u>Terpinyl</u> acetate	CC1=CCC(CC <u>1)C</u> (C)(C)OC(=O)C	
23.	Beta-Amyrin	CC1(CCC2(CCC3(C(=CCC4C3(CC C5C4(CCC(C5(C) <u>C)O</u>)C)C)C2C1) C)C)C	но-

24.	β-sitosterol	CCC(CCC(C)C1CCC2C1(CCC3C2) $CC=C4C3(CCC(C4)O)C)C(C)C$	но-ССС
25.	Eugenol	COC1=C(C=CC(=C <u>1)CC</u> =C)O	о-
26.	Isoeugenol	CC=CC1=CC(=C(C=C <u>1)O</u>)OC	ОН
27.	Cinnamaldehyde	C1=CC=C(C=C <u>1)C</u> =CC=O	
28.	Cinnamyl acetate	CC(= <u>0)OCC</u> =CC1=CC=CC=C1	Corol Corol
29.	Gingerol	CCCCCC(CC(= <u>O)CCC</u> 1=CC(=C(C =C1)O)OC)O	но
30.	Zingerone	CC(= <u>0)CCC</u> 1=CC(=C(C=C1)0)OC	HO
31.	Shogaol	CCCCCC=CC(= <u>O)CCC</u> 1=CC(=C(C =C1)O)OC	но
32.	Myristicin	COC1=CC(=CC2=C1OCO <u>2)CC</u> =C	
33.	Elemicin	COC1=CC(=CC(=C1 <u>OC)OC</u>)CC=C	
34.	Macelignan	CC(CC1=CC2=C(C=C <u>1)OCO</u> 2)C(C)CC3=CC(=C(C=C3)O)OC	
35.	Sennosides	C1=CC2=C(C(=C1)OC3C(C(C(C)O3)CO)O)O)C(=O)C4=C(C2C5C6)=C(C(=CC=C6)OC7C(C(C(CO7)CO)O)O)O)C(=O)C8=C5C=C(C=C8)O)C(=O)O)C=C(C=C4O)C(=O)O	
36.	Chrysophanol	CC1=CC2=C(C(=C <u>1)O</u>)C(=O)C3= C(C2=O)C=CC=C3O	

37.	Kaempferol	C1=CC(=CC=C1C2=C(C(= <u>O)C</u> 3=C (C=C(C=C3O2)O)O)O	но он он
38.	Galangal acetate	CC(= <u>O)OC</u> 1=C(C(=C(C2=C1OC(= C(C2=O)O)C3=CC=CC=C3)O)C= O)O	но ОН
39.	Beta-Sitosterol- d-glucoside	CCC(CCC(C)C1CCC2C1(CCC3C2 CC=C4C3(CCC(C <u>4)OC</u> 5C(C(C(C O5)CO)O)O)O)C)C)C(C)C	
40.	Costunolide	CC1=CCCC(=CC2C(CC <u>1)C(</u> =C)C(=O)O2)C	
41.	Alpha- Bergamotene	CC1=CCC2CC1C2(C)CCC=C(C)C	
42.	Dehydrocostus lactone	C=C1CCC2C(C3C1CCC3= <u>C)OC</u> (= O)C2=C	
44.	Acetyl aleuritolic acid	CC(= <u>0)OC</u> 1CCC2(C(C1(C)C)CCC 3(C2CCC4(C3=CCC5(C4CC(CC5)(C)C)C(=0)0)C)C)C	HONOLO
45.	3,4- Dimethoxycinna mic acid	COC1=C(C=C(C=C <u>1)C</u> =CC(=O)O) OC	
46.	Baclofen	C1=CC(=CC=C1C(CC(= <u>O)O</u>)CN)C l	H ₂ N OH

Table No.3 ADME properties of the selected phytocompounds and Standard drug Baclofen

S.No	Name	Molecular	HBD	HBA	LogP	Lipinski
		weight				violation
1.	Protocatechuic acid	154.12	3	4	1.15	0
2.	5-O-Caffeoylquinic acid	354.31	6	9	0.96	1

3. Querettrin 448.38 7 11 1.27 2 4. Frictedia 420.72 0 1 452 1 5. Rharmetin 316.26 4 7 2.23 0 6. Capparisinine 495.57 4 7 3.50 0 7. Andrographolide 480.59 4 8 3.27 0 8. Necoandrographolide 480.59 4 8 3.27 0 9. Azadirachin 720.71 3 16 3.90 2 10. Numbeliain A 648.74 1 10 3.67 1 11 Piperiongumine 317.34 0 5 2.46 0 13 Piperidine 71.12 1 1 1.70 0 14 Pyrrolidine 71.12 1 1 1.51 0 15 Quinic acid 192.17 5 6 -0.12			440.00	_			
4. Frieddin 42:672 0 1 4.52 1 5. Rhumetin 316.26 4 7 2.23 0 6. Capparisinine 495.57 4 7 3.50 0 7. Andrographolide 350.45 3 5 2.45 0 8. Necondrographolide 480.59 4 8 3.27 0 9. Azadirachtin 720.71 3 16 3.90 2 10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperine 285.34 0 3 3.38 0 12. Piperinine 317.34 0 5 2.46 0 13. Piperinine 317.34 0 5 0.45 0 14. Pyroldine 71.12 1 1 1.51 0 15. Quinic acid 176.15 4 5 0.45	3.	Quercitrin	448.38	7	11	1.27	2
S. Rhammetin 31626 4 7 2.23 0 6. Capparisinine 495.57 4 7 3.50 0 7. Andrographolide 350.45 3 5 2.45 0 8. Nessandrographolide 480.59 4 8 3.27 0 9. Azadirachtin 720.71 3 16 3.90 2 10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperion 285.34 0 3 3.38 0 12. Piperiongumine 317.34 0 5 2.46 0 13. Piperiongumine 71.12 1 1 1.50 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 175.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0<	4.	Friedelin	426.72	0	1	4.52	1
6. Cupparisinine 495.57 4 7 3.50 0 7. Andrographolide 350.45 3 5 2.45 0 8. Neoandrographolide 480.59 4 8 3.27 0 9. Azadinchin 720.71 3 16 3.90 2 10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperion 285.34 0 3 3.38 0 12. Piperiongumine 317.34 0 5 2.46 0 13. Piperiongumine 71.12 1 1 1.51 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2	5.	Rhamnetin	316.26	4	7	2.23	0
7. Andrographolide 330.45 3 5 2.45 0 8. Neoandrographolide 480.59 4 8 3.27 0 9. Azadinachin 720.71 3 16 3.90 2 10. Nimbolini A 648.74 1 10 3.67 1 11. Piperiongumine 317.34 0 5 2.46 0 13. Piperiongumine 317.34 0 5 2.46 0 14. Pyroikine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Curninaldebyde 148.20 0 1 2.03 0 21. Eucalyptol 154.25 1 1 <t< td=""><td>6.</td><td>Capparisinine</td><td>495.57</td><td>4</td><td>7</td><td>3.50</td><td>0</td></t<>	6.	Capparisinine	495.57	4	7	3.50	0
8. Neoandrographolide 480.59 4 8 3.27 0 9. Azadirachtin 720.71 3 16 3.90 2 10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperine 285.34 0 3 3.38 0 12. Piperiongumine 317.34 0 5 2.46 0 13. Piperiongumine 71.12 1 1 1.51 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 40.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 20. Alpha-Terpincol 154.25 1 1 2.51 0 21. Eucalyptod 154.25 0 1 <td< td=""><td>7.</td><td>Andrographolide</td><td>350.45</td><td>3</td><td>5</td><td>2.45</td><td>0</td></td<>	7.	Andrographolide	350.45	3	5	2.45	0
9. Azadirachtin 720.71 3 16 3.90 2 10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperine 285.34 0 3 3.38 0 12. Piperlongumine 317.34 0 5 2.46 0 13. Piperidine 85.15 1 1 1.70 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2.03 0 20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 1 1 4.74 <td>8.</td> <td>Neoandrographolide</td> <td>480.59</td> <td>4</td> <td>8</td> <td>3.27</td> <td>0</td>	8.	Neoandrographolide	480.59	4	8	3.27	0
10. Nimbolinin A 648.74 1 10 3.67 1 11. Piperine 285.34 0 3 3.38 0 12. Piperingumine 317.34 0 5 2.46 0 13. Piperidine 85.15 1 1 1.70 0 14. Pyrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Curninaldchyde 148.20 0 1 2.03 0 20. Alpha-Terpinsol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 <t< td=""><td>9.</td><td>Azadirachtin</td><td>720.71</td><td>3</td><td>16</td><td>3.90</td><td>2</td></t<>	9.	Azadirachtin	720.71	3	16	3.90	2
11. Piperine 285.34 0 3 3.38 0 12. Piperlongumine 317.34 0 5 2.46 0 13. Piperlongumine 85.15 1 1 1.70 0 14. Pyrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dice.7-al 150.22 0 1 2.16 0 21. Eucalyptol 154.25 1 1 2.51 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1	10.	Nimbolinin A	648.74	1	10	3.67	1
12. Piperlongumine 317.34 0 5 2.46 0 13. Piperidine 85.15 1 1 1.70 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cunninaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dien-7-al 150.22 0 1 2.51 0 20. Alpha-Terpineol 154.25 1 1 2.58 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 <td>11.</td> <td>Piperine</td> <td>285.34</td> <td>0</td> <td>3</td> <td>3.38</td> <td>0</td>	11.	Piperine	285.34	0	3	3.38	0
13. Piperidine 85.15 1 1 1.70 0 14. Pyrrolidine 71.12 1 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldelyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dien-7-al 150.22 0 1 2.16 0 20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 164.20 1 2	12.	Piperlongumine	317.34	0	5	2.46	0
14. Pyrrolidine 71.12 1 1.51 0 15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1.4-dien-7-al 150.22 0 1 2.16 0 20. Alpha-Terpincol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 1164.20 1 2 2.38 0 27. Cinnamyl acetate 176.21 0 2 <t< td=""><td>13.</td><td>Piperidine</td><td>85.15</td><td>1</td><td>1</td><td>1.70</td><td>0</td></t<>	13.	Piperidine	85.15	1	1	1.70	0
15. Quinic acid 192.17 5 6 -0.12 0 16. Shikimic acid 174.15 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dien-7-al 150.22 0 1 2.16 0 20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 414.71 1 1 4.79 1 25. Eugenol 164.20 1 2 2.37 0 26. Isoeugenol 164.20 1 2	14.	Pyrrolidine	71.12	1	1	1.51	0
16. Shikimic acid 17. 4 5 0.45 0 17. Chebulic acid 356.24 6 11 -1.0 2 18. Cuminaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dien-7-al 150.22 0 1 2.16 0 20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 414.71 1 1 4.79 1 25. Eugenol 164.20 1 2 2.37 0 26. Isoeugenol 164.20 1 2 2.17 0 28. Cinnamyl acetate 176.21 0 2	15.	Quinic acid	192.17	5	6	-0.12	0
17.Chebulic acid356.24611-1.0218.Cuminaldehyde148.20012.03019.p-Mentha-1,4-dien-7-al150.22012.16020.Alpha-Terpineol154.25112.51021.Eucalyptol154.25012.58022.Alpha-Terpinyl acetate196.29022.93023.Beta-Amyrin426.72114.74124.β-sitosterol414.71114.79125.Eugenol164.20122.38026.Isoeugenol164.20122.38027.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23133.28031.Shogaol276.37133.28033.Elemicin208.25032.670	16.	Shikimic acid	174.15	4	5	0.45	0
18. Cuminaldehyde 148.20 0 1 2.03 0 19. p-Mentha-1,4-dien-7-al 150.22 0 1 2.16 0 20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 414.71 1 1 4.79 1 24. β-sitosterol 164.20 1 2 2.37 0 25. Eugenol 164.20 1 2 2.38 0 27. Cinnamuldehyde 132.16 0 1 1.65 0 28. Cinnamyl acetate 176.21 0 2 2.17 0 29. Gingerol 294.39 2 4	17.	Chebulic acid	356.24	6	11	-1.0	2
19.p-Mentha-1,4-dien-7-al150.22012.16020.Alpha-Terpineol154.25112.51021.Eucalyptol154.25012.58022.Alpha-Terpinyl acetate196.29022.93023.Beta-Amyrin426.72114.74124.β-sitosterol414.71114.79125.Eugenol164.20122.38026.Isoeugenol164.20122.38027.Cinnamulacetate176.21022.17028.Cinnamyl acetate176.21022.17030.Zingerone194.23133.28031.Shogaol276.37133.28033.Elemicin208.25032.890	18.	Cuminaldehyde	148.20	0	1	2.03	0
20. Alpha-Terpineol 154.25 1 1 2.51 0 21. Eucalyptol 154.25 0 1 2.58 0 22. Alpha-Terpinyl acetate 196.29 0 2 2.93 0 23. Beta-Amyrin 426.72 1 1 4.74 1 24. β-sitosterol 414.71 1 1 4.79 1 25. Eugenol 164.20 1 2 2.37 0 26. Isoeugenol 164.20 1 2 2.38 0 27. Cinnamaldehyde 132.16 0 1 1.65 0 28. Cinnamyl acetate 176.21 0 2 2.17 0 29. Gingerol 294.39 2 4 3.48 0 30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28	19.	p-Mentha-1,4-dien-7-al	150.22	0	1	2.16	0
21.Eucalyptol154.25012.58022.Alpha-Terpinyl acetate196.29022.93023.Beta-Amyrin426.72114.74124.β-sitosterol414.71114.79125.Eugenol164.20122.37026.Isoeugenol164.20122.38027.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23132.09031.Shogaol276.37133.28033.Elemicin208.25032.890	20.	Alpha-Terpineol	154.25	1	1	2.51	0
22.Alpha-Terpinyl acetate196.29022.93023.Beta-Amyrin426.72114.74124.β-sitosterol414.71114.79125.Eugenol164.20122.37026.Isoeugenol164.20122.38027.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23132.09031.Shogaol276.37133.28033.Elemicin208.25032.890	21.	Eucalyptol	154.25	0	1	2.58	0
23.Beta-Amyrin426.72114.74124.β-sitosterol414.71114.79125.Eugenol164.20122.37026.Isoeugenol164.20122.38027.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23132.09031.Shogaol276.37133.28032.Myristicin192.21032.67033.Elemicin208.25032.890	22.	Alpha-Terpinyl acetate	196.29	0	2	2.93	0
24.β-sitosterol414.71114.79125.Eugenol164.20122.37026.Isoeugenol164.20122.38027.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23132.09031.Shogaol276.37133.28032.Myristicin192.21032.67033.Elemicin208.25032.890	23.	Beta-Amyrin	426.72	1	1	4.74	1
25. Eugenol 164.20 1 2 2.37 0 26. Isoeugenol 164.20 1 2 2.38 0 27. Cinnamaldehyde 132.16 0 1 1.65 0 28. Cinnamyl acetate 176.21 0 2 2.17 0 29. Gingerol 294.39 2 4 3.48 0 30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	24.	β-sitosterol	414.71	1	1	4.79	1
26. Isoeugenol 164.20 1 2 2.38 0 27. Cinnamaldehyde 132.16 0 1 1.65 0 28. Cinnamyl acetate 176.21 0 2 2.17 0 29. Gingerol 294.39 2 4 3.48 0 30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	25.	Eugenol	164.20	1	2	2.37	0
27.Cinnamaldehyde132.16011.65028.Cinnamyl acetate176.21022.17029.Gingerol294.39243.48030.Zingerone194.23132.09031.Shogaol276.37133.28032.Myristicin192.21032.67033.Elemicin208.25032.890	26.	Isoeugenol	164.20	1	2	2.38	0
28. Cinnamyl acetate 176.21 0 2 2.17 0 29. Gingerol 294.39 2 4 3.48 0 30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	27.	Cinnamaldehyde	132.16	0	1	1.65	0
29. Gingerol 294.39 2 4 3.48 0 30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	28.	Cinnamyl acetate	176.21	0	2	2.17	0
30. Zingerone 194.23 1 3 2.09 0 31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	29.	Gingerol	294.39	2	4	3.48	0
31. Shogaol 276.37 1 3 3.28 0 32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	30.	Zingerone	194.23	1	3	2.09	0
32. Myristicin 192.21 0 3 2.67 0 33. Elemicin 208.25 0 3 2.89 0	31.	Shogaol	276.37	1	3	3.28	0
33. Elemicin 208.25 0 3 2.89 0	32.	Myristicin	192.21	0	3	2.67	0
	33.	Elemicin	208.25	0	3	2.89	0

34.	Macelignan	328.40	1	4	3.27	0
35.	Sennosides	862.74	12	20	1.14	3
36.	Chrysophanol	254.24	2	4	2.22	0
37.	Kaempferol	286.24	5	6	1.70	0
38.	Galangal acetate	356.28	3	8	1.70	0
39.	Beta-Sitosterol-d-glucoside	576.85	4	6	4.98	1
40.	Costunolide	232.32	0	2	2.72	0
41.	Alpha-Bergamotene	204.35	0	0	3.41	1
42.	Dehydrocostus lactone	230.30	0	2	2.59	0
43.	7-Hydroxy-3-methylflavone	252.26	1	3	2.43	0
44.	Acetyl aleuritolic acid	498.74	1	4	3.70	1
45.	3,4-Dimethoxycinnamic acid	208.21	1	4	2.01	0
46.	Baclofen	213	2	3	1.66	0

Table No.4 Molecular docking result of the selected phytocompounds and standard drugs Baclofen

S.No	Name	Docking score
1.	Protocatechuic acid	-5.2
2.	5-O-Caffeoylquinic acid	-6.4
3.	Quercitrin	-7.0
4.	Friedelin	-8.3
5.	Rhamnetin	-6.8
6.	Capparisinine	-7.1
7.	Andrographolide	-7.5
8.	Neoandrographolide	-7.4
9.	Azadirachtin	-6.8
10.	Nimbolinin A	-8.8
11.	Piperine	-5.6
12.	Piperlongumine	-5.7
13.	Piperidine	-3.5
14.	Pyrrolidine	-2.8
15.	Quinic acid	-5.1
16.	Shikimic acid	-5.3
17.	Chebulic acid	-6.3
18.	Cuminaldehyde	-5.3
19.	p-Mentha-1,4-dien-7-al	-5.2
20.	Alpha-Terpineol	-5.1
21.	Eucalyptol	-4.7
22.	Alpha-Terpinyl acetate	-5.8
23.	Beta-Amyrin	-8.3

24.	β-sitosterol	-6.7
25.	Eugenol	-4.3
26.	Isoeugenol	-5.5
27.	Cinnamaldehyde	-4.5
28.	Cinnamyl acetate	-5.4
29.	Gingerol	-4.2
30.	Zingerone	-4.6
31.	Shogaol	-5.1
32.	Myristicin	-4.8
33.	Elemicin	-5.4
34.	Macelignan	-6.2
35.	Sennosides	-7.6
36.	Chrysophanol	-7.7
37.	Kaempferol	-7.4
38.	Galangal acetate	-6.7
39.	Beta-Sitosterol-d-glucoside	-7.2
40.	Costunolide	-6.5
41.	Alpha-Bergamotene	-6.3
42.	Dehydrocostus lactone	-6.4
43.	7-Hydroxy-3-methylflavone	-7.2
44.	Acetyl aleuritolic acid	-6.9
45.	3,4-Dimethoxycinnamic acid	-4.9
46.	Baclofen	-5.4

Table No.5 3D and 2D interaction of phytocompound with GABA receptor protein

Phytochemical Name	2D interaction	3D interaction
Protocatechuic acid	Asn407 Asn407 Citeros	ALA B:402 H H B:367 GLU B:405 H H B:405 H B:406
5-O-Caffeoylquinic acid		Arg

Quercitrin	to the second se	BIDS BIDS BIDS BIDS BIDS BIDS BIDS BIDS
Friedelin	Arg457 phSer861 Proto Asp258	
Rhamnetin	H-Bonds Donor Acceptor	Interactions Conventional Hydrogen Bond Pi-Anion Pi-Sigma
Capparisinine	Tyr123 Tyr104	
Andrographolide		

	Ser72	
Neoandrographolide	Tep284	E_{224}^{US}
Azadirachtin		
	Arg4(8 Slop	LIS BIGS CONTROL BIGS CONTROL BIGS CONTROL BIGS CONTROL BIGS CONTROL BIGS
Nimbolinin A	T 101	
	Ala444 Ala444 et423 rg418	A ME A ME A ME B A
Piperine		
	Lys427 Lys427 Lys353 Pro287	B33 PPO B227 B33 B33 B33 B33 B33 B33 B33 B33 B33 B3
Piperlongumine		PRO 8-351 PHE
		B354 B354 B353 B354 B354 B354 B354 B354

ALA B:69

Piperidine	PIRe354	TRP B:284 PHE B:354
Pyrrolidine	Pro50	ARG B:89 PRO B:50
Quinic acid	the 102 Gitt 405	THR B:406 H H B:402 B:405 B:405
Shikimic acid	Haidos Hindos Giludos	GLU B:405 H H H H H H H H H H H H H H H H H H H

		ASN 8402 8407
Zingerone	Phe98 Phe98 Tee101	Bas LEU Blot
Shogaol	Phe354	PRO B354
Myristicin	Ala402 Arg371	ALA B:402 B:398 B:398 B:398 B:398 B:391 B:374 B:374
Elemicin	Ala444 Tro184 Arg42.	ALA B:181 ARG B:422 ALA B:424 PRO B:184 B:184 B:180 SER B:173 B:173 B:173

Results and discussion:

ADME and Toxicity study:

Based on the result of SWISSADME, the number of phyto compounds and standard drug Baclofen had no violation of Lipinski rule of five. Out of forty six compounds 34 phytochemicals had no Lipinski violation, 8 phytochemical had one violation, 3 phytochemical had two violations and one phytochemical had three violations. The high docking score (more than -8.0 kcal/mol) phyto compounds like Friedelin, Nimbolinin A and Beta-Amyrin had one Lipinski violation. The high docking score (more than -7.0 kcal/mol) phyto compounds like Capparisinine, Andrographolide, Neoandrographolide, Chrysophanol and 7-Hydroxy-3-methylflavone had no Lipinski violation.

Interpretation of Molecular docking study:

From the molecular docking study three compounds had docking score more than -8.0 kcal/mol, nine compounds had -7 to -8 kcal/mol, eleven compounds had -6 to -7 kcal/mol and fourteen compounds had -5 to -6 kcal/mol with the GABA receptor protein. The standard drug Baclofen had three hydrogen bond interactions with VAL B:134, ARG B:207, THR B:159 Pi-alkyl interaction with PHE B:354 and LYS B:353 amino acids of GABA receptor protein with a docking score of -5.4 kcal/mol. The Beta-Amyrin had one hydrogen bond interaction with GLU B:107 and Pi-alkyl interaction with TYR B:104 amino acids of GABA receptor protein with a docking score of -8.3 kcal/mol. The Friedelin had one hydrogen bond interactions with ASN B:418 amino acids of GABA receptor protein with a docking score of -8.3 kcal/mol. The Nimbolinin A had two hydrogen bond interactions with ARG A:258 and ARG B:422, Pi-sigma interaction with ALA B:164 and ALA B:181, Pi-alkyl interaction with ALA B:144 and PRO B:184 amino acids of GABA receptor protein with a docking score of -8.8 kcal/mol.

The Quercitrin had three hydrogen bond interactions with ARG B:207, LYS B:70 and LYS B:353 and Pi-alkyl interaction with ILE B: 73 amino acids of GABA receptor protein with a docking score of -8.3 kcal/mol. The Capparisinine had the hydrogen bond interaction with LEU B:103, ARG B:102, TYR B:123, PRO B:125, GLY B:124, ALA B:116 and Pi-Pi stacked interaction with TYR B:104 amino acids of GABA receptor protein with a docking score of -7.1 kcal/mol. The Beta-Sitosterol-d-glucoside had two hydrogen bond interactions with LYS B:112, GLUB:207 Pi-Sigma interaction with TYR B:123 amino acids of GABA receptor protein with a docking score of -7.2 kcal/mol. The 7-Hydroxy-3-methylflavone had two hydrogen bond interaction with LYS B:112, ASP B:105, Pi-anion interaction with ASP B:119, Amid-Pi stacked interaction with ASP B:119 and Pi-Sigma interaction with ALA B:116 amino acids of GABA receptor protein with a docking score of -7.2 kcal/mol.

Conclusions:

Based on the results of the molecular docking study with the GABA receptor protein, several compounds exhibited promising docking scores and interactions: **Nimbolinin A**: Demonstrated the highest docking score (-8.8 kcal/mol) with multiple hydrogen bond interactions and Pi interactions with various amino acids of the GABA receptor protein. **Beta-Amyrin and Friedelin**: Both showed high docking scores (-8.3 kcal/mol) with significant hydrogen bond interactions, indicating potential affinity for the GABA receptor protein. **Quercitrin**: Exhibited a docking score of -8.3 kcal/mol with multiple hydrogen bond interactions and Pi-alkyl interaction, suggesting strong binding potential. **Capparisinine**: Showed moderate docking score (-7.1 kcal/mol) but with multiple hydrogen bond interactions and Pi-alkyl interactions and Pi-Pi stacked interaction, indicating favorable binding characteristics. **Beta-Sitosterol-d-glucoside and 7-Hydroxy-3-methylflavone**: Both demonstrated reasonable docking scores (-7.2 kcal/mol) with significant hydrogen bond interactions. Based on our in silico study of Parangipattai Kasayam, we have found compelling evidence that its bioactive compounds possess notable binding affinity for GABA receptors. This discovery suggests that Parangipattai Kasayam may effectively enhance muscle relaxation through its interaction with these receptors, thereby potentially aiding in the management of spasticity in children with cerebral palsy. The GABA receptors are integral in regulating muscle tone and movement by inhibiting neural activity in the central nervous system. In cerebral palsy, where there is often heightened muscle stiffness and involuntary contractions (spasticity), enhancing GABAergic activity could alleviate

these symptoms. The strong binding affinity observed between Parangipattai Kasayam compounds and GABA receptors provides a scientific basis for its traditional use in managing spasticity. By supporting GABA receptor function, this herbal medicine could offer a promising avenue for developing novel treatments or complementary therapies for cerebral palsy. Further research, including experimental studies both in the lab and in clinical settings, is essential to corroborate these findings and to establish the safety, efficacy, and optimal application of Parangipattai Kasayam in managing spasticity associated with cerebral palsy.

REFERENCES for ADMET and Docking procedure:

[1] Padmavathy K, Sivakumari K, Rajesh S. Exploring Squalene and Rhodoxanthin from Hylocereus undatus as a Therapeutic Agent for the Treatment of Human Liver Cancer using Docking Analysis. Chettinad Health City Medical Journal (E-2278-2044 & P-2277-8845). 2022 Jun 30;11(2):24-32. https://doi.org/10.24321/2278.2044.202213

[2] Kelutur FJ, Saptarini NM, Mustarichie R, Kurnia D. Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and iNOS Enzymes as Anti-Inflammatory. Letters in Drug Design & Discovery. 2022 Aug 1;19(8):706-21. <u>https://doi.org/10.2174/1570180819666211227162950</u>

[3] Shahab S, Kaviani S, Sheikhi M, Almodarresiyeh HA, Saud SA. Dft calculations and in silico study of chlorogenic, ellagic and quisqualic acids as potential inhibitors of SARS-CoV-2 main protease mpro. https://doi.org/10.33263/BRIAC121.061073

[4] Moulishankar A, Lakshmanan K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data in brief. 2020 Apr 1;29:105243.1;29:105243. https://doi.org/10.1016/j.dib.2020.105243

[5] Sinamo IN. Prediksi Parameter Farmakokinerika dan Toksisitas Senyawa Lignan dan Steroid Litsea cubeba (Lour.) Pers dengan pK-CSM Tools, SwissAdme, dan Protox-II (Doctoral dissertation, Universitas Sumatera Utara). https://repositori.usu.ac.id/handle/123456789/48699

[6] Garg A, Tadesse A, Eswaramoorthy R. A four-component domino reaction: an eco-compatible and highly efficient construction of 1, 8naphthyridine derivatives, their in silico molecular docking, drug likeness, ADME, and toxicity studies. Journal of Chemistry. 2021 Mar 31;2021:1-6. https://doi.org/10.1155/2021/5589837

[7] Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. Journal of computational biology. 2020 Sep 1;27(9):1397-406.<u>https://doi.org/10.1089/cmb.2019.0323</u>.

[8] Taghizadeh MS, Niazi A, Moghadam A, Afsharifar A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. Plos one. 2022 May 10;17(5):e0267961. https://doi.org/10.1371/journal.pone.0267961

[9] Pan F, Jalil AT, Alsaikhan F, Adil M, Kadhim AJ, Amran DA, Abosaooda M, Altamimi AS, Younis SM, Lup AN, Tavassoli S. DFT, molecular docking, and ADMET studies for the adsorption behavior and anti-inflammatory activity of thiazole by B12N12 and OH-B12N12 nanoclusters. Diamond and Related Materials. 2023 Jun 1;136:110044. https://doi.org/10.1016/j.diamond.2023.110044

[10] Islam MT, Zihad SN, Rahman MS, Sifat N, Khan MR, Uddin SJ, Rouf R. Agathisflavone: Botanical sources, therapeutic promises, and molecular docking study. IUBMB life. 2019 Sep;71(9):1192-200. <u>https://doi.org/10.1002/iub.2053</u>

[11] Shyamsivappan S, Vivek R, Saravanan A, Arasakumar T, Subashini G, Suresh T, Shankar R, Mohan PS. Synthesis and X-ray study of dispiro 8nitroquinolone analogues and their cytotoxic properties against human cervical cancer HeLa cells. Medchemcomm. 2019;10(3):439-49. https://doi.org/10.1039/C8MD00482J

[12] Russo C, Maugeri A, De Luca L, Gitto R, Lombardo GE, Musumeci L, De Sarro G, Cirmi S, Navarra M. The SIRT2 pathway is involved in the antiproliferative effect of flavanones in human leukemia monocytic THP-1 cells. Biomedicines. 2022 Sep 24;10(10):2383. https://doi.org/10.3390%2Fbiomedicines10102383

[13] Gupta A, Vijayan V, Pant P, Kaur P, Singh TP, Sharma P, Sharma S. Structure prediction and discovery of inhibitors against phosphopantothenoyl cysteine synthetase of Acinetobacter baumannii. Journal of Biomolecular Structure and Dynamics. 2022 Dec 5;40(21):11405-17. https://doi.org/10.1080/07391102.2021.1958699

[14] El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G. AutoDock and AutoDockTools for protein-ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. Neuroproteomics: Methods and Protocols. 2017:391-403. https://doi.org/10.1007/978-1-4939-6952-4_20

REFERENCES for Plant and its phytoconstituents:

- Lee HE, Kim JA, Whang WK. Chemical constituents of Smilax china L. stems and their inhibitory activities against glycation, aldose reductase, α-glucosidase, and lipase. Molecules. 2017 Mar 11;22(3):451. <u>https://doi.org/10.3390%2Fmolecules22030451</u>
- Antonisamy P, Duraipandiyan V, Ignacimuthu S, Kim JH. Anti-diarrhoeal activity of friedelin isolated from Azima tetracantha lam. in wistar rats. South Ind. J. Biol. Sci. 2015;1:34-7. <u>http://dx.doi.org/10.22205/sijbs/2015/v1/i1/100440</u>
- Konda VR, Arunachalam R, Eerike M, Radhakrishnan AK, Raghuraman LP, Meti V, Devi S. Nephroprotective effect of ethanolic extract of Azima tetracantha root in glycerol induced acute renal failure in Wistar albino rats. Journal of traditional and complementary medicine. 2016 Oct 1;6(4):347-54. <u>https://doi.org/10.1016%2Fj.jtcme.2015.05.001</u>
- Nazar S, Hussain MA, Khan A, Muhammad G, Tahir MN. Capparis decidua Edgew (Forssk.): A comprehensive review of its traditional uses, phytochemistry, pharmacology and nutrapharmaceutical potential. Arabian Journal of Chemistry. 2020 Jan 1;13(1):1901-16. https://doi.org/10.1016/j.arabjc.2018.02.007
- Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (burm. F.) wall. Ex nees: an updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life. 2021 Apr 16;11(4):348. <u>https://doi.org/10.3390/life11040348</u>

- Srivastava SK, Agrawal B, Kumar A, Pandey A. Phytochemicals of Azadirachta indica source of active medicinal constituent used for cure of various diseases: A Review. Journal of Scientific Research. 2020;64(1):385-90. <u>http://dx.doi.org/10.37398/JSR.2020.640153</u>
- Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. Journal of ethnopharmacology. 2020 Jan 30;247:112255. <u>https://doi.org/10.1016/j.jep.2019.112255</u>
- Gulati K, Pankaj V, Nishanti R, Arunabha R. Chapter 7—Role of nutraceuticals in respiratory and allied diseases. Nutraceuticals; Gupta, RC; Lall, R.; Srivastava, A. <u>https://doi.org/10.1016/B978-0-12-821038-3.00007-0</u>
- Gupta A, Kumar R, Bhattacharyya P, Bishayee A, Pandey AK. Terminalia bellirica (Gaertn.) roxb.(Bahera) in health and disease: A systematic and comprehensive review. Phytomedicine. 2020 Oct 1;77:153278. <u>https://doi.org/10.1016/j.phymed.2020.153278</u>
- Allaq AA, Sidik NJ, Abdul-Aziz A, Ahmed IA. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomedical Research and Therapy. 2020 Sep 30;7(9):4016-21. <u>http://dx.doi.org/10.15419/bmrat.v7i9.634</u>
- 11. Kumar S, Kumari R. Traditional, Phytochemical and Biological activities of Elettaria cardamomum (L.) Maton-A review. Int. J. Pharmaceut. Sci. Res. 2021;12:2320-5148. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(8).4122-31
- 12. Kshirsagar PR, Patil SM. Phytochemistry and Pharmacology of Mesua ferrea L. Bioactive Compounds in Underutilized Fruits and Nuts. 2020:223-56. http://dx.doi.org/10.1007/978-3-030-30182-8_16
- Muñoz Castellanos, L., Amaya Olivas, N., Ayala-Soto, J., De La O Contreras, C.M., Zermeño Ortega, M., Sandoval Salas, F. and Hernández-Ochoa, L., 2020. In vitro and in vivo antifungal activity of clove (Eugenia caryophyllata) and pepper (Piper nigrum L.) essential oils and functional extracts against Fusarium oxysporum and Aspergillus niger in tomato (Solanum lycopersicum L.). International Journal of Microbiology, 2020. <u>https://doi.org/10.1155/2020/1702037</u>
- Aggarwal S, Bhadana K, Singh B, Rawat M, Mohammad T, Al-Keridis LA, Alshammari N, Hassan MI, Das SN. Cinnamomum zeylanicum extract and its bioactive component cinnamaldehyde show anti-tumor effects via inhibition of multiple cellular pathways. Frontiers in Pharmacology. 2022 Jun 2;13:918479. <u>https://doi.org/10.3389/fphar.2022.918479</u>
- Alolga RN, Wang F, Zhang X, Li J, Tran LS, Yin X. Bioactive compounds from the Zingiberaceae Family with known antioxidant activities for possible therapeutic uses. Antioxidants. 2022 Jun 28;11(7):1281. <u>https://doi.org/10.3390/antiox11071281</u>
- Ashokkumar K, Simal-Gandara J, Murugan M, Dhanya MK, Pandian A. Nutmeg (Myristica fragrans Houtt.) essential oil: A review on its composition, biological, and pharmacological activities. Phytotherapy Research. 2022 Jul;36(7):2839-51. <u>https://doi.org/10.1002%2Fptr.7491</u>
- 17. Mwangi RW, Macharia JM, Wagara IN, Bence RL. The medicinal properties of Cassia fistula L: A review. Biomedicine & Pharmacotherapy. 2021 Dec 1;144:112240. https://doi.org/10.1016/j.biopha.2021.112240
- Chouni A, Paul S. A review on phytochemical and pharmacological potential of Alpinia galanga. Pharmacognosy Journal. 2018;10(1). http://dx.doi.org/10.5530/pj.2018.1.2
- 19. Madhavi M, Mallika G, Lokanath N, Vishnu MN, Chetty CM, Saleem TM. A review on phytochemical and pharmacological aspects of Saussurea lappa. Int. J. Life Sci. Med. Res. 2012;2:24-31.
- Sukalingam K, Ganesan K, Xu B. Trianthema portulacastrum L.(giant pigweed): Phytochemistry and pharmacological properties. Phytochemistry Reviews. 2017 Jun;16:461-78. <u>https://link.springer.com/article/10.1007/s11101-017-9493-5</u>
- 21. de Sousa N, Santos D, Monteiro S, Silva N, Barreiro-Iglesias A, Salgado AJ. Role of baclofen in modulating spasticity and neuroprotection in spinal cord injury. Journal of neurotrauma. 2022 Feb 1;39(3-4):249-58. https://doi.org/10.1016/j.ejphar.2023.175910