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ABSTRACT 

The study compared the Modified Two-Part Bayesian Linear Regression Model in small samples for response-selective observations using other measurement error 

correction methods such as classical, systematic, Simex Homoscedastic, Simex Heteroscedastic, and Bayesian techniques.  
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 I Introduction 

In biological research, measurement error poses a serious problem since it can lead to biased and inaccurate covariance estimations. It may be brought on 

by self-reporting, data coding errors, inaccurate or malfunctioning equipment, or the use of single measures in longitudinal processes. Measurement error 

evaluation becomes more pertinent as non-research data proliferates (Kamun, S. J., 2022). Measurement errors have not received adequate attention in 

applied epidemiology and medicine investigations, despite the abundance of resources devoted to covariate measurement errors. Only 28% of the 57 

papers in the survey assessed its influence qualitatively, and only one of them measured it (Kamun, S. J., 2024). 

II Review of Literature 

The study examines the impact of childhood exposure to low electromagnetic fields on illness risk, considering measurement errors in regression models 

in epidemiologic research (Brazzale et. al. (2008)). 

Error-prone variables include biological variation, assay volatility, and transmission error. All coefficients are subject to bias, even if the measurement 

error only affects individual interaction factors. Specific variables linked to both the result and the prone-to-error covariate can develop bias. The direction 

of bias is uncertain when a regression function's model has many covariates (Rosner et al., 1992; Carroll et. al., 1991). 

The study uses regression calibration for response-selective observation on small samples of n = 13. It demonstrates that the classical measurement error 

correction algorithm has a lower variance when correcting for measurement error compared to other approaches, resulting in more efficient outcomes, 

despite the need for knowledge of the magnitude of measurement error (Rosner et al., 1992). 

III Function for Generating Data 

We suggest that by performing a series of operations on data according to a model:  

f(y | x; θ)g(x)                                                                              (1) 

we can produce or create data, where y is a response variable which is multivariate and x is a continuous or discrete vector of covariate variables and  

f(y | x; θ)                                                                             (2)  

is the regression part of the model. The marginal distribution of x is denoted by g(x) which for this study we have used Gaussian density to represent, is 

as shown below  
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   and s is the standard deviation of x1.  

We estimate the conditional distribution of y for situations where there is no association with x1. We describe this conditional distribution of y given x1 

as θ. When we take a small sample of n observations from the joint distribution of (y, x) or conditionally, when we sample all or some of the variables of 

x, then the necessary help to the main activity of the model, i.e., produce or create data, is given by x. We can also base our inference on the likelihood 

about θ. 

The likelihood is given by  

∏ f(y | x; θ)                                                                               (4)  

Since the probability of observation involves both (y, x), then there is need for the processes of estimation that is not dependent on the modeling of g(x) 

parametrically (Kamun, S. J. (2024)). 

IV Selecting and Comparing Small Sample Sizes 

The study looked and analyzed increasing sample sizes ranging from eight to twenty by examining their R squared values, bias, BIC, AIC, and standard 

error. By looking and carefully comparing only the R squared value, its corresponding bias, BIC, AIC and standard error, it appears that we could select 

the appropriate sample size for our study (Kamun, S. J. (2024)).  

V The Modified Two-Part Model 

The OLS model needs help to accurately model measurement error in a sample due to the difference between true exposure and replicated mismeasured 

exposure. 

The modified two-part model considers replicated mismeasured exposure measures and their distribution-weighted properties, focusing on the probability 

of mismeasured exposure and fitting Bayesian distribution data conditioned on it. 

For an exact solution suppose:  

Y = β0 + βXX + βZZ + ϵ                ........................................... (5) 

and  

X∗ = α0 + αXX + αZZ + U            .......................................... (6) 

Then  

E[Y | X∗, Z] = EX|X∗,Z[E(Y | X∗, Z) | X] = EX|X∗,Z[E(Y | Z, X)] = EX|X∗,Z[β0 + βXX + βZZ] = β0 + βXE[X | X∗, Z] + βZZ ………….. (7) 

We then regress Y on E[X | X∗, Z] and Z to get the right β coefficients. Then E[X | X∗, Z] is called the calibrated exposure. 

Data is needed to estimate E[X | X∗, Z]. We use a validation subset where we observe the true X in an individual’s subset. 

Using measurement error and validation subset.  

                                            X∗ = X + U  .............................................................. (8) 

Consider gamma approximation for distribution of (X, X∗):  

E[X | X∗] = µX+ 

cov( , *)

var( |)

X X

X
(X∗−µX) = µX +

var( )

var( *)

X

X
(X∗−µX) = (1−λ)µX + λX∗.....................(9) 

where  
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With a validation subset we can estimate  
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and  

 
  ( ) ˆ ˆˆ | * 1 * *E X X X X = − +

 …………………………………………………. (12) 

  ( )  | Pr | | ,E Y X Y X E Y Y X=
…………………………………………….. (13) 

   

The first part Pr(Y|X) denotes the probability that a subject has mismeasued exposure given a set of variables 𝑋. The first part of the model is a weighted 

regression model. 

The second part E[Y|Y,X] denotes the expected corrected mismeasured exposure 𝑌 given that the subject has corrected mismeasured exposure 𝑌 and a 

set of variables 𝑋. The second part of the modified two-part model is Bayesian regression model that will fit the data (Kamun, S. J. (2024)).  

VI Bayesian Linear Regression 

Modified Bayesian linear regression uses a weighted sum of variables to characterize parameter mean, aid in out-of-sample forecasting, determine prior 

distribution, and identify posterior distribution for model parameters. 

The posterior expression is given below: 

Posterior = (Likelihood * Prior)/Normalization 

The formula calculates model parameters' prior probability based on the data's probability and posterior distribution, unlike OLS. As data accumulates, 

parameter values converge to OLS values, increasing accuracy. 

In a linear model, if 'y' represents the expected value, then 

y(w,x) = w0+w1x1+...+wpxp 

where, the vector "w" is made up of the elements w0, w1,...wp. The weight value is expressed as 'x'. 

w=(w1…wp) 

As a result, the output "y" is now considered to be the Gaussian distribution around Xw for Bayesian Regression to produce a completely probabilistic 

model, as demonstrated below: 

p(y|X, w. 𝛼) = N(y|Xw, 𝛼) 

Where the Gamma distribution prior hyper-parameter alpha is present. It is handled as a probability calculated from the data (Kamun, S. J. (2024)).  

VII Results 

Small Sample Size Comparison and Selection. 

By assessing the R squared values, bias, BIC, AIC, and standard error of rising sample sizes, from eight to twenty, the study looked at and examined 

these data. 

Comparison of Sample Sizes 

LARGE VARIANCE, ϵ ~ Gamma( 0, 30)  

Finding the Sample Size 

Table 1: Summary of the R2, RMSE, MAE, BIC, AIC,bias and standard error for sample sizes n from 10 to 20, with small variance “S”, and 

with large variance “L”  

Sample 

Size, n 

NRMSE.mean. 

accuracy 

RMSE MAE Multiple R-

squared 

Adjusted R-

squared 

Bias Standard 

Error 

AIC BIC 

8 L 0.99999987 5.9984      

e-06 

5.1512   

e-06 

0.999999999

784 

0.999999999497 1.8020 

e-10 

7.8034 

 e-11 

-157.       

6814 

-157.     

2047 

9 L 0.93884012 3.1746 2.5522 0.723421568

571 

0.446843137142 0.1823 0.1156 58. 

3341 

59.    

5175 



International Journal of Research Publication and Reviews, Vol 5, no 6, pp 5710-5715 June 2024                                     5713 

 

 

10 L 0.99999985 6.9437   

e-06 

4.7558 

e-06 

0.999999999

746 

0.999999999543 6.8407 

e-11 

3.2391   

e-10 

-197.       

1746 

-195. 

3591 

11 L 0.99999982 8.2502   

e-06 

6.9894 

e-06 

0.999999999

498 

0.999999999164 2.1122 

e-10 

2.6328   

e-10 

-214.       

2993 

-211. 

9119 

12 L 0.9999998 9.0562   

e-06 

7.2897 

e-06 

0.999999999

704 

0.999999999535 9.5158 

e-11 

2.2281   

e-10 

-232.       

6349 

-229. 

7255 

13 L 0.99999981 8.7633   

e-06 

7.7258 

e-06 

0.999999999

741 

0.999999999611 6.3632 

e-11 

1.8516   

e-10 

-253.       

8758 

-250. 

4861 

14 L 0.99999983 7.6792   

e-06 

6.2851 

e-06 

0.999999999

772 

0.999999999671 4.3298 

e-11 

1.3756   

e-10 

-278.       

0258 

-274. 

1914 

15 L 0.99999986 6.6324   

e-06 

5.9738 

e-06 

0.999999999

812 

0.999999999737 3.8551 

e-11 

9.4696 

e-11 

-303.       

1380 

-298. 

8897 

16 L 0.99999985 6.9006   

e-06 

5.3446 

e-06 

0.999999999

809 

0.99999999974 1.6044 

e-11 

1.4209   

e-10 

-322.       

8788 

-318. 

2433 

17 L 0.99999984 7.4587   

e-06 

6.2520 

e-06 

0.999999999

823 

0.999999999764 2.9954 

e-11 

8.3149   

e-11 

-341.       

1645 

-336. 

1652 

18 L 0.99999981 8.7138   

e-06 

7.3317 

e-06 

0.999999999

701 

0.999999999609 3.8156 

e-11 

1.5226   

e-10 

-356.       

3398 

-350. 

9976 

19 L 0.99999983 7.6726   

e-06 

6.1990 

e-06 

0.999999999

777 

0.999999999713 2.1286 

e-11 

1.3157   

e-10 

-381.       

6387 

-375. 

9721 

20 L 0.99999982 8.3388   

e-06 

6.7944 

e-06 

0.999999999

761 

0.999999999697 3.4073 

e-11 

1.0644   

e-10 

 -399.      

0263 

-393. 

0519 

The study employed a sample size of n = 15, for high variance, ϵ ∼ N(0, 30). By carefully examining only the R2 value, its accompanying bias, BIC, AIC, 

and standard error, these sample sizes best meet our criteria. So, for this study, a small sample of size n = 15 was utilized for large variance ϵ ∼ N(0, 30). 

Based on their R squared values, related bias, BIC, AIC, and standard error, Table 1 summarizes the results of the various small sample sizes.  

The study observed appropriate values of the coefficient of determination the sample of small size with large error of size n = 15. For this investigation, 

the equivalent samples of modest sizes were sample with high error for n = 15. Based on the study selection criteria employed in Table 1 , the performance 

of the various sample sizes reveals that samples of n = 15 perform better than for other sample sizes. 

Correction methods for measurement error 

The study has employed the following five methods to correct measurement error in data from small samples: the Modified Two-part Bayesian regression 

methodology for correcting measurement error, the Simex Homoscedastic Measurement Error Correction Method, the Simex Heteroscedastic 

Measurement Error Correction Method, and the Systematic Measurement Error Correction Method. The study of their coefficient of determination R2, 

bias, standard error, BIC, AIC, mean, and corresponding standard deviation of the corrected response variable forms the basis of our criterion for selecting 

the method for correcting measurement error. Table 2 provides results of summaries for small samples with high variance. Summary results of approaches 

for measurement error correction for small samples with significant error are shown in Table 2.  

Table 2:Large Variance ϵ~N(0, 30)  

Approaches 

for 

correcting 

Measuremen

t Error 

NRMS

E 

RMSE MAE R2 bias std.error BIC AIC Mean SD 

Class.M

eas. 

Err 

L 0.9999

998 

8.33876

1e-06 

6.79444

6e-06 

9.99999999761

067e-01 

3.01427771631

779e-11 

1.10554889e-

10 

-

393 .0

519 

-

399 .0

263 

45.674

36 

0.5534

801 
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Sys. 

Meas. 

Err 

L 0.9976

043 

0.10961

18 

0.09241

334 

9.603521824e-

01 

0.00435928819

4 

0.0193908923

5 

-

13.700

49 

-

19.674

88 

45.674

36 

0.5647

883 

Simex 

Homo 

L 0.9999

998 

1.10547

6e-05 

9.06469

4e-06 

9.99999999997

e-01 

3.95017352162

e-13 

1.7929466075

1e-12 

-

381.77

4 

-

387.74

84 

45.558

08 

6.0629

73 

Simex 

Hete 

L 0.9999

997 

1.25092

9e-05 

9.99350

6e-06 

0.99999999999

623 

4.78284079009

e-13 

1.9122448970

5e-12 

-

376.82

96 

-

382.80

4 

45.518

53 

6.6087

86 

BLR L 0.9999

999 

2.45774

1e-06 

2.06485

e-06 

9.99999999999

81e-01 

3.65263375101

68e-14 

7.4323683703

482e-14 

-

441.91

88 

-

447.89

32 

45.697

51 

5.8163

96 

According to the results of the methods for correcting measurement error based on coefficients of determination, sample bias, standard error, BIC, and 

AIC, all of the approaches seem to work well, with the exception of the systematic method for correcting measurement error, which exhibits lower 

coefficients of determination compared to the other methods, where one is a perfect fit and with relatively higher values for bias and standard error, BIC, 

and AIC, refer to Table 2 (0.892900855306). The selection criteria suggest that Simplex Homoscedastic Error, Simplex Heteroscedastic Error, and 

Bayesian Linear Regression techniques perform better, but the results of BLR are superior. 

VIII Conclusion 

In this paper, we brought out the comparison of the Modified Two-part Bayesian Regression with other existing approaches for measurement error. The 

comparison was made by using coefficient of regression, NRMSE, RMSE, MAE, bias, standard error, BIC, AIC, mean and standard error. All the above 

indicators show clearly that B.L.R performs better than most of the existing approach of Measurement Error Correction. 
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