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A B S T R A C T 

Current string matching methods often struggle to understand the true meaning of text due to their reliance on simple character comparisons. Advancements in AI, 

particularly machine learning, offer more flexible models that can grasp the underlying meaning of words and phrases. This analysis explores various AI techniques 

for string matching, including neural networks, graph models, and attention mechanisms. These approaches aim to identify hidden features within text to achieve 

more accurate matching, even when dealing with real-world variations, errors, and unclear language. However, challenges remain in terms of processing speed, 

understanding how the models reach their conclusions, and adapting them to different applications. This review highlights areas for future research to improve AI-

powered string matching, leveraging recent developments in statistical learning to create more reliable and scalable solutions for a wide range of fields. 
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1. Introduction 

String matching, a core computer science concept, involves locating specific patterns within larger text strings. This technique has applications in diverse 

fields like search engines (finding relevant webpages based on keywords), biology (analyzing DNA for relationships), and data integration (matching 

similar entries). The goal is to efficiently identify these patterns, even allowing for some variations in the text. 

Early approaches relied on direct character comparisons and pre-defined rules, exemplified by algorithms like Knuth-Morris-Pratt (KMP) algorithm [1], 

the Rabin-Karp algorithm [2], and the Aho-Corasick algorithm [3]. While efficient for exact matches, these methods struggle with real-world complexities 

like typos, paraphrasing, or missing data. 

Recent advancements in AI, particularly machine learning, have led to more adaptable string matching models. By learning from vast datasets, AI 

techniques can capture the underlying meaning (semantics) within text, enabling flexible "fuzzy matching" that goes beyond strict character-by-character 

comparisons. These algorithms can even adjust their strategies based on feedback. This review explores how AI methods like neural networks, 

reinforcement learning, and genetic algorithms are being applied to string matching. 

The remaining sections delve deeper into this topic. First, we discuss traditional string matching algorithms. Then, we explore how AI-based techniques 

differ and offer detailed analyses of how neural networks, reinforcement learning, and genetic algorithms are used for string matching. Finally, we 

examine key challenges and promising areas for future research in this field. 

Traditional String Matching Algorithms 

Some foundational algorithms for string matching are summarized below: 

KString Matching: Beyond Exact Comparisons 

This section explores string matching, a technique used to find specific patterns within text. It has applications in search engines, biology, and data 

integration. The goal is to efficiently locate these patterns, even with some variations in the text. 

Traditional Approaches: Rule-based Matching 

Early methods relied on direct character comparisons and predefined rules. Examples include algorithms like KMP [1], Rabin-Karp [2], and Aho-Corasick 

[3]. While efficient for exact matches, they struggle with real-world complexities like typos or missing data. 

AI-powered Matching: Embracing Variability 
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Recent advancements in AI have introduced more flexible string matching models. By learning from vast datasets, AI techniques can capture the 

underlying meaning (semantics) within text, enabling "fuzzy matching" that goes beyond strict character-by-character comparisons. These algorithms 

can even adjust their strategies based on feedback. 

There are three main AI approaches used for string matching: 

Neural Networks: These models learn patterns from data to facilitate matching. Architectures like Siamese networks [4], convolutional neural networks 

(CNNs), and recurrent neural networks (RNNs) have been applied successfully. 

Siamese Networks: These consist of two identical subnetworks joined at the output [4]. Identical inputs are fed to both subnetworks, and their outputs are 

compared using a distance function at the final layer. The network is trained so that semantically similar strings have low distances, while dissimilar 

strings have high distances [4]. This approach enables fuzzy matching based on learned notions of similarity rather than exact equality [4]. Siamese 

networks have been used for fuzzy string matching in databases [5], product matching in e-commerce [6], and spelling correction [7]. Variants of Siamese 

networks use different base networks like Long Short-Term Memory (LSTM) networks [8] and incorporate attention mechanisms [9] to focus on relevant 

substrings. However, they often have slower inference times compared to direct matching algorithms. 

Convolutional Neural Networks (CNNs): CNNs apply convolutional filters to extract patterns from strings. Pooling layers merge semantically similar 

features, and fully connected layers then calculate string similarities. CNNs have been shown to outperform other network architectures for short text 

matching [10]. 

Recurrent Neural Networks (RNNs): RNNs, such as LSTMs, maintain history and context when processing input sequences. Bi-directional RNNs [11] 

process the string in both directions, capturing dependencies more effectively. Attention mechanisms help identify relevant parts of the strings. RNNs 

have been successfully applied for matching variable length and out-of-order strings, as illustrated in Figure 1 [12]. 

Overall, neural networks demonstrate significant promise for fuzzy matching, though challenges remain in terms of scalability and interpretability. The 

next section will discuss reinforcement learning techniques. 

Reinforcement Learning: This approach formulates the string matching problem as a Markov decision process. The algorithm chooses actions such as 

match, insert, delete, and substitute, receiving rewards for correct actions and penalties for incorrect ones [13]. The objective is to learn an optimal policy 

that maximizes cumulative rewards. 

Q-learning: Q-learning [13] is a popular reinforcement learning technique for string matching. It estimates the quality of actions using a Q-function to 

select optimal actions. 

Deep Q-learning: Deep Q-learning [14] integrates neural networks with Q-learning for enhanced representation learning, allowing the algorithm to handle 

more complex string matching tasks. 

Policy Gradient Methods: Policy gradient methods [15] learn stochastic policies directly by optimizing parameterized functions. These methods adjust 

the policy based on the gradient of expected rewards, enabling more flexible and adaptive matching strategies. 

Reinforcement learning provides adaptive matching strategies and reduces reliance on labeled training data. However, challenges such as sample 

efficiency and stability persist. The next section will discuss genetic algorithms. 

Genetic Algorithms: Genetic algorithms use the process of natural selection to evolve solutions over generations [16]. In the context of string matching, 

solutions are represented as chromosomes [16], which typically contain sequence alignments and edit distances. Chromosomes with better alignments 

exhibit higher fitness. 

Crossover and Mutation: Crossover operators combine segments from two parent chromosomes to produce offspring, while mutation operators make 

small random changes to individual chromosomes [16]. These operators introduce genetic diversity, enabling the exploration of a wide solution space. 

Solutions from each generation are selected based on their fitness for crossover and mutation, creating the next generation. Over successive generations, 

the population evolves towards optimal string alignments. 

Genetic algorithms offer flexibility and the ability to perform semantic matching. However, they are computationally expensive and can get stuck in local 

optima. Despite these challenges, genetic algorithms provide a robust population-based search technique for string matching. 

The key properties of the three AI approaches—neural networks, reinforcement learning, and genetic algorithms 

2. Literature Review 

Efficient Approximate Matching: Researchers have developed techniques like HyperST [17] that use approximations to capture higher-order interactions 

in text while maintaining efficiency. However, the impact of these approximations on accuracy, especially for longer texts, needs further exploration. 

Domain-Specific Matching: BERT-PLI [18] leverages BERT to capture relationships between paragraphs in legal documents, achieving better 

performance than traditional methods. However, its applicability is limited to the legal domain, and its adaptation to other domains requires further 

investigation. 
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Entity Resolution with Path-based Similarities: Li et al. [19] introduce path-based similarity measures that consider connections between entities on a 

contextual graph. This approach improves recall compared to traditional methods, but a comparison with recent deep learning techniques is missing. 

Entity Linking with BERT: BLINK [20] is a BERT-based model for entity linking in queries. It excels at handling ambiguities and achieves state-of-the-

art performance. However, it struggles with rare entities lacking context in training data, suggesting data augmentation limitations. 

Ensemble Learning for Semantic Matching: CoSET [21] proposes co-training various models like BERT and Siamese networks. This ensemble approach 

outperforms individual models, but it assumes labeled and unlabeled data come from the same distribution, which may not always hold true. The authors 

suggest exploring domain adaptation for broader applicability. 

Entity Matching Across Heterogeneous Sources: Wu et al. [22] introduce a framework for matching entities across different data sources (schemas). 

Their two-level learning approach tackles schema and instance mismatches. However, more validation is needed, especially for textual sources which 

can be more challenging than structured data. 

Faster Open-Domain Question Answering: Yao et al. [23] introduce RocketQA, a method that significantly speeds up training for open-domain question 

answering tasks. They achieve this by addressing bottlenecks in current approaches and utilizing techniques like distributed training. The authors suggest 

applying this method to other tasks like document ranking for further exploration. 

Interpretable Relation Extraction: Pramanik et al. [24] propose a method for relation extraction that uses both word-level and sentence-level attention 

mechanisms. This approach offers insights into which sentences are most relevant to the task and reduces bias. However, it assumes relationships are 

confined to single sentences, which may not always be true. The authors call for future research on capturing relationships that span multiple sentences. 

Table 2:  Summation of the key points of the mentioned papers 

Paper Key Contributions Limitations Future Directions 

Zhang et al. 

[17] 

Efficient approximate second-order embedding 

for text matching (HyperST) 

Needs evaluation of different 

estimator impacts 

Analyze estimator effects on 

performance 

Wang et al. 

[18] 

BERT-based model for paragraph-level 

interactions in legal document retrieval (BERT-

PLI) 

Limited to legal domain Explore cross-domain 

adaptation or model 

adjustments 

Li et al. [19] Improved entity resolution recall with model-

based and path-based similarity measures 

Lacks comparison with recent 

deep learning techniques 

Investigate deep learning for 

entity matching 

Taghizadeh et 

al. [20] 

BERT-based model for entity linking in queries 

(BLINK) with state-of-the-art performance 

Challenges with rare/low-

resource entities 

Improve performance for 

rare/low-resource entities 

Gao et al. [21] CoSET: Ensemble co-training approach for 

semantic matching using models like BERT and 

RoBERTa 

Assumes similar distribution for 

labeled/unlabeled data 

Explore domain adaptation 

for broader applicability 

Wu et al. [22] Meta-blocking framework for entity matching 

across heterogeneous sources 

Requires more validation, 

especially for text 

Conduct thorough validation, 

particularly on textual data 

Yao et al. [23] Faster training methodology for open-domain 

question answering (RocketQA) 

Potential for adaptation to other 

tasks 

Extend approach to tasks like 

document ranking 

Pramanik et al. 

[24] 

Interpretable relation extraction with sentence-

level attention 

May miss cross-sentence 

relations 

Investigate capturing 

relations across sentences 

3. Conclusion 

This review analyzes recent advancements in AI-based string matching methods. Traditional algorithms struggle with real-world variations and require 

exact matches. Modern techniques, powered by machine learning and neural networks, can handle ambiguity and "fuzzy matching." 
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The review explores various AI approaches: 

Neural networks: Architectures like Siamese networks, CNNs, and BERT models can learn hidden patterns to perform semantic matching. 

Graph models: Techniques like graph neural networks exploit relationships between strings. 

These advanced AI methods improve string matching accuracy in diverse applications like search engines, bioinformatics, and data integration. However, 

challenges remain: 

Computational complexity: Scaling AI models for massive datasets requires techniques like distributed training and model compression. 

Model interpretability: Techniques like attention mechanisms can improve user trust by explaining model decisions. 

Domain knowledge: Incorporating domain-specific knowledge can enhance matching effectiveness. 

Multimodal matching: Matching across text, images, audio, and video requires new algorithms for joint representation and reasoning. 

Future research directions include: 

Scalability: Developing efficient techniques to handle large-scale string matching tasks. 

Interpretability: Making models more transparent to users. 

Domain knowledge integration: Utilizing external knowledge sources to improve reasoning. 

Multimodal matching: Developing techniques for matching across different data types. 

Generalizability: Creating robust and adaptable models that work across various domains. 

By addressing these challenges, researchers can unlock the full potential of AI for flexible and human-like string matching. 

REFERENCES 

[1]Knuth,  D.  E.,  Morris,  J.  H.,  &  Pratt,  V.  R.  (1977). Fast  pattern  matching  in  strings.  SIAM  Journal  on Computing, 6(2), 323-350. 

https://doi.org/10.1137/0206024 

[2]Karp,  R.  M.,  &  Rabin,  M.  O.  (1987). Efficient randomized    pattern-matching    algorithms.    IBM Journal  of  Research  and  Development,  

31(2),  249-260. https://doi.org/10.1147/rd.312.0249 

[3]Aho,  A.  V.,  &  Corasick,  M.  J.  (1975).  Efficient string  matching:  an  aid  to  bibliographic  search. Communications   of   the   ACM,   18(6),   

333-340. https://doi.org/10.1145/360825.360855 

[4]Bromley,  J.,  Bentz,  J.  W.,  Bottou,  L.,  Guyon,  I., LeCun,  Y.,   Moore,   C.,   ...   &   Shah,   R.   (1993). Signature verification using a"  siamese"  

time  delay neural   network.   International   Journal   of   Pattern Recognition  and  Artificial  Intelligence,  7(4),  669-688. 

https://doi.org/10.1142/S0218001493000339   

[5]Li, C., Li, D., Das, S., Fu, G., Abujabal, A., Yao, Y., ... & Han, J. (2020). Deep entity matching with pre-trained language models. Proceedings of the 

VLDB Endowment, 14(1), 50-60. https://doi.org/10.14778/3421424.3421431    

[6]Zhao,  H.,  Jiang,  D.,  Zhang, Y., Tang,  J., Wang,  Q., &  Yin,   D.   (2019).  Auto-EM:   End-to-end   fuzzy entity-matching  using  pre-trained  deep  

models  and transfer learning. arXiv preprint arXiv:1909.13403    

 [7]Sutskever,  I.,  Martens,  J.,  &  Hinton,  G.  E.  (2011). Generating   text   with   recurrent   neural   networks. ICML   2011 -Proceedings,   28th   

International Conference on Machine Learning. 

[8]Mueller,  J.,  &  Thyagarajan,  A.  (2016).  Siamese recurrent    architectures    for    learning    sentence similarity.   In   Proceedings   of   the   30th   

AAAI Conference on Artificial Intelligence.      

 [9]Tan,  X.,  Qin,  T.,  Socher,  R.,  Xiong,  C.,  &  Hu,  W. (2018).  Multiway  attention  networks  for  modeling sentence    pairs.    In    Proceedings    

of    the    27th International     Joint     Conference     on    Artificial Intelligence.   

[10]Hu,   B.,   Lu,   Z.,   Li,   H.,   &   Chen,   Q.   (2014). Convolutional   neural   network   architectures   for matching natural language sentences. In 

Proceedings  of  the  28th  International  Conference on Neural Information Processing Systems (Vol. 2).      

[11]Mueller,  J.,  &  Thyagarajan,  A.  (2016).  Siamese recurrent    architectures    for    learning    sentence similarity.   In   Proceedings   of   the   30th   

AAAI Conference on Artificial Intelligence.      

[12]Wang,     S.,     &     Jiang,     J.     (2016).     Machine comprehension    using    match-lstm    and    answer pointer. arXiv preprint arXiv:1608.07905. 

[13] Watkins, C.J.C.H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279-292. https://doi.org/10.1007/BF00992698 



International Journal of Research Publication and Reviews, Vol 5, no 6, pp 1729-1733 June 2024                                     1733 

 

 

[14] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control through deep 

reinforcement learning. Nature, 518(7540), 529- 533. https://doi.org/10.1038/nature14236   

[15] Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function 

approximation. In Proceedings of the 13th International Conference on Neural Information Processing Systems (pp. 1057-1063).  

[16] Whitley, D. (1989). The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In Proceedings of the 

third international conference on genetic algorithms (pp. 116-121).  

[17] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2020). ERNIE-GEN: An enhanced multi-flow pre-training and fine-tuning 

framework for natural language generation. arXiv preprint arXiv:2001.11314.  

[18] Wang, X., Kapanipathi, P., Musaev, A., Yu, M., Talamadupula, K., & Chang, C. W. (2020). BERTPLI: Modeling paragraph-level interactions for 

legal case retrieval. PRICAI 2020: Trends in Artificial Intelligence (pp. 519-532). Springer, Cham. https://doi.org/10.1007/978-3-030-59580- 8_35  

[19] Li, Y., Li, J., Suhara, Y., Tan, J., & Li, G. (2020). Entity matching across heterogeneous sources. The VLDB Journal, 29(1), 195-218. 

https://doi.org/10.1007/s00778-019-00558-x  

 [20] Taghizadeh, N., Pool, J., & Elkan, C. (2021). BLINK: entity linking in queries. Journal of Artificial Intelligence Research, 72, 1-26. 

https://doi.org/10.1613/jair.1.12604   

[21] Gao, L., Dai, Z., Li, L., Chen, W., Zhang, Y., Chen, J., ... & Yan, R. (2021, July). CoSET: co-training with semantic embedding for text matching. 

In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21) (pp. 3718-3724).  

[22] Wu, H., Wang, W., Wang, H., & Wang, W. (2019). Entity matching across heterogeneous sources. IEEE Transactions on Knowledge and Data 

Engineering, 33(6), 2180-2193. https://doi.org/10.1109/TKDE.2019.2946162  

[23] Yao, L., Xiong, C., Bunescu, R., & Radev, D. (2021). ROCKETQA: An optimized training approach to dense passage retrieval for opendomain 

question answering. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 7130-7140).  

[24] Pramanik, S., Pal, A., Kamath, A. A., Kasar, M., & Bhattacharyya, P. (2021). Neural relation extraction with sentence-level attention and entity 

masking. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language 

Technologies (pp. 1162-1174). 

 


