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ABSTRACT : 

When online programs don't use secure codes, it will cause vulnerability leading to a cyber attack.  According to the statistics, the SQL injection technique 

is most frequently used in cyber attacks connected to data theft. For any web system to counter this threat, an efficient SQL injection detection is therefore 

required. This study employs a machine learning technique wherein the SQL injection detector is trained.  

Is assessed against testing data after being trained on training data. The training and testing datasets' preparation is essential to the research. Training sets 

are utilized by the detector to create the knowledge base, while test sets are used to assess the detector's performance.  The detection's outcome 

demonstrates that the suggested method has a high degree of accuracy in differentiating between legitimate and fraudulent web requests. 
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Introduction 

Since data is currently an organization's most valuable asset, cyber threats and attacks against the database of the company are growing. The 

perpetrators and danger to the privacy of data are hackers, who may, for instance, use SQL Injection Attacks (SQLIA) to target weak websites. 

Additionally, a plethora of tools are currently available that may be used to automatically carry out hacking operations and assess a website's 

vulnerabilities. An attacker has a greater probability of accessing the web system database with the help of these technologies. A web developer is 

prone to write scripts with vulnerabilities if they lack the necessary security understanding. Putting safe measures in place to protect websites 

from these kinds of attacks is challenging. They created systems that are susceptible to SQL injection attacks as a result. SQL injection is a kind 

of attack where malicious SQL queries are injected into the database to modify the website and reveal sensitive data. Therefore, if the SQL 

injection is identified early on, it can assist the security analyst or officer in stopping the assault. SQL injections can be found using intrusion 

detection systems (IDS) and intrusion prevention systems (IPS) (Patil et al., 2017). In this study, a SQL injection attack is identified by machine 

learning by comparing the website's access log file with a database of known dangerous properties. 

Malware attacks are frequent in poorly constructed web applications, especially SQLI attacks. Despite being known for over 20 years, this 

vulnerability continues to raise concerns [1]. Relational database management systems (DBMS) have been handled by the industry standard for 

many years: structured query language (SQL). The development of cyber-physical systems might be severely limited by misbehavior resulting 

from random mistakes or online attacks, as most applications for these systems are safety-critical [2, 3]. Protecting cyber-physical systems from 

this form of attack is therefore essential. 

Since it became popular for internet web applications and SQL databases to be connected, SQLI assaults, also known as SQLI attacks on data-

driven online applications and systems, have been a critical issue [4, 5, 6]. An SQL injection (SQLI) attack happens when an attacker uses a 

fillable field in a web application to submit a malicious SQL statement, taking advantage of a weakness in the SQL implementation. To put it 

another way, the attacker will enter code into a field in order to access the backend, dump, or change data. 

The proliferation and development of web applications have led to a rise in both the volume and intensity of web attacks [10, 11]. Injection is the 

most prevalent vulnerability in web applications, according to [12]. A web application processes untrusted user input that is delivered by injection 

attacks, which take use of a number of vulnerabilities [13]. In order to access a database or modify its contents (e.g., send the database contents to 

the attacker, modify or delete the database content, etc.), malicious SQL commands are injected, or inserted, into input forms or queries in SQL 
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injection attacks [14, 15]. It is indisputable that the majority of web apps in use today rely on a back-end database to store user data and/or 

retrieve user-selected data [16]. 

Cookies and forms are frequently used to communicate with these users. By inserting harmful code into the user inputs that are subsequently 

utilized to create the SQL queries, many hackers try to take advantage of this feature. The success of the SQLI attack can be attributed to 

inadequate validation of user inputs, which can lead to devastating outcomes like the deletion of the database or the acquisition of private and 

sensitive information from web application customers [17]. Because of the sensitive nature of the SQLI attack, numerous studies have been 

conducted on it. While some of these efforts focus solely on detecting SQLI that has already happened, others try to stop it before it starts. We 

examined SQL Intrusion (SQLI) attacks in this study, which aim to get past the web application firewall and obtain unauthorized access to 

sensitive information. The HTTP or HTTPS protocol is the target of these attacks. Usually, the victim system is unprepared to handle this input, 

which commonly results in unauthorised access to the system by the attacker or data loss. This situation affects all aspects of security, including 

data availability, confidentiality, and integrity, since the attacker has access to and/or control over the data [2]. 

The remaining portions of the work are divided into distinct but connected subsections. Beginning with the "Related works" section, the paper 

moves on to discuss related works; the "SQLI query attacks overview" section discusses SQLI query attacks; the "Existing methods for SQLI 

detection and prevention" section discusses existing methods; the "Developing a web-based framework for SQLI attacks detection and 

prevention" section discusses developing a web-based framework for SQLI attacks detection and prevention; the "Most common attacks on 

SQLI" section discusses the most common attacks on SQLI; the "Proposed frameworks for SQLI detection and prevention" section proposes 

frameworks for SQLI detection and prevention; the "Result and discussion" section discusses results and discussion; and the "Conclusion and 

recommendation" section concludes the paper. 

Related Works 

In [1], a review of SQLI prevention in web applications is provided. An overview of 14 distinct SQLI attack types and their effects on web 

applications is given by the writers. The primary goals of their research were to examine different SQLI prevention tactics and provide an 

analysis of the best defense against SQLI assaults. A thorough literature assessment of 36 publications pertaining to studies on SQLI attacks and 

machine learning techniques was carried out by the authors in [2]. The most popular machine learning algorithms have been identified in order to 

categorize various SQLI attack variants. Their research showed that not many studies used machine learning tools and approaches to create new 

SQLI attack datasets. 

A thorough analysis of SQLI attacks, including their mechanism, detection, and mitigation, is provided in [4]. The authors have noted a method 

to lessen the negative impact on database systems as well as how attackers of this type may take advantage of a vulnerability and run shoddy 

code. Web operations were widely employed for online administrations ranging from high degrees of informal contact to monitoring transaction 

accounts and handling sensitive user data, according to the researchers' investigation. The true problem, though, was that this data was vulnerable 

to attacks due to unauthorized access, whereby the attackers used a variety of hacking and cracking techniques to get into the system with 

extremely bad intentions. 

A survey on SQLI attack detection and prevention has been provided in the work of [5]. The authors speculate that the research could aid 

laypeople in understanding SQL and its risks. It is also beneficial to academics and programmers who wish to understand more about the various 

issues still plaguing web applications and the tactics that may be used to prevent SQL Injection attacks. From the standpoint of the researcher, it 

was expected that online applications would be protected from such harmful attacks if web application developers followed the guidelines given 

in their study. 

A presentation on end-to-end DL for web attack detection was made in [10]. This work has provided three new insights into the study of 

autonomous intrusion detection systems. First, they evaluated the viability of a technique for identifying online attacks based on the resilient 

software modeling tool (RSMT), which independently observes and characterizes the runtime behavior of web applications. They have also 

explained how RSMT trains a stacked denoising autoencoder to encode and reconstruct the call graph for end-to-end DL. A low-dimensional 

representation of the raw features with unlabeled request data was used to recognize anomalies by computing the reconstruction error of the 

request data. 

Second, they have explained how RSMT trains a stacked denoising auto encoder to encode and reconstruct the call graph for end-to-end DL. The 

reconstruction error of the request data is computed to identify anomalies using a low-dimensional representation of the raw features with 

unlabeled request data. Thirdly, they have looked at the results of empirically testing RSMT on fictitious datasets and purposefully compromised 

real-world applications. Ultimately, the results showed that with the least amount of labeled training data and domain expertise, the proposed 

method could effectively and precisely identify threats like SQL injection, cross-site scripting, and deserialization. A presentation on black-box 

detection of web application vulnerabilities related to parameter tampering and XQuery injection can be found in [8]. A black-box fuzzing 

technique has been proposed to find XQuery injection and parameter tampering vulnerabilities in web applications that are driven by native 

extensible markup language (XML) databases. A functional version of XiParam was developed and tested on unreliable web apps with BaseX, a 

native XML database, serving as the backend. The experimental analysis clearly shown that the prototype was effective in obstructing the 

detection of both parameter manipulation and XQuery injection vulnerabilities. 

A DL-based method for detecting and preventing SQLI attacks has been presented in the work of [16]. The authors have proposed a SQLI 

detection technique that leverages NLP and DL frameworks and does not rely on a background rule base, based on a thorough review of both 
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domestic and international research. Through the process of enabling the machine to automatically detect the language model features of SQLI 

assaults, the technique has improved detection accuracy, reduced false alarm rates, and offered some defense against attacks that were never 

detected beforehand.  

Using MATLAB, the detection of SQLI attacks has been demonstrated, evaluated, and contrasted using 23 ML classifiers [23]. A model known 

as ATTAR has been presented by the authors of [24] to identify SQLI assaults by the extraction of SQLI attack features from web access log 

analysis. A grammatical pattern recognizer and access behavior mining were used to choose the features. Finding unknown SQLI statements that 

hadn't been utilized in the training set of data was the primary goal of this model. For training, five machine learning techniques were employed: 

NB, random forest, SVM, ID3, and k-means. The outcomes of the experiment demonstrated that the models based on random forest and ID3 had 

the highest accuracy in identifying SQL Injection attacks. 

A model known as ATTAR has been presented by the authors of [24] to identify SQLI assaults by the extraction of SQLI attack features from 

web access log analysis. A grammatical pattern recognizer and access behavior mining were used to choose the features. Finding unknown SQLI 

statements that hadn't been utilized in the training set of data was the primary goal of this model. For training, five machine learning techniques 

were employed: NB, random forest, SVM, ID3, and k-means. The outcomes of the experiment demonstrated that the models based on random 

forest and ID3 had the highest accuracy in identifying SQL Injection attacks. For SQLI attack detection, the authors of [25] have developed a 

hybrid CNN-BiLSTM-based model. The authors provided a thorough comparison of the various ML approaches available for SQLI attack 

detection. When compared to other ML strategies that have been reported, the CNN-BiLSTM approach yielded an accuracy of almost 98%. An 

ML classifier has been presented by the developers of [26] to identify SQLI vulnerabilities in PHP code. Several machine learning (ML) 

algorithms, such as random forest, logistic regression, SVM, multilayer perceptron (MLP), LSTM, and CNN, were trained and assessed. 

According to the authors, a model based on MLP produced the highest recall (63.7%) and f-measure (74.6%), whereas CNN offered the best 

precision (95.4%). 

Most Common attacks on SQLI  

As far as we are aware, creating, updating, and accessing data in a database is possible using the programming language SQL. By carefully 

constructing SQL instructions, a hacker can purposefully make an application fail, delete data, steal data, or obtain unauthorized access [90]. We 

present a thorough overview of the several kinds of SQLI attacks that have been found so far in order to address the previously mentioned 

problem. We offer specific mitigation options along with descriptions and examples of how each form of attack might be executed. 

3.1 Tautology attack 

In a tautology attack, the attacker tries to utilize a conditional query input, as (1 = 1) or (− −), to test always true. Using the WHERE clause, the 

attacker injects the condition and turns it into an always-valid tautology [91, 92]. This kind of attack is frequently used to get access to databases 

on websites without requiring website authentication [1].As a result, the initial condition is transformed into a tautology by the SQL query results, 

making it possible for an unauthorized user to access every entry in the database table, for example. Many variations of tautological claims in 

database requests are recognized and prevented by Guardium. The most prevalent tautology assault was the only one examined in earlier 

research, however all tautology attacks that result in injectables need to be looked at. 

3.2 Union Query 

In this type of attack, the attacker creates a SELECT statement that resembles the original query and only uses the UNION operator if both 

queries have the same form [1]. In order to accomplish this, the right table name, number of columns, and data types from the initial query must 

be known. Each query produces the same amount of columns as a result, and either of two requirements will be met or an attack on the union 

query will be initiated [12, 13]. The injected query will fail if a column's data type is incompatible with string data Since the string after(–) serves 

as a comment for the SQL parser, it is ignored. In general, the second query in a union is harmful [94]. 

3.3 Piggybagged  Query 

More query statements are concatenated onto the original query ";" in the piggybacked query attack [1]. This method is particularly dangerous 

since it allows an attacker to inject almost any SQL command. Determinate attacks include things like data extraction, addition, or modification, 

denial of service (DoS), and remote command execution [16]. An attacker tries to insert new queries into the initial query in this kind of attack. In 

contrast to previous forms, instead of altering the original query, attackers try to create new and unique inquiries that "piggyback" on it [26]. By 

initially identifying the correct SQL query through suitable validation or by utilizing a variety of detection systems, these kinds of illegal activity 

can be prevented. Static analysis can be used to prevent this kind of attack, and run-time monitoring is not necessary. 
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3.4 Incorrect  Query  

This type of attacker exploits an incorrectly executed database query [1]. It will display database error messages, which often provide important 

details that let an attacker figure out the details of the application's database. Finding injectable parameters, doing database fingerprinting, and 

extracting data are all part of the attack objective. With the help of this technique, an attacker can obtain vital information on the makeup and 

operation of a web application's back-end database [16]. It is believed that the hack served as a test run for further information-gathering attacks 

in the future. This attack exploits the fact that application servers' default error pages are typically very informative. This method can be used by 

an attacker to change the stored procedures in the database [1]. The method will yield true or false results for both allowed and unauthorized 

users. Users have the option to store and access their features at any time. The ability to use it is accompanied with a set of SQL queries. The 

hacker utilizes malicious SQL instructions to run the stored procedures that are already installed in the database [12]. This results in the 

recompiling of the cached stored procedure query plans. The limitation of a stored procedure is that it can only be utilized within the database. 

3.5 Stored Procedure  Query  

This method can be used by an attacker to change the stored procedures in the database [1]. The method will yield true or false results for both 

allowed and unauthorized users. Users have the option to store and access their features at any time. The ability to use it is accompanied with a 

set of SQL queries. The hacker utilizes malicious SQL instructions to run the stored procedures that are already installed in the database [12]. 

This results in the recompiling of the cached stored procedure query plans. The limitation of a stored procedure is that it can only be utilized 

within the database. 

3.6 Inference  Query  

This attack involves recasting the query as an operation and executing it based on the response of a true-or-false query regarding the values of 

database data [20]. When using this injection technique, attackers try to breach a site's security to the point where, in the event that an injection is 

successful, there is no way for users to access feedback in the form of database error messages. Attackers must use a different strategy to obtain a 

response from the database because error messages in the database are not accessible to offer feedback. 

Result And Discussion  

Three different injection parameters were used in this study. The first way is through a user input field, which enables a web application to 

request data from a backend database using HTTP (S) POST and GET. The second way is through cookies, which enable the restoration of a 

client's state data upon the client's return to a web application. If a web application uses the contents of cookies to create SQL queries, then an 

attacker can take advantage of this vulnerability to modify cookies and send them to the database server. Finally, by examining session usage data 

and identifying browsing patterns, a server variable can be produced. Logging these variables to a database without sanitization could result in 

SQLI vulnerability because attackers can construct requests to the server or insert malicious input into the application's client-end, forging the 

values in HTTP (S) and network headers. As a result, every attack that is sent to the server is recorded and kept in the database as attack log data. 

Additionally, attack log data is separated into two groups: attacks and regular data. We trained and evaluated vulnerability classifier models using 

a variety of machine learning approaches to see which method worked best. Neural networks, conventional NB, DT, SVM, RF, and LR are 

among the algorithms in the set. based on the hybrid and MLP methodologies that we employ in our research. The confusion matrix of the 

classification results by taking each class as positive samples separately is shown in Tables 1 

Table 1: Performance Evaluation of  training set 

 

No Techniques Evaluation Metrics 

Precision Recall F1-score Training set 

accuracy 

Training time (in 

sec.) 

 1 NB 88.33% 87.89% 88.11% 89.40% 08.73 

 2 DT 93.09% 92.75% 92.92% 95.70% 53.01 

 3 SVM 97.15% 98.02% 97.58% 98.80% 19.06 

4 RF 98% 94% 92% 98% 9.54 
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The research presented in Table 1 and Fig. 1 indicates that the hybrid technique (ANN and SVM) outperforms other ML approaches in terms of 

precision (99.05% and 99.54%), recall (99.65% and 99.61%), f1-score (99.35% and 99.57%), and training set (99.20% and 99.60%). But for NB 

and RF, their training times—19.62 and 26.16 s, respectively—are excessively long. In light of this, the NB approach performs best in training 

time and poorly in accuracy, precision, recall, f1-score, and training set evaluation metrics. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1: Performance Evaluation of various ML Models 

 

It is advised that future researchers in the field use hybrid techniques with careful consideration of large-scale datasets to improve the 

performance in the evaluation metrics (detection and prevention rates) of the systems, even though there hasn't been any research on detecting 

and preventing SQLI attacks that has produced 100% accuracy. As a result, the effectiveness of any SQLI attack systems' detection and 

prevention rate is dependent upon a thorough analysis of the datasets, taking into account factors like data volume, platform of collection, and 

technique selection. In conclusion, regarding the advice given in [24], the system's detection and prevention rate has been raised by the expansion 

of its training and testing datasets and the application of the suggested methodologies. 

Conclusion  

The most hazardous online application attacker is SQL Injection. Web applications are at serious risk from this kind of attacker, which might 

have serious ramifications for security and privacy concerns. Attacks against web applications are growing more frequent and powerful. Hackers 

are inspired to create new assaults by the abundance of data that is readily available online. Numerous investigations have been carried out to 

lessen the impact of this attack, either by identifying it when it happens or by avoiding it before it starts. We assessed different approaches to 

SQLI detection and prevention. First, we have outlined the many categories of SQLI attacks that have been identified to date. Then, the methods 

under review were assessed for their capacity to identify and avert SQL Injection assaults. In order to identify and stop all kinds of SQLI assaults, 

we determined which DL, ML, and hybrid techniques are most frequently utilized. Additionally, we investigated the various processes and 

identified strategies that could be used to identify and stop SQL Injection attacks from various web apps. We then determine the requirements for 

each technique and create a thorough framework for identifying and averting SQLI assaults using machine learning and hybrid approaches. We 

looked into whether hybrid and ANN are the most effective methods for categorizing SQLI according to our assessment of the model's 

performance. 

Furthermore, the test set's performance evaluation results in metrics like the hybrid approach (ANN and SVM) outperform other ML approaches 

in terms of accuracy in precision (98.87% and 99.20%), recall (99.13% and 99.47%), f1-score (99.00% and 99.33%), and test set (98.70% and 

99.40%). However, their test time is excessively high (i.e., 11.76 and 15.33 ms respectively). As a result, the NB technique performs poorly in 

terms of accuracy, precision, recall, f1-score, test set evaluation metrics, and best in terms of training time. Here, SVM and ANN are weak 

learners among the implemented ML techniques. Ultimately, the goal of this study project was to provide researchers with current information, 

insights, and suggestions regarding the relationship between AI prevention and SQLI attacks. Future researchers should try maximizing the 

dataset and experimenting with other approaches in a real-world setting. 

 

 

5  ANN 99.05% 99.65% 99.35% 99.20% 19.62 

 6 Hybrid 99.54% 99.61% 99.57% 99.60% 26.15 
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