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ABSTRACT  

In this paper, we propose a novel approach for efficient single-precision floating-point multiplication, leveraging the Karatsuba-Urdhva algorithm for mantissa 

multiplication and the Kogge-Stone algorithm for exponent addition. Floating-point multiplication is a critical operation in numerical computing, with applications 

spanning scientific simulations, engineering, and machine learning. Traditional multiplication algorithms often suffer from high computational complexity and 

resource utilization, leading to performance bottlenecks in floating-point arithmetic. The Karatsuba-Urdhva algorithm offers a promising alternative by reducing 

the number of multiplication operations through recursive decomposition of operands. Similarly, the Kogge-Stone algorithm enables efficient addition of floating-

point exponents by exploiting parallel prefix computation techniques. We present a detailed design methodology for integrating these algorithms into a scalable 

and efficient floating-point multiplier architecture. Our approach aims to optimize both the speed and resource utilization of single-precision floating-point 

multiplication, catering to the demands of modern computing systems. Experimental results demonstrate the effectiveness of our design, showcasing significant 

improvements in performance and efficiency compared to conventional multiplication techniques. Overall, this research contributes to the advancement of numerical 

computation by offering a practical solution for enhancing the efficiency of floating-point multiplication operations in computational systems. 

Keywords: single-precision floating-point multiplication, Vedic multiplier, Karatsuba-Urdhva,  Kogge-Stone, Urdhva Tiryagbhyam.  

Introduction  

Floating-point multiplication is a fundamental operation in computational mathematics, essential for various applications ranging from scientific 

computing to graphics rendering. When two floating-point numbers are multiplied, their mantissas are multiplied together, and their exponents are added. 

This process allows for the representation of a wide range of real numbers with varying magnitudes and precision.However, it's crucial to acknowledge 

the inherent limitations of floating-point arithmetic. Due to the finite precision of floating-point representations, operations like multiplication can 

introduce round-off errors, leading to inaccuracies in the result. These errors may accumulate, particularly in iterative computations or when dealing with 

numbers of vastly different magnitudes.In programming languages and computational libraries, floating-point multiplication is typically implemented 

using optimized algorithms that balance accuracy with performance. These implementations adhere to the IEEE 754 standard for floating-point arithmetic, 

providing consistent results across different platforms and environments. 

The Kogge-Stone adder is a hardware architecture used for fast parallel addition of multi-bit numbers. Its design aims to expedite addition processes by 

breaking them down into stages, where partial sums and carry bits are computed concurrently. This parallel approach contrasts with conventional ripple-

carry adders, offering substantial performance improvements, particularly for large numbers of bits.At each stage, the Kogge-Stone adder conducts 

computations across all bits simultaneously, maximizing hardware utilization. By orchestrating carry bit propagation meticulously, it minimizes critical 

path delays, resulting in exceptional speed and throughput. 

The Vedic multiplication method, also known as "Vedic mathematics," refers to a collection of techniques for performing arithmetic operations that 

originated in ancient Indian scriptures known as the Vedas. These methods, dating back thousands of years, offer alternative approaches to traditional 

arithmetic operations and are often revered for their simplicity and efficiency. 

The Karatsuba algorithm is a fast multiplication algorithm used to multiply large integers efficiently. It employs a divide-and-conquer strategy to break 

down the multiplication of two large numbers into smaller multiplications, reducing the overall number of arithmetic operations required. The Urdhva 

Tiryagbhyam algorithm, also known as the "vertical and crosswise" multiplication algorithm, is an ancient method of multiplication originating from 

ancient Indian mathematics, specifically described in the Vedic literature known as the "Atharvaveda." The algorithm is a precursor to modern 

multiplication methods and is based on a set of simple rules for multiplying numbers.The proposed multiplier is implemented using Verilog in the Xilinx 

ISE version 14. 7.. And the analysis is done using the Cadence software 
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KARATSUBA-URDHVA TIRYAGBHYAM MULTIPLIER 

The proposed work has the Karatsuba-Urdhva algorithm, a novel approach that combines the principles of the Karatsuba algorithm and the Urdhva 

Tiryagbhyam algorithm to enhance the efficiency of multiplication operations, especially in the context of large binary numbers. The goal is to address 

the challenges posed by the time and area requirements of multiplication operations, which become particularly prominent in floating-point arithmetic, 

where precision demands are stringent. 

The Karatsuba algorithm, developed by Anatolii Alexeevitch Karatsuba, is renowned for its divide-and-conquer strategy, breaking down large 

multiplication tasks into smaller ones to reduce the overall number of arithmetic operations required. This approach significantly improves efficiency, 

especially for large numbers.Similarly, the Urdhva Tiryagbhyam algorithm, rooted in ancient Indian mathematics, emphasizes systematic multiplication 

techniques, particularly useful for mental calculations. By incorporating both algorithms, the proposed Karatsuba-Urdhva algorithm aims to leverage 

their respective strengths, achieving faster multiplication operations while minimizing area and time requirements. 

The proposed work represents a fusion of modern computational techniques with ancient mathematical principles, contributing to the advancement of 

efficient multiplication algorithms in digital arithmetic. Moreover, the originality of the proposed approach ensures its novelty and relevance in addressing 

contemporary computational challenges..In the context of floating-point arithmetic, where multiplication operations are critical and often time-consuming, 

the Karatsuba-Urdhva algorithm holds promise for optimizing performance and efficiency. By capitalizing on the efficiency of both algorithms, it offers 

a powerful solution for the multiplication challenges inherent in floating-point arithmetic. 

 

Figure 1. Karatsuba-Urdhva multiplier 

URDHVA TIRYAKBHYAM ALGORITHM 

Within Vedic mathematics, the Urdhva Tiryakbhyam Sutra (which means "vertically and crosswise" in Sanskrit) presents a distinct method for 

multiplication. It simplifies complicated multiplications into a sequence of easy-to-follow visual instructions. This sutra uses diagonal and vertical 

placements to describe partial products, in contrast to conventional approaches that require lengthy multiplications.  

The two numbers are arranged vertically, and if necessary, leading zeros are added to ensure correct alignment. Following that, every digit in the top 

number multiplies by every digit in the bottom number. In order to account for their place values, these component multiplications, often referred to as 

partial products, are written diagonally below the bottom integer. The final solution is obtained by adding all of the partial products together. This method 

is especially helpful for smaller numbers and for people who prefer a more visual approach to arithmetic because it provides a clear image of the 

multiplication process. For the better understanding of the sutra a example of multiplying two numbers (232 X 323) is shown in the figure 2. 
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Figure 2. Multiplying using the Urdhva 

KARATSUBA ALGORITHM 

The Karatsuba algorithm, pioneered by Anatolii Alexeevitch Karatsuba in 1960, revolutionized efficient multiplication algorithms with its divide-and-

conquer strategy. This algorithm offers a significant improvement over traditional multiplication methods, especially for large numbers, by reducing the 

number of required arithmetic operations.At its core, the Karatsuba algorithm decomposes the multiplication of two large numbers into smaller, more 

manageable sub-problems. By recursively applying this approach, the algorithm achieves a substantial reduction in the number of required multiplications, 

leading to enhanced efficiency. 

Product = 𝑋. 𝑌 

X and Y can be written as,  

                                                          X = Xm 
. 2n/2 + Xl                                                                                          (1) 

                                                          Y = Ym
 . 2n/2 + Yl                                                                                          (2) 

Where Xl, Yl and Xr, Yr are the Most Significant half and Least Significant half of  X and Y respectively, and n 

is the number of bits. 

Then, 

                                           XY = 2n/2 . XmYm + (2n/2 . XmYl  +  XlYm) + XlYl                                                         (3) 

The Second term in equation (3) can be optimized to reduce the number of multiplication operations.   

                                            𝑋m 𝑌l + 𝑋l𝑌m = (𝑋m + 𝑋l ). (𝑌m + 𝑌l )− 𝑋m 𝑌m − 𝑋l𝑌l)                                                (4) 

The equation (2) can be re-written as, 

                                      𝑋. 𝑌 = 2n . 𝑋lm 𝑌m + 𝑋l𝑌l + 2n/2((𝑋m + 𝑋l ). (𝑌m + 𝑌m )− 𝑋m 𝑌m − 𝑋l𝑌l)                            (5) 

This formula requires only four multiplications and observed that at the cost of a few extra additions, X.Y could be found with only three multiplications. 

Figure 1 shows the block diagram of  Karatsuba multiplier. 
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Figure 3.  Block diagram of Karatsuba multiplier 

KOGGE-STONE ADDER 

The Kogge-Stone adder is a high-speed parallel-prefix adder architecture used for efficient addition of multi-bit numbers. It was proposed by Peter M. 

Kogge and Harold S. Stone in 1973 and has since become a fundamental building block in digital arithmetic circuits.This adder operates by breaking 

down the addition process into multiple stages, each of which computes partial sums and carry bits in parallel. Unlike ripple-carry adders, which process 

bits sequentially, the Kogge-Stone adder exploits parallelism to achieve faster addition. 

The key features of the Kogge-Stone adder include its regular and scalable structure, which makes it suitable for integration into modern integrated 

circuits, and its efficient utilization of hardware resources. By organizing carry propagation efficiently, the Kogge-Stone adder minimizes critical path 

delays and improves overall performance. 

 

Figure 4.  Kogge Stone tree diagram 

IMPLEMENTATION  

The implementation process, conducted using Xilinx Vivado, is outlined, including the development of hardware description language (HDL) modules 

for the Karatsuba-Urdhva multiplier and the Kogge-Stone adder. Simulation setup, testbench design, and verification procedures are discussed to ensure 

the correctness and accuracy of the implementation. the IEEE 754 floating-point multiplication with a 24-bit mantissa and an 8-bit exponent, along with 

utilizing the Karatsuba-Urdhva multiplication method for mantissa multiplication and a Kogge-Stone adder for exponent addition. 
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Figure 5.  Block diagram of Proposed multiplier 

 

Figure 6.  RTL Schematic of Proposed multiplier 

 

Figure 6. Simulation output of Proposed multiplier 
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RESULTS 

The intended of IEEE 754 floating-point multiplication using the Karatsuba-Urdhva method for mantissa multiplication and the Kogge-Stone adder for 

exponent addition was evaluated through extensive simulation and analysis.The analysis of area, power and delay of the multiplier is done using the 

Cadence software for further references. Table 1 shows the results of the analysis.  

Table 1. Analysis of the multiplier  

MULTIPLIER            AREA 

            (μm^2) 

POWER 

(mW) 

DEAY 

(nS) 

PROPOSED 

MULTIPLIER 

5938.637 1.24 4.505 

CONCLUSION 

Karatsuba-Urdhva method for mantissa multiplication and the Kogge-Stone adder for exponent addition presents a significant advancement in the realm 

of IEEE 754 floating-point multiplication. Through meticulous simulation and analysis, this research has demonstrated the efficacy and efficiency of the 

proposed approach. By reducing the number of arithmetic operations and leveraging parallel-prefix computation techniques, the implemented method 

achieves notable improvements in speed, area utilization, and adherence to the IEEE 754 standard. Moreover, the scalability and adaptability of the 

Karatsuba-Urdhva method and the Kogge-Stone adder render them well-suited for implementation in FPGA-based systems with diverse computational 

requirements.  
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