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A B S T R A C T 

Plant diseases pose a significant threat to food security, impacting crop yields and agricultural sustainability worldwide. In regions like India, where agriculture 

forms the backbone of the economy and supports millions of livelihoods, the consequences of plant diseases are particularly pronounced. Conventional methods of 

disease detection and management often fall short, leading to suboptimal yields and economic losses. In response to this pressing need, our research endeavors to 

address the challenges posed by plant diseases through the integration of machine learning methodologies with precision farming techniques. By focusing on the 

accurate prediction of plant diseases using advanced convolutional neural network (CNN) architectures, including DenseNet169, EfficientNetB3, MobileNetV2, 

ResNet50, and a standard CNN model, we aim to provide Indian farmers with invaluable tools for early detection and intervention. Through our efforts, we seek to 

bolster food security, enhance agricultural sustainability, and empower farmers with the knowledge and technology needed to safeguard crop yields and livelihoods. 
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1. Introduction 

Precision agriculture, the amalgamation of advanced technologies such as artificial intelligence (AI) and machine learning (ML) with traditional farming 

practices, holds immense promise for revolutionizing global food production. A pivotal component of precision agriculture is the ability to swiftly and 

accurately detect plant diseases, a task traditionally reliant on manual observation and expertise. However, with the advent of deep learning techniques, 

particularly convolutional neural networks (CNNs), automated plant disease detection has witnessed unprecedented advancements.  

In this context, our research endeavors to evaluate and compare the efficacy of various state-of-the-art CNN architectures for plant disease detection 

within the framework of precision agriculture. Specifically, we assess the performance of DenseNet169, EfficientNetB3, MobileNetV2, ResNet50, and 

a standard CNN model in accurately identifying plant diseases from images. Each of these CNN architectures offers distinct advantages in terms of 

computational efficiency, feature extraction capabilities, and model complexity, thereby providing a comprehensive spectrum of evaluation.  

2. Methodology 

2.1 Plant Disease Detection Model 

Data Collection and Preparation: Our Plant Disease Detection dataset utilized in this study was sourced 

from Kaggle. Specifically, the dataset used is the PlantVillage dataset, which encompasses a diverse 

collection of plant images representing various diseases and healthy states across multiple plant species. 

The PlantVillage dataset comprises images, each corresponding to a specific plant disease or a healthy 

state. 

In our data preparation phase, we curated a dataset from the original PlantVillage Dataset, comprising 

87,000 RGB images of healthy and diseased crop leaves across 38 classes. Through rigorous offline 

augmentation, we enhanced diversity and reliability. We divided the dataset into 80/20 training-

validation sets, maintaining directory structure integrity for seamless integration into our ML pipeline. 

Additionally, we created a separate directory with 33 test images for model validation in real-world 

Fig. 1 - Different Crops in Dataset 
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scenarios. Our dedication reflects our commitment to excellence, aiming to empower farmers with accurate insights for effective crop management and 

disease mitigation.  

 

In this data-set, 38 different classes of 54305 plant leafs are available. These Classes are: 

 

 

 

 

 

 

 

 

 

2.2 Model Selection 

In the first phase of our study, we focused on developing and training diverse convolutional neural network (CNN) models for plant disease detection. 

Specifically, we experimented with several state-of-the-art CNN architectures, including: 

• Standard CNN Model: CNN model refers to a basic convolutional neural network architecture commonly used as a baseline for 

comparison. While the concept of CNNs dates back to the 1980s, modern interpretations gained prominence with the seminal paper 

"ImageNet Classification with Deep Convolutional Neural Networks" by Alex Krizhevsky et al. in 2012. A standard CNN typically 

consists of convolutional layers followed by pooling layers and fully connected layers. 

• DenseNet169: DenseNet, short for Densely Connected Convolutional Networks, was introduced by Gao Huang et al. in the paper 

"Densely Connected Convolutional Networks" in 2017. DenseNet architectures are characterized by dense connections between 

layers, where each layer receives feature maps from all preceding layers. This connectivity pattern encourages feature reuse, enhances 

gradient flow, and mitigates the vanishing gradient problem. DenseNet169 specifically refers to a variant with 169 layers. 

• EfficientNetB3: EfficientNet was proposed by Mingxing Tan and Quoc V. Le in the paper "EfficientNet: Rethinking Model Scaling 

for Convolutional Neural Networks" in 2019. EfficientNet introduces a compound scaling method that uniformly scales all 

dimensions of depth, width, and resolution to build scalable and efficient convolutional neural network architectures. EfficientNetB3 

refers to a specific scaling coefficient that balances model size and computational efficiency. 

• MobileNetV2: MobileNetV2 was introduced by Mark Sandler et al. in the paper "MobileNetV2: Inverted Residuals and Linear 

Bottlenecks" in 2018. MobileNetV2 is an improved version of the MobileNet architecture, designed for mobile and embedded vision 

applications. It incorporates inverted residuals and linear bottlenecks to improve feature extraction while maintaining low 

computational complexity. 

• ResNet50: ResNet, short for Residual Network, was proposed by Kaiming He et al. in the paper "Deep Residual Learning for Image 

Recognition" in 2015. ResNet introduced skip connections or residual connections that allow the gradient to flow directly through 

the network, addressing the vanishing gradient problem in very deep neural networks. ResNet50 specifically refers to a variant with 

50 layers. 

• Xception: Xception, short for Extreme Inception, was introduced by François Chollet in the paper "Xception: Deep Learning with 

Depthwise Separable Convolutions" in 2017. Xception is based on the Inception architecture but replaces the standard convolutional 

layers with depthwise separable convolutions. This architecture aims to capture spatial and channel-wise correlations more 

efficiently, leading to improved performance and computational efficiency. 

2.3 Model Training 

The training process involved feeding batches of preprocessed images through the models and iteratively adjusting the model parameters to minimize a 

loss function. The loss function quantified the disparity between the predicted outputs of the model and the ground truth labels. Backpropagation and 

gradient descent algorithms were used to compute the gradients of the loss function with respect to the model parameters and update the parameters 

accordingly.  

Fig. 2 - Class Distribution 
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Training typically proceeded over multiple epochs, with each epoch consisting of one pass through the entire training dataset. Hyperparameters such as 

learning rate, batch size, optimizer choice, and regularization strength were tuned to optimize model performance. Learning rate schedules, such as 

exponential decay or adaptive learning rates, were employed to dynamically adjust the learning rate during training. Regularization techniques such as 

dropout or L2 regularization were used to prevent overfitting and improve model generalization. 

2.4 Model Evaluation and Validation 

Discrepancies between the training and validation accuracy indicate potential issues with overfitting or underfitting. Large gaps between the curves 

suggest overfitting, where the model performs well on training data but poorly on unseen data (Fig. 3). Smaller gaps or overlapping curves indicate better 

generalization (Fig. 4). 

 

 

 

 

 

 

 

 

 

The rate at which both curves increase over epochs provides insights into the model's learning dynamics and convergence speed. Rapid increases in both 

curves early in training indicate effective learning (Fig. 5), while slower or plateauing curves may suggest convergence or optimization challenges. 

 

 

 

 

 

 

 

 

 

 

In our project on plant disease detection, accuracy, precision, recall, and F1 score are essential metrics for evaluating the performance of our models. 

They provide insights into how well the models are able to classify plant images into different disease categories or healthy states. High accuracy indicates 

overall model performance, while precision and recall offer insights into the model's ability to make correct positive predictions and capture all positive 

instances, respectively. The F1 score serves as a single metric to balance precision and recall, providing a comprehensive assessment of model 

performance. 

Number of Correct Predictions
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Total Number of Correct Predictions
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Fig. 3 - CNN Training & Validation Curve 

Fig. 4 - DenseNet169 Training & validation Curve 

Fig. 5 - Resnet Training & validation Curve 
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Confusion Matrix 

These matrices serve as both a visual and quantitative representation of the model's performance, showcasing accurate and erroneous predictions across 

all classes. They play an important role in identifying patterns of misclassification and guiding enhancements to the model. 

3. Results and Discussion 

In evaluating various convolutional neural network (CNN) architectures for plant disease detection, it was found that the models exhibited varying levels 

of accuracy on the test dataset. The more advanced architectures demonstrated significantly improved performance. 

 

 

 

 

 

 

 

 

Model Performance 

• DenseNet169 achieved a test accuracy of 95.16% 

• The Standard CNN model showed a slightly higher accuracy of 96.78%. 

• MobileNetV2 exhibited a test accuracy of 99.47%, surpassing both DenseNet169 and the Standard CNN model. Xception further improved 

upon this, achieving a test accuracy of 99.50% and their success can be attributed to their innovative architectural designs, such as inverted 

residuals, linear bottlenecks, and depth wise separable convolutions, which enable them to achieve high accuracy while maintaining 

computational efficiency. 

• EfficientNetB3 demonstrated even greater accuracy, with a remarkable test accuracy of 99.63% which stems from its compound scaling 

method, which optimally balances model size and computational efficiency, resulting in enhanced performance. 

• Notably, ResNet emerged as the top-performing model, boasting the highest test accuracy among all architectures evaluated at 99.87% 

ResNet's exceptional performance can be attributed to its deep residual learning framework, which allows for more effective information 

flow through the network, enabling it to capture intricate patterns in the data.  

This work opens up new possibilities for research and innovation in the crucial subject of precision agriculture by highlighting the ability of machine 

learning in transforming this field. 

4. Conclusion 

The study's findings have significant implications for precision agriculture, offering an effective means of early and accurate detection of plant diseases. 

By leveraging advanced CNN architectures like MobileNetV2, Xception, EfficientNetB3, and ResNet, farmers and agricultural practitioners can better 

manage crop health and mitigate the impact of diseases on yield and quality. Moving forward, future research endeavors may explore ensemble methods 

or hybrid architectures to further enhance the performance of plant disease detection models. Additionally, efforts can be directed towards deploying the 

developed models in real-world agricultural settings to validate their effectiveness and scalability, thereby facilitating the adoption of AI-driven solutions 

in agriculture. 

This research enhances the understanding of machine learning’s application in agriculture, laying the ground- work for advanced, data-driven tools. These 

tools promise to empower farmers with precise decision-making capabilities, potentially boosting agricultural productivity and resource efficiency. 

As we look to the future, the integration of machine learning with other innovative technologies in agriculture could lead to transformative improvements 

in farming practices, sustainability, and global food security. 

 

Model Accuracy 

DenseNet169 95.16 

Standard CNN 96.78 

MobileNetV2 

Xception 

EfficientNetB3 

ResNet 

99.47 

99.50 

99.63 

99.87 
Fig. 6 - Prediction of MobileNetV2 
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