
International Journal of Research Publication and Reviews, Vol 5, no 5, pp 6177-6181 May 2024

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Comparative Analysis of Game Development Techniques: Using Finite

State Machine, Physics Simulation, Path Finding, Event Handling

Mr. Vivin Richard. G1, Mr. Sree Dev. A. K2

1IIIrd Year B.Sc. Computer Technology, Department of Computer Technology, Sri Krishna Adithya College of Arts and Science, Coimbatore, Tamilnadu

vivinrichard68@gmail.com
2 IIIrd Year B.Sc.Computer Technology, Department of Computer Technology, Sri Krishna Adithya College of Arts and Science, Coimbatore, Tamilnadu

Sreedevajith280703@gmail.com

ABSTRACT

 This paper delves into the core techniques pivotal to game development: Finite State Machines (FSMs), Physics Simulation, Event Handling, and Path Finding.

These techniques serve as pillars in defining the intricate behaviors and dynamics within games, influencing gameplay mechanics, realism, and the overall player

experience. By conducting a comprehensive comparative analysis, the aim is to unveil the nuanced attributes of each technique, elucidating their strengths,

weaknesses, and diverse applications within the realm of game development. Through this examination, developers can gain valuable insights into the optimal

utilization of these techniques, enabling them to craft immersive and captivating gaming experiences tailored to their specific design objectives and player

expectations.

Keywords: game development , finite state machine , physics simulation , path finding , A* algorithm , event handling .

1.INTRODUCTION:

The diverse discipline of game production uses a variety of methods and tools to give players an immersive and interesting experience. The most important

building pieces for implementing game logic, physics behavior, player interactions, and NPC (non-player character) behaviors are Finite State Machines,

Physics Simulation, Event Handling, and Path Finding. To make wise selections during the development process, game developers must comprehend the

distinctions and subtleties between these approaches.

1.1 Finite State Machine (FSM):

A basic idea in game creation, finite state machines are used to simulate how things would behave in a game. A finite set of states, the transitions between

them, and the actions connected to each state make up an FSM. For character AI, game flow control, and animation management in particular, it offers

an organized method of describing complicated actions. FSMs are appropriate for both simple and complex gaming systems because they provide clarity

in state transitions and are comparatively straightforward to implement and comprehend.

1.1.1 Strengths:

• Offers a methodical and straightforward approach to modeling actions.

• Reduces complex systems to manageable states in order to simplify them.

• Makes maintenance and debugging more effective.

1.1.2 Weaknesses:

• For incredibly complicated behaviors with multiple states and transitions, it could become unmanageable.

• Can find it difficult to manage emergent or dynamic behaviors that don't cleanly fit into established states,

http://www.ijrpr.com/
mailto:vivinrichard68@gmail.com
mailto:Sreedevajith280703@gmail.com

International Journal of Research Publication and Reviews, Vol 5, no 5, pp 6177-6181 May 2024 6178

1.2 Physics Simulation:

For games to have realistic settings and interactions, physics simulation is essential. Physics engines provide dynamic and realistic gameplay experiences

by imitating physical laws and features like gravity, friction, and collision detection. Platformers, racing games, and simulations are just a few of the

game genres that frequently incorporate physics simulation.

1.2.1 Strengths:

• Precisely mimics the laws of physics in the actual world, increasing realism and immersion.

• Allows for interactive and dynamic gameplay features like destructible environments and ragdoll physics.

• Offers a standardized framework for managing objects' interactions, forces, and collisions.

1.2.2 Weaknesses:

• May need a lot of computation, which could affect lower-end devices' performance.

• Takes considerable adjustment to strike a balance between gaming requirements and reality.

• Could bring up erratic or glitchy behavior if not used properly.

1.3 Path Finding:

For things in the game world to find the best routes and navigation paths, path finding algorithms are crucial. Pathfinding algorithms aid in ensuring

effective movement and decision-making in dynamic situations, from directing non-player characters (NPCs) to enabling strategic planning in strategy

games.

1.3.1 Strengths:

• Helps AI-controlled entities make decisions and navigate more effectively.

• Permits sophisticated actions including dodging, pursuing, and patrolling.

• Can be performance-optimized in sizable, intricate game worlds.

1.3.2 Weaknesses:

• May find it difficult to navigate situations with shifting terrain or dynamic impediments.

• Can be computationally costly, particularly in applications that include numerous entities in real-time.

• Demands that variables including obstacle avoidance, path smoothness, and dynamic recalculations be carefully taken into account.

1.4. Event Handling:

Games can react to in-game triggers, system events, and user input thanks to event handling technologies. Whether it's a mouse click, a keystroke, or an

NPC arriving at a specific spot, event handling makes it easier to carry out related actions and behaviors. It makes gaming more engaging and responsive,

which increases player agency and immersion.

1.4.1 Strengths:

• • Facilitates responsive and engaging gaming experiences.

• • Promotes player feedback and input, increasing player immersion and engagement.

• • Enables game systems to be modular and extendable, with a broad range of actions and behaviors being triggered by events.

1.4.2 Weaknesses:

• May increase intricacy and increase the chance of errors, particularly in big, networked systems.

• Needs to be managed carefully to avoid unexpected interactions or conflicts between events.

• Can be difficult to maintain and debug, especially in intricate event-driven designs

International Journal of Research Publication and Reviews, Vol 5, no 5, pp 6177-6181 May 2024 6179

2. Literature Review:

A organized method for simulating entity behavior in a game is offered by finite state machines, or FSMs. A set of states, transitions between states, and

actions connected to each state make up an FSM. Character animations, AI decision-making, and game flow control are examples of complicated activities

with distinct state transitions that benefit greatly from their definition.

For games to have realistic settings and interactions, physics simulation is essential. Physics engines facilitate dynamic and lifelike gameplay experiences

by mimicking physical laws and qualities, such as gravity, friction, and collision detection. They are extensively utilized in many different game genres,

including as racing games, platformers, and simulations.

Games can react to in-game triggers, system events, and user input thanks to event handling. Event handling systems help related actions and behaviors

to be carried out when certain events occur, such as a mouse click, keyboard input, or an NPC arriving at a specific location. They make gaming more

engaging and responsive, which increases player agency and immersion.

Path finding algorithms are essential for figuring out the best routes and paths for creatures to navigate in the game world. Pathfinding algorithms aid in

ensuring effective movement and decision-making in dynamic situations, from directing non-player characters (NPCs) to enabling strategic planning in

strategy games.

3. Methodology:

We shall assess these methods according to a number of factors in order to compare them, such as:

i. Complexity: How simple it is to use and comprehend each method.

ii. Flexibility: The capacity to change course and meet demands in various game conditions.

iii. Performance: How well each technique uses resources and how efficiently it computes.

iv. Realism: The extent to which each method enhances the immersion and realism of the game.

v. Suitability: How well a technique fits the objectives and game genres of a given design.

• Start: This is where the process flow begins. It signifies the start of a new game session or the game itself.

• Input Device (Keyboard, Mouse): Here, the player uses keyboards and mice and other input devices to interact with the game. These input

devices let the player to execute movements such as sprinting, jumping, walking, and attacking.

• Player Actions: This is where the player's actions are handled. Walking, jumping, running, and attacking are some of these motions. The

game logic then receives these actions.

• Game Logic: This part interprets the player's movements and computes the enemy's equivalent moves. It also oversees other components of

the game, like conditions and events.

• Enemy Actions: Enemy actions are predetermined by the decisions made by the game logic. Patrolling, spotting the player, and attacking the

player are common examples of these acts.

• Sound Effects: Different sound effects are activated based on activities taken by the player and enemies. For instance, the player's footsteps

sound as they move, and foes or the player themselves make fighting sounds.

International Journal of Research Publication and Reviews, Vol 5, no 5, pp 6177-6181 May 2024 6180

• Game Events: This part controls the game's events, including winning the game by clearing the board or losing it by dying. The game logic

determines the conditions under which these occurrences are initiated.

• End: This is where the process flow ends. It denotes the end of the process or game session.

4. COMPARETIVE ANALYSIS:

2D super Mario: Pirates hunt 2D:

1. Tile-Based Rendering:

• A tile grid is frequently used to build the game world. A piece

of the game environment—such as the ground, obstacles, and

power-ups—is represented by each tile. Efficiently

transferring these tiles to the screen is known as rendering.

• Based on the player's and camera's current positions inside

the game world, an algorithm is utilized to decide which tiles

to render.

1. Finite State Machine (FSM):

• A basic idea in game creation, finite state machines are used

to simulate how things would behave in a game. A finite set

of states, the transitions between them, and the actions

connected to each state make up an FSM. For character AI,

game flow control, and animation management in particular,

it offers an organized method of describing complicated

actions. FSMs are appropriate for both simple and complex

gaming systems because they provide clarity in state

transitions and are comparatively straightforward to

implement and comprehend.

2. Collision Detection:

• Collision detection methods are essential to ensuring that

Mario interacts with the game world correctly. Mario's

collisions with barriers, opponents, power-ups, and other

game elements are detected using these algorithms.

• Bounding box collision detection, pixel-perfect collision

detection, and more sophisticated algorithms for objects with

irregular shapes are examples of common procedures.

2 .Collision Detection:

• Collision detection methods are essential to ensuring that

Mario interacts with the game world correctly. Mario's

collisions with barriers, opponents, power-ups, and other

game elements are detected using these algorithms.

• Bounding box collision detection, pixel-perfect collision

detection, and more sophisticated algorithms for objects with

irregular shapes are examples of common procedures.

3.Physics Simulation:

• Physics simulations power Mario's movement, jumping, and

interactions with the surroundings. For the character's

movements to feel genuine, algorithms manage friction,

acceleration, gravity, and velocity.

• Physics can be simulated in the game world using methods

like Verlet or Euler integration.

3.Physics Simulation:

• To create realistic interactions and settings in games, physics

simulation is essential. Games can be more dynamic and

realistic by using physics engines to simulate physical laws

and features like gravity, friction, and collision detection. A

lot of different game genres, such as racing games,

platformers, and simulations, incorporate physics simulation.

4. Enemy Behaviors:

• In the game, adversaries are controlled by algorithms. For

instance, figuring out how adversaries move, respond to

the player, and engage with the surroundings. To direct

enemy actions, this might make use of state machines,

pathfinding algorithms (like A*), or straightforward

behavior trees.

4.Path finding :

For things in the game world to find the best routes and navigation

paths, path finding algorithms are crucial. Pathfinding algorithms aid

in ensuring effective movement and decision-making in dynamic

situations, from directing non-player characters (NPCs) to enabling

strategic planning in strategy games

5.Level Design:

• Game levels are created or structured in part by

algorithms. While hand-designed levels may entail

algorithms for rationally positioning objects, adversaries,

and obstacles within the level, procedural generation

 5.Mapping method:

When building a game layout in a window, the mapping method is

used to determine the position of the elements, objects, and map of

the game by marking them in red, blue, and green. Each tile is

assigned a value based on its marking in the level layout of the game,

International Journal of Research Publication and Reviews, Vol 5, no 5, pp 6177-6181 May 2024 6181

techniques have the ability to construct levels in a

dynamic manner.

and the level layout is created based on the color-marked positions of

the elements, objects, and tiles while the game is running. The

mapping method initializes the source code to create a game layout

where game levels are created.

6. User Input Handling:

• To efficiently control Mario and interact with the game

world, algorithms process user input from the keyboard or

controller.

6. Event handling:

• Systems are developed to manage and respond to player

input, including keyboard or controller input.

• These systems translate player actions into meaningful

events that affect the game state.

CONCLUSION

To sum up, every technique that was looked at—Finite State Machines, Physics Simulation, Event Handling, and Path Finding—brings special advantages

and skills to the table when it comes to game production. While physics simulation improves realism and dynamic interactions, FSMs are excellent at

modeling complicated behaviors and game flow control. While pathfinding algorithms provide effective navigation and decision-making, event handling

systems allow dynamic gameplay and player interactions.

In the end, the technique selected will rely on the particular needs, limitations, and design objectives of the game being created. Game creators can make

wise choices to provide engaging and immersive gaming experiences by being aware of the traits and uses of each approach.

REFERENCE

• "Game Programming Patterns" by Robert Nystrom - This book provides insights into different game development techniques, including finite

state machines and event handling.

• "Artificial Intelligence for Games" by Ian Millington and John Funge - This book covers various AI techniques used in game development,

including pathfinding algorithms.

• "Physics for Game Developers" by David M. Bourg - This book focuses on physics simulation in game development, offering practical

techniques and implementations.

• Gamasutra (www.gamasutra.com) - Gamasutra frequently publishes articles and tutorials on game development techniques, including finite

state machines, physics simulation, pathfinding, and event handling

• GameDev.net (www.gamedev.net) - GameDev.net is a community-driven website where developers share insights and knowledge on various

aspects of game development, including AI techniques and physics simulation.

• Unity Learn (learn.unity.com) - Unity's official learning platform offers tutorials and documentation on implementing finite state machines,

physics simulation, pathfinding, and event handling in Unity game engine.

• A Survey of Pathfinding Techniques in Real-Time Strategy Games" by Marco Chiarandini, Ulrich Junker, and Mark M. Richter - This paper

provides an overview of pathfinding algorithms used in real-time strategy games, offering insights into their performance and suitability for

different scenarios.

• "Finite State Machine Based Approach for Character Behavior Modeling in Video Games" by Nikos Grammalidis, Dimitris N. Metaxas, and

Ioannis Kompatsiaris - This paper discusses the application of finite state machines in modeling character behaviors in video games.

• "Comparison of Physics Engines for Virtual Environments" by P. Bourke, N. Berglund, and C. Ziemer - This paper compares different physics

engines used in virtual environments, evaluating their performance, accuracy, and usability.

• "A Comparative Study of Finite State Machine Implementations in Game Development" by X. Wang, Y. Liu, and Z. Zhang - This research

paper compares various implementations of finite state machines in game development, evaluating their flexibility, scalability, and ease of

use.

