

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

A class of new solutions in integers to Ternary Quadratic Diophantine Equation.

Dr.N. Thiruniraiselvi^{1*}, Dr. M.A. Gopalan²

¹Assistant Professor, Department of Mathematics, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram, Trichy-621 112, Tamil Nadu, India. email: <u>drntsmaths@gmail.com</u>

Orcid id :0000-0003-4652-3846

<u>Olcia la .0000-0003-4032-3840</u>

² Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. email:<u>mayilgopalan@gmail.com</u> <u>Orcid id :0000-0003-1307-2348</u>

ABSTRACT

This paper aims at presenting many non-zero distinct solutions quadratic Diophantine in integers ternarv equation to $12(x^2 + y^2) - 23xy + 2x + 2y + 4 = 56z^2$. The substitution strategy is employed to obtain the solution patterns.

Keywords : Ternary quadratic equation ,Non-homogeneous quadratic equation, Integer solutions

Introduction

It is well-known that the subject of diophantine equations occupies a pivotal role in the Number theory. There is a vast general theory for quadratic equations in many variables and it is a topic for research even today. While collecting problems on quadratic diophantine equations having three variables ,the paper [1] was noticed and the authors have presented only four sets of solutions belonging to a single pattern. It is worth to mention that the equation presented in [1] has many more fascinating patterns of solutions in integers.

In this paper ,the process of obtaining some more choices of solutions in integers is illustrated.

Technical procedure

The non-homogeneous ternary quadratic Diophantine equation to be solved is

$$12(x2 + y2) - 23xy + 2x + 2y + 4 = 56z2$$
(1)

To start with, it is observed by scrutiny that (1) is satisfied by

 $x = \pm 4 k - 2$, $y = \pm 2 k - 2$, z = k

To obtain the other choices of patterns of integer solutions to (1), the substitution of the linear transformations given below

$$x = 6a + 56b + 2c - 2 ,$$

$$y = 6a - 56b - 2c - 2 ,$$

$$z = 2c + 47b$$
(2)

in (1) leads to the homogeneous ternary quadratic equation

$$c^2 = a^2 + 658 b^2$$
 (3)

)

Note that (3) is of the form $z^2 = y^2 + D x^2$,where D > 0 &square-free.

Employing the most cited solutions to the above equation , it is seen that (3) is satisfied by

$$b = 2pq, a = 658p^{2} - q^{2}, c = 658p^{2} + q^{2}$$
(4)

In view of (2), the corresponding integer solutions to (1) are given by

$$\begin{aligned} x &= 6 (658 p^{2} - q^{2}) + 112 p q + 2 (658 p^{2} + q^{2}) - 2 ,\\ y &= 6 (658 p^{2} - q^{2}) - 112 p q - 2 (658 p^{2} + q^{2}) - 2 ,\\ z &= 94 p q + 2 (658 p^{2} + q^{2}). \end{aligned}$$

Note 1

The integer solutions to (3) may also be taken as

$$b = 2pq$$
, $a = p^2 - 658q^2$, $c = p^2 + 658q^2$

For this choice, the corresponding integer solutions to (1) are given by

$$x = 6 (p2 - 658q2) + 112 pq + 2(p2 + 658q2) - 2,$$

$$y = 6 (p2 - 658q2) - 112 pq - 2(p2 + 658q2) - 2,$$

$$z = 94 pq + 2(p2 + 658q2).$$

Note 2

Apart from the linear transformations given by (2) ,one may also consider

x = 6a - 56b + 2c - 2,

$$y = 6a + 56b - 2c - 2$$
,
 $z = 2c - 47b$

which represent a different set of integer solutions to (1).

Further, one may represent (3) as the system of double equations as shown in Table 1 below : Table 1- System of double equations

System	Ι	П	III	IV	V	VI	VII	VIII
c + a	b ²	$7b^2$	$47 b^2$	329b ²	658 b	329 b	94 b	47 b
c – a	658	94	14	2	b	2 b	7 b	14 b

Solving each of the above system of double equations ,the values of \mathbf{a} , \mathbf{b} , \mathbf{c} are obtained. From (2) ,the respective integer solutions to (1) are found. For brevity, we present below the integer solutions to (1) :

 $\begin{aligned} x &= 6(2k^2 - 329) + 112k + 2(2k^2 + 329) - 2, \\ y &= 6(2k^2 - 329) - 112k - 2(2k^2 + 329) - 2, \\ z &= 2(2k^2 + 329) + 94k \end{aligned}$ Solutions from System II: $\begin{aligned} x &= 6(14k^2 - 47) + 112k + 2(14k^2 + 47) - 2, \\ y &= 6(14k^2 - 47) - 112k - 2(14k^2 + 47) - 2, \\ z &= 2(14k^2 + 47) + 94k \end{aligned}$ Solutions from System III: $\begin{aligned} x &= 6(94k^2 - 7) + 112k + 2(94k^2 + 7) - 2, \\ z &= 2(94k^2 - 7) - 112k - 2(94k^2 + 7) - 2, \\ z &= 2(94k^2 + 7) + 94k \end{aligned}$ Solutions from System III: $\begin{aligned} x &= 6(658k^2 - 1) + 112k + 2(658k^2 + 1) - 2, \\ z &= 2(658k^2 - 1) - 112k - 2(658k^2 + 1) - 2, \\ z &= 2(658k^2 + 1) + 94k \end{aligned}$

Solutions from System V :	$\begin{aligned} x &= 6 (657 \ k) + 112 \ k + 2 (659 \ k) - 2 , \\ y &= 6 (657 \ k) - 112 \ k - 2 (659 \ k) - 2 , \\ z &= 2 (659 \ k) + 94 \ k \end{aligned}$
Solutions from System VI :	$\begin{aligned} x &= 6(327 k) + 112 k + 2(331 k) - 2 ,\\ y &= 6(327 k) - 112 k - 2(331 k) - 2 ,\\ z &= 2(331 k) + 94 k \end{aligned}$
Solutions from System VII	x = 6(87k) + 112k + 2(101k) - 2, y = 6(87k) - 112k - 2(101k) - 2, z = 2(101k) + 94k
Solutions from System VIII	x = 6(33k) + 112k + 2(61k) - 2, y = 6(33k) - 112k - 2(61k) - 2, z = 2(61k) + 94k

REFERENCE :