A class of new solutions in integers to Ternary Quadratic Diophantine Equation.

Dr.N.Thiruniraiselvi $i^{I^{*}}$, Dr. M.A.Gopalan ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram,Trichy621 112, Tamil Nadu, India.
email: drntsmaths@gmail.com
Orcid id :0000-0003-4652-3846
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India. email:mayilgopalan@gmail.com
Orcid id :0000-0003-1307-2348

ABSTRACT

| This paper aims at presenting many non-zero distinct solutions in integers to ternary quadratic Diophantine equation |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $12\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-23 \mathrm{xy}+2 \mathrm{x}+2 \mathrm{y}+4=56 \mathrm{z}^{2}$. The substitution strategy is employed to obtain the solution patterns. |

Keywords : Ternary quadratic equation,Non-homogeneous quadratic equation, Integer solutions

Introduction

It is well-known that the subject of diophantine equations occupies a pivotal role in the Number theory. There is a vast general theory for quadratic equations in many variables and it is a topic for research even today. While collecting problems on quadratic diophantine equations having three variables ,the paper [1] was noticed and the authors have presented only four sets of solutions belonging to a single pattern. It is worth to mention that the equation presented in [1] has many more fascinating patterns of solutions in integers.

In this paper ,the process of obtaining some more choices of solutions in integers is illustrated.

Technical procedure

The non-homogeneous ternary quadratic Diophantine equation to be solved is

$$
\begin{equation*}
12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2} \tag{1}
\end{equation*}
$$

To start with, it is observed by scrutiny that (1) is satisfied by

$$
\mathrm{x}= \pm 4 \mathrm{k}-2, \mathrm{y}= \pm 2 \mathrm{k}-2, \mathrm{z}=\mathrm{k}
$$

To obtain the other choices of patterns of integer solutions to (1) ,the substitution of the linear transformations given below

$$
\begin{align*}
& x=6 a+56 b+2 c-2 \\
& y=6 a-56 b-2 c-2 \tag{2}\\
& z=2 c+47 b
\end{align*}
$$

in (1) leads to the homogeneous ternary quadratic equation

$$
\begin{equation*}
c^{2}=a^{2}+658 b^{2} \tag{3}
\end{equation*}
$$

Note that (3) is of the form $\mathrm{z}^{2}=\mathrm{y}^{2}+\mathrm{D} \mathrm{x}^{2}$, where $\mathrm{D}>0$ \&square-free.

Employing the most cited solutions to the above equation, it is seen that (3) is satisfied by

$$
\begin{equation*}
\mathrm{b}=2 \mathrm{pq}, \mathrm{a}=658 \mathrm{p}^{2}-\mathrm{q}^{2}, \mathrm{c}=658 \mathrm{p}^{2}+\mathrm{q}^{2} \tag{4}
\end{equation*}
$$

In view of (2) , the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& \mathrm{x}=6\left(658 \mathrm{p}^{2}-\mathrm{q}^{2}\right)+112 p \mathrm{q}+2\left(658 \mathrm{p}^{2}+\mathrm{q}^{2}\right)-2 \\
& \mathrm{y}=6\left(658 \mathrm{p}^{2}-\mathrm{q}^{2}\right)-112 \mathrm{pq}-2\left(658 \mathrm{p}^{2}+\mathrm{q}^{2}\right)-2 \\
& \mathrm{z}=94 \mathrm{pq}+2\left(658 \mathrm{p}^{2}+\mathrm{q}^{2}\right)
\end{aligned}
$$

Note 1
The integer solutions to (3) may also be taken as

$$
\mathrm{b}=2 \mathrm{pq}, \mathrm{a}=\mathrm{p}^{2}-658 \mathrm{q}^{2}, \mathrm{c}=\mathrm{p}^{2}+658 \mathrm{q}^{2}
$$

For this choice, the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=6\left(p^{2}-658 q^{2}\right)+112 p q+2\left(p^{2}+658 q^{2}\right)-2 \\
& y=6\left(p^{2}-658 q^{2}\right)-112 p q-2\left(p^{2}+658 q^{2}\right)-2 \\
& z=94 p q+2\left(p^{2}+658 q^{2}\right)
\end{aligned}
$$

Note 2
Apart from the linear transformations given by (2), one may also consider

$$
\begin{aligned}
& x=6 a-56 b+2 c-2 \\
& y=6 a+56 b-2 c-2 \\
& z=2 c-47 b
\end{aligned}
$$

which represent a different set of integer solutions to (1).
Further, one may represent (3) as the system of double equations as shown in Table 1 below :
Table 1-System of double equations

System	I	II	III	IV	V	VI	VII	VIII
$\mathrm{c}+\mathrm{a}$	b^{2}	$7 \mathrm{~b}^{2}$	$47 \mathrm{~b}^{2}$	$329 \mathrm{~b}^{2}$	658 b	329 b	94 b	47 b
$\mathrm{c}-\mathrm{a}$	658	94	14	2	b	2 b	7 b	14 b

Solving each of the above system of double equations ,the values of $\mathbf{a}, \mathrm{b}, \mathrm{c}$ are obtained. From (2) ,the respective integer solutions to (1) are found. For brevity, we present below the integer solutions to (1) :

$$
\begin{aligned}
& \mathrm{x}=6\left(2 \mathrm{k}^{2}-329\right)+112 \mathrm{k}+2\left(2 \mathrm{k}^{2}+329\right)-2, \\
& \text { Solutions from System I: } y=6\left(2 k^{2}-329\right)-112 k-2\left(2 k^{2}+329\right)-2 \text {, } \\
& \mathrm{z}=2\left(2 \mathrm{k}^{2}+329\right)+94 \mathrm{k} \\
& \mathrm{x}=6\left(14 \mathrm{k}^{2}-47\right)+112 \mathrm{k}+2\left(14 \mathrm{k}^{2}+47\right)-2, \\
& \text { Solutions from System II : } y=6\left(14 k^{2}-47\right)-112 k-2\left(14 k^{2}+47\right)-2 \text {, } \\
& \mathrm{z}=2\left(14 \mathrm{k}^{2}+47\right)+94 \mathrm{k} \\
& \mathrm{x}=6\left(94 \mathrm{k}^{2}-7\right)+112 \mathrm{k}+2\left(94 \mathrm{k}^{2}+7\right)-2, \\
& \text { Solutions from System III : } \quad y=6\left(94 k^{2}-7\right)-112 k-2\left(94 k^{2}+7\right)-2 \text {, } \\
& \mathrm{z}=2\left(94 \mathrm{k}^{2}+7\right)+94 \mathrm{k} \\
& \mathrm{x}=6\left(658 \mathrm{k}^{2}-1\right)+112 \mathrm{k}+2\left(658 \mathrm{k}^{2}+1\right)-2, \\
& \text { Solutions from System IV : } \mathrm{y}=6\left(658 \mathrm{k}^{2}-1\right)-112 \mathrm{k}-2\left(658 \mathrm{k}^{2}+1\right)-2 \text {, } \\
& \mathrm{z}=2\left(658 \mathrm{k}^{2}+1\right)+94 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& x=6(657 k)+112 k+2(659 k)-2, \\
& \text { Solutions from System V: } \quad y=6(657 \mathrm{k})-112 \mathrm{k}-2(659 \mathrm{k})-2 \text {, } \\
& \mathrm{z}=2(659 \mathrm{k})+94 \mathrm{k} \\
& x=6(327 k)+112 k+2(331 k)-2, \\
& \text { Solutions from System VI: } \quad y=6(327 k)-112 k-2(331 k)-2 \text {, } \\
& \mathrm{z}=2(331 \mathrm{k})+94 \mathrm{k} \\
& x=6(87 k)+112 k+2(101 k)-2, \\
& \text { Solutions from System VII: } y=6(87 k)-112 k-2(101 k)-2 \text {, } \\
& \mathrm{z}=2(101 \mathrm{k})+94 \mathrm{k} \\
& \mathrm{x}=6(33 \mathrm{k})+112 \mathrm{k}+2(61 \mathrm{k})-2 \text {, } \\
& \text { Solutions from System VIII : } y=6(33 k)-112 k-2(61 k)-2 \text {, } \\
& z=2(61 k)+94 k
\end{aligned}
$$

REFERENCE :
[1] C.Saranya ,M. Janani ,Observations on Ternary Quadratic Diophantine Equation $12\left(x^{2}+y^{2}\right)-23 x y+2 x+2 y+4=56 z^{2}$,IJRASET,Vol. 12 ,Issue III, 606-609, March 2024

