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ABSTRACT:  

In various industries, multi-camera systems have become increasingly prevalent, offering extensive coverage and diverse perspectives. The rise of new learning 

technology has easily solve the integration of sophisticated video capabilities into these systems. However, existing solutions often overlook the impact of dynamic 

content changes, such as fluctuations in the types and quantities of objects captured by different cameras over time. To address this challenge, the authors propose 

a novel approach called Workload and Model Adaptation (WMA). This strategy, implemented as a two-stage resource allocation method, aims to optimize the 

performance of a three-tiered cross-camera video analytics system. Notably, the architecture system and workflow control adhere to the IEEE 1935 benchmark, 

ensuring compatibility and interoperability. The study focuses on evaluating the graphics processing unit efficiency performance of a specific application, namely 

vehicle re-identification, within the proposed system framework. Additionally, it investigates the dynamic nature of workloads across multiple cameras, shedding 

light on the challenges associated with executing multiple processes concurrently. To assess the efficacy of the WMA strategy, the system undergoes rigorous 

evaluation using a widely adopted data collection and exceeds the performance foundation, significantly improving both the total workput and latency across 

cameras in the system. In essence, the research introduces a comprehensive solution to address the evolving demands of multi-camera video analytics systems. By 

incorporating adaptive resource allocation and workload balancing mechanisms, the proposed approach enhances system performance and responsiveness in 

dynamic environments. Furthermore, the adherence to established industry standards ensures compatibility and facilitates seamless integration with existing 

infrastructures. Overall, the study contributes valuable insights and practical strategies to optimize the efficiency and effectiveness of cross-camera video analytics 

systems. 
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1. INTRODUCTION 

In recent times, the widespread deployment of cameras in various locations like road intersections, grocery stores, and university campuses has become 

commonplace. This trend has been accompanied by significant advancements in deep learning, making it easier to implement sophisticated video. 

Moreover, the use of multiple cameras has expanded the supported software, including vehicle counting, traffic control, and object re-identification. 

However, despite these advancements, there are challenges related to performance degradation due to dynamic content changes across different cameras 

and over time. To address these challenges, the authors propose a Workload and Model Adaptation (WMA) framework, which aims to optimize resource 

allocation and ensure workload balance in a cross-camera video analytics system. The WMA framework is designed to leverage the capabilities of edge 

computing, which brings cloud capabilities within reach of end-users by providing computing, caching, and resources at the network edge. By integrating 

edge/fog computing architecture with video analytics applications, latency and throughput bottlenecks in the system can be mitigated. This approach 

involves processing applications closer to the data source, thereby reducing the need for data transmission and minimizing latency. To ensure compatibility 

and interoperability, the WMA framework adheres to industry standards such as the IEEE 1935 Edge standard, which defines a three-tiered architecture 

for edge computing. One of the primary challenges addressed by the WMA framework is workload imbalance, which can lead to uneven distribution of 

processing tasks across servers. Uneven server load distribution can reduce processing throughput and worsen latency by overloading some servers while 

leaving others underutilized. To mitigate this issue, the framework utilizes a three-tiered edge system, with the middle-layer server responsible for 

monitoring workload and addressing workload imbalances. Another significant challenge addressed by the WMA framework is data drift, which refers 

to the gradual change in the distribution of data over time. 
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Figure 1: Vehicle recognition (a)  Unaltered video footage (b) The video feed showcasing recognition outcomes through color-coded bounding boxes 

and labels. 

This phenomenon can impact the accuracy of deep neural network (DNN) models used in video analytics applications. In response to data drift, the 

framework integrates ongoing learning, wherein DNN models are iteratively retrained on fresh data while preserving prior insights. This approach enables 

the models to adapt to changing environments and evolving object behaviors over time. The key contributions of the WMA framework include the 

evolution of a sophisticated multi-camera vehicle tracking system integrating adaptive retraining algorithms and workload optimization strategies. The 

framework also leverages GPU acceleration for real-time vehicle tracking, ensuring consistent performance in practical usage scenarios. In summary, the 

WMA framework offers a comprehensive solution to the challenges associated with cross-camera video analytics systems. By addressing workload 

imbalance and data drift through a combination of edge computing, continuous learning, and adherence to industry standards, the framework enhances 

overall system performance and scalability. The subsequent sections of this paper will delve into related work, the proposed system model, problem 

formulation, evaluation setup, experiments conducted, and research findings. 

2. RELATED WORKS 

This section outlines the IEEE 1935 edge standard framework utilized as the core architecture and categorizes research on multi-camera video analytics 

into four domains: optimization of video analytics, management of resources, enhancement of configurations, and conceptualization of future systems. 

A. IEEE STANDARD EDGE 

This section introduces the components of the Edge Orchestration (EFO) framework and the architecture of the   edge computing system. The EFO 

framework encompasses a variety of critical elements, among them the VF M&O, Rule EIM. The VF M&O component is primarily cause for initializing 

and managing applications within the system, ensuring their proper operation.[1] 

The Rule Framework component handles various conditions, requirements, and reactions necessary for efficient system functioning. Additionally, the 

EIM component provides real-time visibility into the system's inventories, including resources and services, allowing for effective management.[2] 

 

     Figure 2: Edge Standard Architecture Diagram 

The Edge Control Node acts as the pivotal link within the edge computing infrastructure, orchestrating the activities of Compute nodes while efficiently 

administering their corresponding resources. There are two main categories of entities within the Edge Control Node: the (Imaginary). [3] 
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At the bottom layer of the architecture is the Edge Compute Node, responsible for executing practical computing tasks. These Compute nodes play a 

crucial role in handling computational workloads generated by edge applications. [4] 

The Edge Orchestration framework comprises essential components such as VF M&O, Rule Framework, and EIM, which collectively manage the 

system's functionalities and infrastructures. The Edge Control Node acts as an intermediary layer overseeing Compute nodes and managing resources, 

while the Edge Compute Node handles practical computing tasks and facilitates communication with the internet.[5} 

B. VIDEO DATA ENHANCEMENT 

The video analytics application involves a sequence of steps, including frame segmentation, detection of regions of interest (ROI), and model inference. 

Several studies have aimed to improve performance by optimizing different stages based on specific contextual conditions. For instance, Spatula leveraged 

spatial and temporal correlations across multiple cameras to reduce computational costs. [14] 

The company also streamlined operational efficiency by integrating advanced algorithms into their data processing systems. [9] 

C.   RESOURCE ALLICATION 

Video analytics, being resource-intensive, presents challenges when processing multiple video streams simultaneously due to limited server resources. 

Intelligent resource management mechanisms are essential to address this issue. Techniques for improved resource management include partitioning and 

deploying video pipelines, integrating video pipelines, and balancing server workloads. These mechanisms ensure swift adaptation to variations in 

workload. Video Edge [8] determined optimal video pipeline configurations based on resources and accuracy, distributing pipelines across hierarchical 

clusters and consolidating common components. Video Storm [2] developed a scheduler considering resource-quality profiles and lag tolerance. Faticanti 

et al.'s method optimizes the placement of video pipelines on infrastructure to enhance camera network coverage, ensuring dynamic balance and efficient 

workload distribution among smart cameras and edge clusters. [12] Ng et al. efficiently managed camera streams and tasks through a sophisticated end-

edge-cloud architecture, taking into account both computational and networking resources in a comprehensive manner [11]. 

D. LAYOUT ENHANCEMENT 

Optimizing the video pipeline layout entails exceeding correlations in camera, such as in field of interest, subject density, and covering area, to refine the 

application's performance. Continuous learning is another approach to improve configuration by adapting the model over time. The inference model 

undergoes periodic updates through retraining with new data. Chameleon [3] dynamically adjusts configurations over time, leveraging spatial and 

temporal correlations to minimize adaptation overhead. CrossRoI [2]. Convince [24] utilizes spatiotemporal correlation to reduce redundant frames and 

bandwidth usage. Li [5] 

E. ENVISIONED SYSTEM 

Subject tout powerful video analytics applications but lack actual implementations. Yi et al. [6] The team diligently worked on implementing the software-

defined video analytics system, focusing on seamless cross-camera collaboration and efficient multitasking features. [7]  

Indeed, the absence of such integrated frameworks accentuates the urgency for holistic approaches that synergize resource management and configuration 

enhancement, crucial for optimizing resource allocation and enhancing overall performance in video analytics applications. 

 

                         Figure 3: WMA System Architecture 

3. PROPOSED WORK 

Text This study introduces a novel system called WMA, which operates within the framework of the IEEE 1935 edge computing standard. This system 

comprises three tiers: Edge/Fog Orchestrator, Control node, and Compute nodes, which collectively form clusters. The Edge/Fog Orchestrator oversees 

the collection of metrics from all Compute nodes ensures efficient resource allocation, while ensuring seamless execution of applications for nearby 

cameras. The system architecture involves interconnections between cameras and servers, with dashed lines indicating camera-server links and solid lines 

representing connections between servers. 
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Cameras, strategically positioned at road intersections, serve as inputs for the video analytics service. The design aligns with the IEEE 1935, ensuring 

compatibility and interoperability. Figure 4 illustrates the detailed component design and workflow, which includes various elements such as VF M&O, 

Rule Framework, Edge Inventory Manager, Edge Platform Manager, Edge Platform, and Edge App, distributed across different tiers of the system. 

The system's workflow revolves around the interaction of these components, facilitating efficient data and control flow. Brown arrows symbolize the 

flow of application data, indicating how data moves within the system for processing and analysis. In contrast, green and blue arrows denote data flow, 

illustrating the transmission of information between various modules in the software architecture. 

In this configuration, the mapping of cameras to Compute nodes is represented by a binary variable evn, which equals 1 if camera v is processing on 

Compute node n. 

Overall, the system architecture encompasses various components and mechanisms designed to facilitate efficient processing and analysis of video data 

in edge computing environments. It leverages standardized protocols and practices outlined by the IEEE 1935 standard, ensuring compatibility and 

interoperability across different edge computing systems. The detailed workflow and component interactions enable seamless operation and management 

of the system, ensuring reliable and timely delivery of video analytics services.  

 

Figure 4: Edge Standard Compatible System Architecture and System Workflow 

 

 

This paper focuses on subjevt re-identification as the main application for cross-camera video analytics on edge systems, emphasizing its complexity 

compared to standard tasks like object detection. Despite being less explored, vehicle re-identification shows promise for real-world applications in multi-

camera setups. The study also examines GPU usage and memory usage during application execution, highlighting challenges with multi-task execution 

on a single server, which affects GPU utilization. 

A. RECOGINITION OF SUBJECT 

Vehicle re-identification has emerged as a prominent and intricate application within vehicle analytics, notably featured in competitions like the AI City 

Challenge over numerous years. While solutions vary, they typically adhere to a standardized framework. This framework generally involves three main 

stages: object detection, feature extraction, and tracking. The process is depicted in Figure 5 of the paper. 
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    Table 1: List of notations. 

 

      Table 2: Time of execution for each steps  

The video frame processing pipeline consists of three main stages: object detection to identify vehicles, deep learning-based feature extraction to 

characterize each vehicle's color and type, and a tracking module to assign IDs to vehicles based on features and historical data. These latter two steps 

are collectively referred to as "re-id" for simplicity in the paper. 

Table 2 reveals that the feature extraction step consumes significantly more time per frame compared to other steps, indicating its critical nature. This is 

due to the complexity of the inference process involved in feature extraction, which requires multiple runs for numerous objects within a single frame. 

Moreover, the intricacies of vehicle re-identification stem from its inherently stateful nature, wherein the tracking algorithm draws heavily from past data 

to maintain continuity in vehicle tracking. This reliance on historical information renders parallel execution of the re-identification process unattainable, 

thus exacerbating GPU utilization challenges, as elaborated in the following section. 

 

   

Figure 5: The recognition frame of each subject. 

B. MEMORY AND GPU OPTIMIZATION 
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The critical factors in video re-identification applications, each presenting unique challenges that can impact overall system performance. 

GPU Utilization: This metric measures the percentage of time during which the GPU is actively executing tasks. While it's vital for assessing the efficiency 

of Convolutional Neural Network (CNN) inference, it's often neglected in previous studies. This oversight is partly because many deep learning 

applications primarily involve CNN inference tasks, which inherently utilize the GPU efficiently. Therefore, while conducting vehicle re-identification 

tasks, the sequential execution and limited GPU utilization during certain steps may prevent achieving a 100% GPU utilization rate. Consequently, instead 

of adjusting the execution time based on the server's computing power, the cost of computing resources (CI) is treated as a fixed value. 

Insufficient GPU memory on a Compute node can not only hamper data processing but also result in application failures, underscoring the critical 

importance of adequate GPU memory allocation.  

The limitations can be modeled using equations, where the total GPU memory used by all applications running on a server. 

 

C. MULTI-PROCESS EXECUTING MODEL 

In a multi-camera video analytics system, multiple GPU-related processes may run simultaneously on a single server. However, it's observed that 

increasing the number of processes doesn't necessarily lead to a proportional increase in GPU utilization. To address this concern, a modifier γ is 

implemented to fine-tune the resource cost associated with each process CI, where CI n represents the total resource expenditure across all applications, 

while CI v specifically pertains to individual video streams. 

The total optimized resource for the process and the ci n on server can be represented by the following equations. 

 

4. RESULT AND DISCUSSION 

 

Figure 6: The subject V2 dataset comprises 5 cameras positioned at a road bisection, with the snap on the right depicting the views from Camera one 

and Camera five. 
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Figure 7: Illustrative subject relation-boxes and overall scene snap from the VRIC angle. 

The system implementation section outlines the utilization of two datasets, CityFlowV2 and VRIC, for training and testing the vehicle re-identification 

application. CityFlowV2 comprises videos from 46 cameras in a real-world traffic environment, while VRIC includes images captured by 60 cameras 

depicting various conditions such as resolution variations, motion blur, and illumination changes. The video re-identification application is built upon a 

Python project, offering configurable options for object detection models, feature extraction CNN models, and tracking algorithms. The chosen 

configurations include YOLO for object detection, Resnet-IBN for feature extraction, and Deep SORT for tracking. Experimental settings focus on 

evaluating system throughput, latency, and the impact of dynamic workloads, compute nodes, and cameras. Results indicate the importance of workload 

distribution, with the Weighted Mapping Algorithm (WMA) outperforming baseline schemes in terms of throughput and latency under dynamic workload 

conditions. The analysis also highlights the impact of the number of compute nodes and cameras on system performance, with configurations utilizing 

multiple compute nodes and cameras demonstrating significant improvements in throughput. 

 

Figure 8: Workload dynamics of five cameras in CityFlowV2 dataset. 

5. CONCLUSION 

The paper introduces aligned with the IEEE 1935 edge standard, the system facilitates model fine-tuning and workload balancing. Initial investigations 

delve into GPU utilization in vehicle re-identification applications, followed by an analysis of camera workload dynamics using a standard dataset. Results 

demonstrate WMA's superiority over baseline approaches, enhancing overall system throughput across cameras. For future endeavors, the authors propose 

adding configurable options for camera inputs and evaluating the system with larger datasets or in practical settings to enhance performance robustness.  
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