

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Design Optimization And Material Analysis Of Reused Plastic Composite Spur Gear

Mr.D.Manivannan ME.^{*1}, Mr.S.Suriya^{*2}, Mr.V.Anandha^{*3}, Mr.S.Arunprakash^{*4}

*1 Head of the Department of Mechanical Engineering, MRK Institute of Technology, Kattumanarkoil, Tamil Nadu

*2 UG student of Mechanical Engineering, MRK Institute of Technology, Kattumanarkoil, Tamil Nadu

*3 UG student of Mechanical Engineering, MRK Institute of Technology, Kattumanarkoil, Tamil Nadu

*4UG student of Mechanical Engineering, MRK Institute of Technology, Kattumanarkoil, Tamil Nadu

ABSTRACT :

To design the spur gear, study the weight reduction and stress distribution for cast steel and composite materials. Gearing is one of the most critical components in a mechanical power transmission system and in most industrial rotating machinery. It is possible that gears will predominate as the most effective means of transmitting power in future machines due to their high degree of reliability and compactness. In addition, the rapid shift in the industry from heavy industries such as shipbuilding to industries such as automobile manufacture and office automation tools will necessitate a refined application of gear technology. To design the spur gear model using design software. To study the impact analysis for carbon and composite materials. To study the torque loading for carbon and composite materials. Finally, comparing and analyzing the composite gear with existing cast steel gear is to be done.

Keywords: Design optimization, Material analysis, Reused plastic composite, Spur gear, Sustainability, Testing.

1. INTRODUCTION

The integration of reused plastic composites in engineering applications presents an opportunity to address both performance requirements and sustainability concerns. This introduction will discuss the design optimization and material analysis of a reused plastic composite spur gear, a critical component in many mechanical systems. With a growing emphasis on environmental responsibility and resource efficiency, the reuse of plastics offers a compelling solution to mitigate waste while meeting functional demands. However, ensuring the viability of such materials requires a thorough understanding of their mechanical properties, durability, and compatibility with operating conditions. Design optimization plays a pivotal role in maximizing the performance of spur gears while minimizing material usage and environmental impact. Material analysis is equally crucial, involving the selection of recycled plastics based on mechanical strength, thermal stability, and chemical resistance. By combining these aspects, this study aims to develop a sustainable spur gear design that balances performance, durability, and environmental stewardship.

2. OBJECTIVES

- > Investigate the feasibility of integrating reused plastic composites in the design of spur gears.
- > Optimize the design parameters of spur gears to maximize performance and efficiency while minimizing material usage.
- Conduct a comprehensive material analysis to evaluate the mechanical properties, thermal stability, and chemical resistance of reused plastic composites.
- Assess the environmental impact of the spur gear design throughout its lifecycle, including material production, manufacturing, use, and disposal.
- Validate the performance of the optimized spur gear design through testing under simulated operating conditions.
- Develop documentation and reporting detailing the design process, material selection criteria, testing procedures, and environmental analysis results.

3. METHDOLOGY

3.1 MIXING SOLUTION

> Carbon

- Epoxy resin
- Reused plastic material
- > Hardener

Thatuetter		
SI NO	MIXING COMPONENTS	QUANTITY
1	Carbon	300g
2	Epoxy resin	1kg
3	Reused plastic material	500 g
4	Hardener	800g

Table 2: mixing components

3.2 WORK FLOW

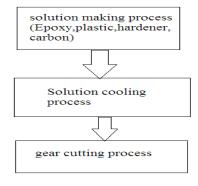


Fig 1: work flow

4. DESCRIPTION OF COMPONENTS

4.1 EPOXY

Epoxy resin serves as a potential material component for the project due to its compatibility with reused plastic composites. Its adhesive properties facilitate bonding between composite layers or with other materials, enhancing structural integrity. Epoxy can reinforce the composite's strength and stiffness, crucial for load-bearing components like spur gears. Additionally, its resistance to chemicals and environmental factors ensures durability in various operating conditions. By incorporating epoxy into the composite formulation or as an adhesive agent during assembly, the project can optimize the performance and longevity of the reused plastic composite spur gears, contributing to sustainable engineering practices.

Fig 2: Epoxy

Fig 3: An epoxy encapsulated hybrid circuit on a printed circuit board.

Fig 4: The interior of a pocket calculator

4.2 RECYCLED PLASTIC

Recycled plastic, a key material component, offers environmental and functional advantages for the project. Derived from post-consumer or postindustrial sources, recycled plastic contributes to waste reduction and resource conservation. By reprocessing plastics like polyethylene (PE) or polypropylene (PP), recycled materials can exhibit comparable mechanical properties to virgin plastics. These recycled plastics can be blended or reinforced to create composite materials suitable for spur gear applications. Their versatility, cost-effectiveness, and sustainability make recycled plastics an ideal choice for the project, aligning with eco-friendly initiatives while maintaining performance standards in gear functionality and durability.

Plastic identification code	Type of plastic polymer	Properties	Common packaging applications	Melting- (°C) and glass transitiontemperatures	Young's modulus (GPa)
PET PET	Polyethylene terephthalate(PET, PETE)	Clarity, strength, toughness, barrier to gas and moisture.	Soft drink, water and salad dressing bottles; peanut butter and jam jars; small consumer electronics	$Tm = 250;^{[43]}Tg = 76^{[43]}$	2–2.7 ^[44]
PE-HD	High-density polyethylene(HDPE)	Stiffness, strength, toughness, resistance to moisture, permeability to gas	Water pipes, hula hoop rings, five gallon buckets, milk, juice and water bottles; grocery bags, some shampoo/toiletry bottles	Tm = 130; ^[45] Tg = - 125 ^[46]	0.8 ^[44]
PVC	Polyvinyl chloride(PVC)	Versatility, ease of blending, strength, toughness.	Blister packaging for non-food items; cling films for non-food use. May be used for food packaging with the addition of the plasticisers needed to make natively rigid PVC flexible. Non-packaging uses are electrical cable insulation; rigid piping; vinyl records.	$Tm = 240;^{[47]} Tg = 85^{[47]}$	2.4-4.1 ^[48]
PE-LD	Low-density polyethylene(LDPE)	Ease of processing, strength, toughness, flexibility, ease of	Frozen food bags; squeezable bottles, e.g. honey, mustard; cling films; flexible container lids	Tm = 120; ^[49] Tg = - 125 ^[50]	0.17–0.28 ^[48]

		sealing, barrier to moisture			
PP	Polypropylene(PP)	Strength, toughness, resistance to heat, chemicals, grease and oil, versatile, barrier to moisture.	Reusable microwaveable ware; kitchenware; yogurt containers; margarine tubs; microwaveable disposable take- away containers; disposable cups; soft drink bottle caps; plates.	$Tm = 173;^{[51]} Tg = -10^{[51]}$	1.5-2 ^[44]
PS	Polystyrene(PS)	Versatility, clarity, easily formed	Egg cartons; packing peanuts; disposable cups, plates, trays and cutlery; disposable take-away containers	Tm = 240 (only isotactic); ^[46] $Tg = 100$ (atactic and isotactic) ^[46]	3-3.5 ^[44]
<u>کوہ</u>	Other (often polycarbonateor ABS)	Dependent on polymers or combination of polymers	Beverage bottles; baby milk bottles. Non-packaging uses for polycarbonate: compact discs; "unbreakable" glazing; electronic apparatus housings; lenses including sunglasses, prescription glasses, automotive headlamps, riot shields,panels.	Polycarbonate: Tg = 145; ^[53] Tm = 225 ^[54]	Polycarbonate: 2.6; ^[44] ABS plastics: 2.3 ^[44]

Table 1: Types of plastic

4.3 CARBON

Carbon fibers or carbon-based additives are significant components in the development of high-performance recycled plastic composites for the project. By incorporating carbon fibers into the composite matrix, mechanical properties such as strength, stiffness, and fatigue resistance can be greatly enhanced. Carbon-based additives can also improve the thermal stability and wear resistance of the composite, crucial factors for spur gear applications. Additionally, carbon reinforcements contribute to the lightweight nature of the composite, reducing overall system weight and inertia. The integration of carbon into recycled plastic composites underscores the project's commitment to sustainability while achieving superior performance and reliability in spur gear applications.

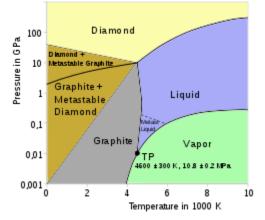


Fig 5: Theoretically predicted phase diagram of carbon

5. CALCULATION

5.1 MATERIAL PROPERTIES

S. No.	Material Property	Value	Unit
1	Density	1300	Kg/m3
2	Young's modulus	3.76E+9	ра
3	Poison's ratio	0.37	
4	Bulk modulus	5.74E+9	ра
5	Shear modulus	1.42E+9	ра
6	Tensile yield strength	100E+6	ра
7	Compressive yield strength	130E+6	ра
8	Coefficient of friction	0.18	
9	Thermal conductivity	0.25	W/m k
10	Coefficient of thermalexpansion	47E-6	K-1
11	Specific heat	1501	J/kg K
12	Endurance limit	41.2E+6	ра

Table 2: material properties

5.2 PARAMETRIC MODELLING OF SPUR GEAR

S. No.	Description	Symbol	Value	Units
1	Module	m	2.5	mm
2	Pressure Angle	ф	20	0
3	No of teeth	Z	60	
4	Center distance	а	150	mm
5	Face width	b	25	mm
6	Pitch Circle Diameter	dp	150	mm
7	Base Circle Radius	rb	70.47	mm
8	Addendum Circle Radius	ra	77.5	mm
9	Dedendum Circle Radius	rd	71.8	mm
10	Addendum	ha	2.5	mm
11	Dedendum	hd	2.89	mm
12	Fillet Radius	rp	0.98	mm
13	Shaft Radius	rs	16	mm
14	Total angle	Та	360	0
15	Bottom clearance	с	0.25	

Table 3: Dimensions of the Spur Gears

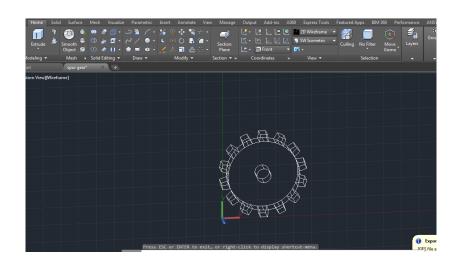
5.3 DESIGN CALCULATION OF PLASTIC SPUR GEAR:

Specifications of gear: Module (m)

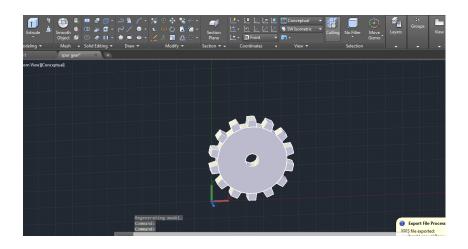
= 2.5 mm

150 mm

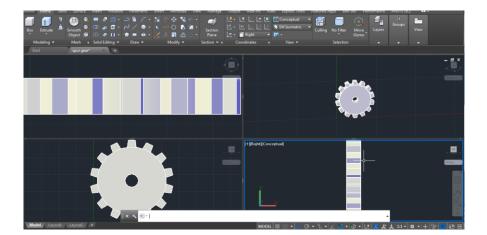
20 degree


2.25 Kw

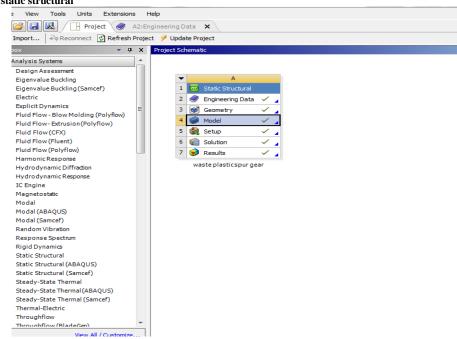
750 rpm


```
Center distance (a)
                                            =
             Pressure angle (\alpha)
                                            =
             Power (P)
                                            =
             Speed (N)
                                            =
Design Calculation:
   Power (P) = 2*\pi N*T / 60
   2250
           = (2*\pi 750*T) / 60
            =(2250*60)/(2*\pi*750)
   σ
   Torque = 28.64788 N-m
   Torque T = F * (d/2)
   Force F = T/(d/2)
           =28.64788/0.075
   Force F = 381.97185 N
Calculation of tangential load:
Where, P= power
      v= pitch line velocity
   3
          Service factor= 1.25 (medium)
          *D *N
   τ
   V = 60
   π* *60*750
   V = 60 * 1000
   v = 2.356m \text{ m/s}
   Calculation of initial dynamic load:
   Velocity factor1 +1 + 0.25
                1+12
             1+0.25*12
             =3.250
             =1193.761
```

6. RESULT AND DISCUSSION

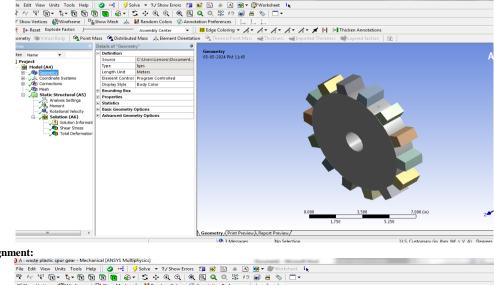

Cad modeling:

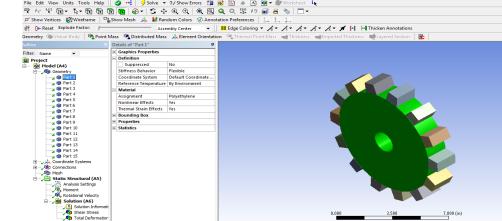
Solid model:



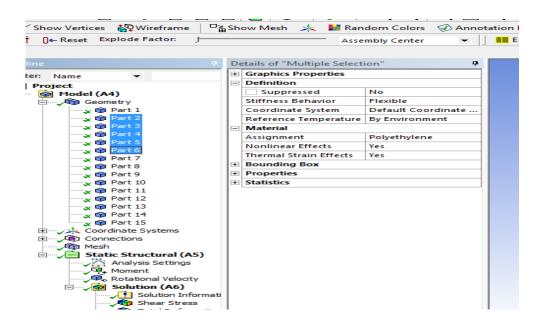
Multiple view:;

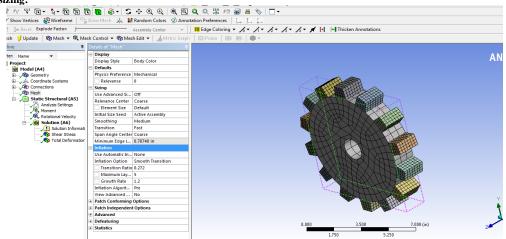
Ansys:

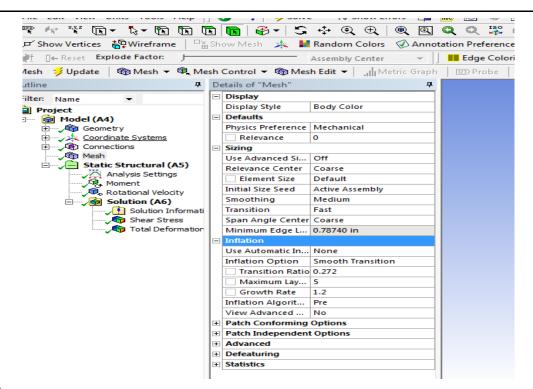

Testing selection:static structural

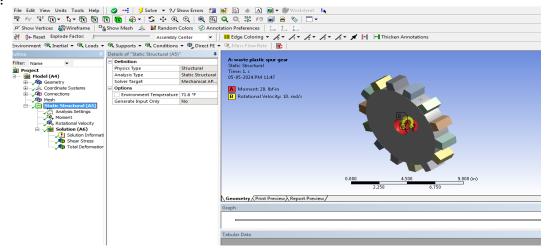

Material selection:

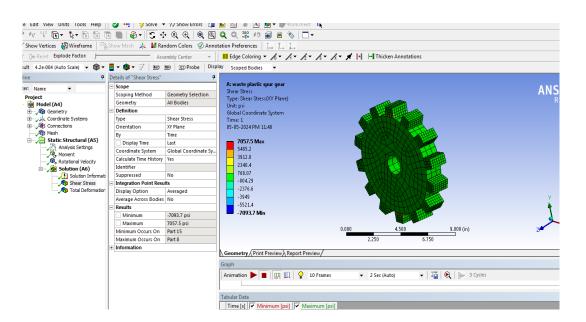
File	Edit View Tools Units Extensions Help											
1) 🗠	🛛 🔜 🔍 📄 Project 🥏 A2:Engineering Dat	a	×									
T Fil	ter Engineering Data j Engineering Data Sources											
Enginee	ering Data Sources	-			→ .0	×	Table of	Properties Row 2: Density	-			
	A	8	с	C)			A B				
1	Data Source	1	Location	Descr	iption		1	Temperature (C) 🔎 Density (kg m^-3)	-			
2	🔆 Favorites		Q	uick access list and defau	It items		2	7850		1		
3	General Materials			eneral use material sampli halyses.	es for use in various		Outline	of General Materials	_			
4	龖 General Non-linear Materials		G at	eneral use material sampl nalyses.	es for use in non-linear			A	в	с	D	E
5	Explicit Materials	1	🔍 M	aterial samples for use in	an explicit anaylsis.		1	Contents of General Materials 🛛 🔈			Source	Descript
6	I Hyperelastic Materials		K M	aterial stress-strain data	samples for curve fitting		2	Material	-			
7	Magnetic B-H Curves	100	K B	H Curve samples specific	for use in a magnetic		3	🥫 🍫 Air		-	General_Materials.xx	
	Thermal Materials		-	nalysis.		_	4	S Aluminum Alloy			General_Materials.x	General aluminum alloy. I come from MIL-HDBK-5H
8		000		aterial samples specific fo		15.	5	Seconcrete	-0-		General_Materials.xx	
9	Fluid Materials			aterial samples specific fo		_	6	Copper Alloy	-		General_Materials.xx	
10	Composite Materials		M. M	aterial samples specific fo	r composite structures.	_	7	Seray Cast Iron	4		General_Materials.xx	
*	Click here to add a new library						8	Se Magnesium Alloy	-		General_Materials.xx	
							9	Se Polyethylene	4		General Materials.xx	
_							10	Silicon Anisotropic	-	~	General Materials.xx	
Prop	erties of Outline Row 12: Structural Steel				* *	×	11	Stainless Steel	4		General_Materials.xx	
	A			8	С	.	11	Stamess Steel	1		- General_natenais.x	
1	Property				Unit		12	🌭 Structural Steel	-	۲	General_Materials.xx	Fatigue Data at zero me from 1998 ASME BPV Co
2				7850	kg m^-3				_			2, Table 5-110.1
3	Isotropic Secant Coefficient of Thermal Exp	ansi	ion				13	📎 Titanium Alloy	-0-		General_Materials.x	
6												
16	5 📧 🔀 Alternating Stress Mean Stress			111 Tabular		-						
_		-				-	_		-	-		

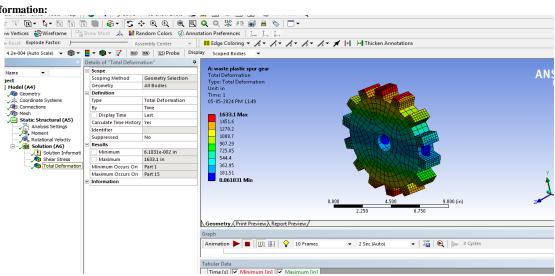

Geometry:


Material assignment:


Material:polyetheline

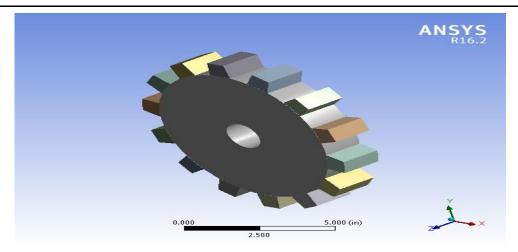

Meshing and sizing:


SIZING


Input values:

Solution information: Shear stress:

Total deformation:



Final result:

Project

First Saved	Sunday, May 05, 2024				
Last Saved	Sunday, May 05, 2024				
Product Version	16.2 Release				
Save Project Before Solution	No				
Save Project After Solution	No				

Contents

- Units
- Model (A4)
 - 0 Geometry
 - Parts
 - Coordinate Systems
 - Connections
 - Contacts
 - Contact Regions
 - 0 Mesh
 - O Static Structural (A5)
 - Analysis Settings
 - Moment
 - Rotational Velocity
 - Solution (A6)
 - Solution Information
 - Results
- Material Data
 - Polyethylene

Units

TABLE 1

Unit System	U.S. Customary (in, lbm, lbf, s, V, A) Degrees rad/s Fahrenheit
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Fahrenheit

Model (A4) Geometry TABLE Model (A4) > Geometry

Object Name	Geometry
State	Fully Defined
Definition	
Source	C:\Users\Lenovo\Documents\spur gear.igs
Туре	Iges
Length Unit	Meters
Element Control	Program Controlled
Display Style	Body Color

Bounding Box	
Length X	9.4284 in
Length Y	9.4488 in
Length Z	1.5748 in
Properties	
Volume	89.048 in ³
Mass	3.0562 lbm
Scale Factor Value	1.
Statistics	
Bodies	15
Active Bodies	15
Nodes	13039
Elements	2177
Mesh Metric	None
Basic Geometry Options	
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Yes
Parameter Key	DS
Attributes	No
Named Selections	No
Material Properties	No
Advanced Geometry Options	
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	No
Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\Lenovo\AppData\Local\Tem p
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE

Model (A4) > Geometry > Parts

Object Name	Part 1	Part 2	Part 3	Part 4	Part 5	Part 6	Part 7	Part 8	Part 9	Part 10	Part 11
State	Meshed										
Graphics Propertie	s										
Visible	Yes										
Transparency	1										
Definition											
Suppressed	No										

Stiffness Behavior	Flexible	Flexible										
Coordinate System	Default Coo	ordinate Sys	stem									
Reference Temperature	By Environ	By Environment										
Material												
Assignment	Polyethylen	Polyethylene										
Nonlinear Effects	Yes	Yes										
Thermal Strain Effects	Yes	Yes										
Bounding Box	Bounding Box											
Length X	7.874 in	1.231 2 in	1.245 8 in	1.0135	5 in	1.245 8 in	1.231 2 in	0.9728 5 in	1.231 2 in	1.245 8 in	in	1.0135
Length Y	7.874 in	1.158 7 in	1 1304 in		1.270 3 in	1.158 7 in	0.8175 7 in	1.158 7 in	1.270 3 in	in	1.1304	
Length Z	1.5748 in											
Properties												
Volume	73.616 in ³	1.1023	3 in ³									
Mass	2.5266 lbm	3.7833	3e-002 lbm									
Centroid X	4.3983 in	6.268 5 in	7.768 4 in	8.6008	3 in	7.768 3 in	6.268 4 in	4.398 in	2.527 7 in	1.027 8 in	(1 in	0.1954
Centroid Y	5.1746 in	9.058 in	7.861 8 in	6.133 3 in	4.214 8 in	2.486 4 in	1.290 3 in	0.8634 1 in	1.290 3 in	2.486 5 in	' in	4.215
Centroid Z	0.7874 in	-			-							
Moment of Inertia Ip1	10.601 lbm·in²	9.8603	8e-003 lbm	·in ²								
Moment of Inertia Ip2	10.601 lbm∙in²	4.5137	7e-003 lbm	·in²								
Moment of Inertia Ip3	20.163 lbm∙in²	1.034e	e-002 lbm∙i	n²								
Statistics												
Nodes	3309	695										
Elements	609	112										
Mesh Metric	None											

TABLE

Model (A4) > Geometry > Parts

Object Name	Part 12	Part 13	Part 14	Part 15	
State	Meshed				
Graphics Propertie	s				
Visible	Yes				
Transparency	1				
Definition					
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Material					
Assignment	Polyethylene				
Nonlinear Effects	Yes				

Thermal Effects	Strain	Yes				
Bounding Box						
Length X		1.0135 in	1.245 8 in	1.231 2 in	0.9728 5 in	
					-	
Length Y		1.1304 in	1.270 3 in	1.158 7 in	0.8175 7 in	
Length Z		1.5748	in			
Properties						
Volume		1.1023	in ³			
Mass		3.78336	e-002 lbm			
		0.1954	1.027	2.527	4.3982	
Centroid X		5 in	9 in	8 in	in	
Centroid Y		6.1335 in	7.861 9 in	9.058 1 in	9.4849 in	
Centroid Z		0.7874	in			
Moment of Ip1	Inertia	9.8603e-003 lbm-in ²				
Moment of Ip2	Inertia	4.5137e-003 lbm·in ²				
Moment of Ip3	Inertia	1.034e-002 lbm·in²				
Statistics						
Nodes		695				
Elements		112				
Mesh Metric		None				

Coordinate Systems

TABLE

Model (A4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System			
State	Fully Defined			
Definition				
Туре	Cartesian			
Coordinate System ID	0.			
Origin				
Origin X	0. in			
Origin Y	0. in			
Origin Z	0. in			
Directional Vector	rs			
X Axis Data	[1.0.0.]			
Y Axis Data	[0.1.0.]			
Z Axis Data	[0.0.1.]			

Connections TABLE Model (A4) > Connections

Object Name	Connecti ons
State	Fully

5

	Defined
Auto Detection	
Generate Automatic Connection On Refresh	Yes
Transparency	
Enabled	Yes

TABLE Model (A4) > Connections > Contacts

Object Name	Contacts			
State	Fully Defined			
Definition				
Connection Type	Contact			
Scope				
Scoping	Geometry			
Method	Selection			
Geometry	All Bodies			
Auto Detection				
Tolerance Type	Slider			
Tolerance Slider	0.			
Tolerance Value	3.3602e-002 in			
Use Range	No			
Face/Face	Yes			
Face/Edge	No			
Edge/Edge	No			
Priority	Include All			
Group By	Bodies			
Search Across	Bodies			
Statistics				
Connections	14			
Active Connections	14			

FIGURE Model (A4) > Static Structural (A5) > Moment

7

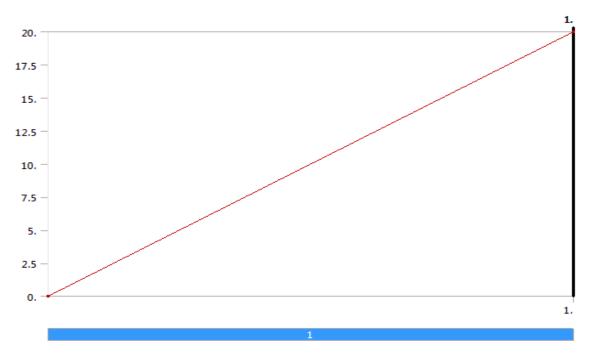
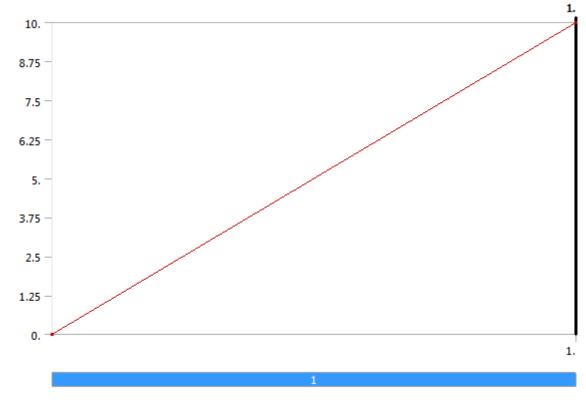



FIGURE Model (A4) > Static Structural (A5) > Rotational Velocity

Solution (A6)

Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information
State	Solved

Solution Information	
Solution Output	Solver Output
Newton-Raphson Residuals	0
Update Interval	2.5 s
Display Points	All
FE Connection Visibility	
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Line Thickness	Single
Display Type	Lines

TABLE

Model (A4) > Static Structural (A5) > Solution (A6) > Results

Object Name	Shear Stress	Total Deformation		
State	Solved			
Scope				
Scoping Method	Geometry Selection			
Geometry	All Bodies			
Definition				
Туре	Shear Stress	Total Deformation		
Orientation	XY Plane			
Ву	Time			
Display Time	Last			
Coordinate System	Global Coordinate System			
Calculate Time History	Yes			
Identifier				
Suppressed	No			
Integration Point Results				
Display Option	Averaged			
Average Across Bodies	No			
Results				
Minimum	-7093.7 psi	6.1831e-002 in		
Maximum	7057.5 psi	1633.1 in		
Minimum Occurs On	Part 15	Part 1		
Maximum Occurs On	Part 8	Part 8 Part 15		
Information				
Time	1. s			
Load Step	1			
Substep	1			
Iteration Number	1			

COMPARISON TABLE BETWEEN CAST STEEL AND COMPOSITE MATERIALS

Comparison table between cast steel and composite materials

	HONEY COMB EPOXY GEAR CAST STEEL MATERIALS				% DIFFER ENCE		
FAILURE	2500	2000	1500	2500	2000	1500	
THEORIES	rpm	rpm	Rpm	rpm	rpm	Rpm	
	140 Nm	170 Nm	230 Nm	140 Nm	170 Nm	230 Nm	
Von-mises	12.9	15.7	21.2	12.8	15.6	21.1	
stress	60	37	92	91	54	79	0.5324
(MPa)	00	57	92	91	54	19	
Von-mises	6.48	7.86	10.6	2.86	3.47	4.70	
	0 e-	8	46 e-	5 e-	9 e-	6 e-	55.787
strain	5	e-5	5	5	5	5	
Total deformation (mm)	18.0 73 e- 3	21.9 45 e-3	29.6 91 e- 3	8.02 1 e- 3	9.74 0 e- 3	13.1 78 e- 3	55.619
Maximum shear stress	7.37	8.95	12.1	7.34	8.91	12.0	0.4610
(Mpa)	6	6	17	2	5	62	0.4010
Strain energy (MJ)	157. 87 e- 3	232. 78 e-3	426. 09 e- 3	69.8 89 e- 3	103. 05 e- 3	188. 62 e- 3	55.730

7. CONCLUSION

In conclusion, the design optimization and material analysis of reused plastic composite spur gears offer a promising avenue for sustainable engineering solutions. Through careful consideration of material selection, design optimization, and environmental impact assessment, this study has demonstrated the viability of utilizing recycled plastics and carbon-based additives to create high-performance spur gears. The integration of epoxy resin further enhances the mechanical properties and durability of the composite, ensuring reliable operation in various applications. By leveraging recycled materials, the project not only addresses environmental concerns by reducing plastic waste but also contributes to resource efficiency and conservation. The successful development of these recycled plastic composite spur gears highlights the potential for eco-friendly alternatives in mechanical systems while maintaining performance standards. Moving forward, continued research and innovation in material science and design methodologies will further advance the sustainability and functionality of recycled plastic composite components in engineering applications.

REFERENCES :

- Siva Prasad, Syed AltafHussain, V.Pandurangadu, K.PalaniKumar, Modeling and Analysis of Spur Gear for Sugarcane Juice Machine under Static Load Condition by Using FEAI, International Journal of Modern Engineering Research (IJMER), Vol.2, Issue.4, July-Aug 2012 pp-2862-2866, ISSN: 2249-6645.
- 2. K. Mao, -A new approach for polymer composite gear designl,
- Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH, UK, accepted 14 June 2006.
- K. Mao, —A numerical method for polymer composite gear flash temperature predictionl, Mechanical Engineering, School of Engineering and Design Brunel University, Uxbridge, Middlesex UB8 3PH, UK, accepted 8 January 2007.
- S. Kirupasankar, C. Gurunathan, R. Gnanamoorthy, —Transmission efficiency of polyamide nanocomposite spur gearsl, Indian Institute of Information Technology, Design and Manufacturing (IIITD&M) Kancheepuram, Melakottaiyur, Chennai 600 048, India, Materials and Design 39 (2012) 338-343.
- N.A. Wright1, S.N. Kukureka, —Wear testing and measurement techniquesforpolymer composite gearsl, School of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK, Wear 251 (2001) 1567–1578.
- JesperBrauer, SörenAndersson, —Simulation of wear in gears with flank interference—a mixed FE and analytical approachl, Department of Machine Design, KTH, Brinellvagen 83, 100 44 Stockholm, Sweden, Wear 254 (2003) 1216–1232.
- R.Yakut, H.Duzcukoglu, M.T.Demirci Mechanical Education Department, University of selcuk, Campus, Konya, Turkey, Received 30.09.2009; published in revised from 01.11.2009.