

## **International Journal of Research Publication and Reviews**

Journal homepage: www.ijrpr.com ISSN 2582-7421

# **Risk Factors for Resorption of Lateral Incisors by Impacted Maxillary Canines: Systematic Review.**

## Bourzgui. F, Khamlich.K, Kamal. N, El Quars. F

Faculty of dental medicine of Casablanca Hassan II University DOI: <u>https://doi.org/10.55248/gengpi.5.0424.1112</u>

## ABSTRACT

Aim: The objective of this systematic review was to determine and list risk factors for lateral incisor resorptions by the impacted maxillary canines.

**Methods:** This systematic review followed the PRISMA guidelines. The selected clinical studies were collected from the following databases: MEDLINE (via PubMed), Science Direct, Scopus and Cochrane. The selection of studies spanned the last 10 years. Detailed search strategies were developed for each database using MeSH Terms. Selected studies were filtered by title, abstract and full text.

**Results:** Among the 1783 selected publications, 22 were considered relevant, and met the eligibility criteria. These studies included a total number of 2961 patients; and identified general and local risk factors.

**Conclusion:** None of the studies showed that age was a significant risk factor, however, it can be linked to another local risk factor which is the stage of development of the root of the impacted canine.

Key words: Risk Factors, Impacted canine, Root resorption, Incisor.

## Introduction:

The maxillary canine plays an important role both aesthetically and functionally, the position of the permanent maxillary canine is strategically important to maintain the harmony and symmetry of the occlusal relationship, it is the tooth with the longest and most tortuous evolutionary path. Maxillary canines are the teeth most frequently included after the third molars [1] with a prevalence between 1% and 3% [2], however, the exact etiology of this inclusion remains unknown. [3]

If left untreated, the included maxillary canines can shorten the arch, cause follicular cysts to grow, affect adjacent teeth's alignment, and raise the risk of recurring infections [4]. They can also create external resorption of surrounding teeth. This is an irreversible, aseptic and harmful sequelae that causes the progressive loss of the cement and dentin of adjacent teeth compared to the included maxillary canine [5].

Since the introduction of Cone Beam Computer Tomography (CBCT) in dentistry, which has increased the sensitivity and accuracy of the diagnosis of root resorption, previously thought to be rare (1-2% [6]), more resorptions have been found. [5]. Indeed, recent research using CBCT images as a diagnostic tool has revealed that up to 70% of the maxillary canines included result in at least one nearby tooth showing root resorption. [7,8]. The most affected tooth is the lateral incisor with a prevalence of 8.20% to 89.61% followed by the central incisor with a prevalence ranging from 1.19% to 35.06%, the first premolar may also be affected (4.48% to 11.72%) [9]. Resorption can potentially affect all upper incisors at the same time, although this is very unlikely [10].

In most cases, root resorption goes undiagnosed until much later, is clinically asymptomatic, and is very challenging to treat. [3] Determining the risk factors for the included canines' resorption of maxillary incisors is therefore essential for both early diagnosis and treatment planning. For patients with limited space, specific treatment options, like extracting a severely resorbed incisor, may be preferable to extracting intact premolars. [3]

This systematic analysis of the literature aimed to identify the various risk variables associated with maxillary canines resorption of the central and/or upper lateral incisors.

## Methods:

We carried out a systematic review, that was developed based on a pre-determined protocol, and was reported in line with the updated version of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (11) Following the PRISMA checklist's recommendation, the inclusion criteria conformed to the PICO framework: [11]

- P: Adult participants (over 18 years of age) who have been diagnosed with an included canine with a relationship to the lateral incisor.
- I: All the studies responding to the boolean equations ((impacted canine) OR (impacted cuspid) OR (unerupted canine)) AND (root resorption) AND (incisor) AND (risk factors); ("Tooth, Unerupted"[Mesh] OR "Tooth, Impacted"[Mesh]) AND "Cuspid"[Mesh] AND "Root Resorption"[Mesh] AND "Incisor"[Mesh] AND "Risk Factors"[Mesh]; "Tooth, Impacted"[Mesh]) AND "Cuspid"[Mesh] AND "Root Resorption"[Mesh]; chosen and elaborated from these key words (Risk Factors, Impacted canine, Root resorption, Incisor) have been included. There was a comparison group in every study that was analysed. The Cochrane Handbook for Systematic Reviews of Interventions was followed in the inclusion and management of studies including multiple interventions. [12]
- O: The selection process limited the number of research to those that looked at risk factors for maxillary canine lateral incisor resorption. This is made possible by the odds ratio (OR) for case-control studies, which uses confidence intervals to evaluate the data. The length of the study, the timing of the assessments, or the study context were not restricted.

All article that was judged to be an expert report, letter, commentary, or editorial was removed. After analysing the abstracts and critically reading the complete text, we removed articles that did not align with our research goals. Papers that were published before 2011 have not been included.

The research strategy ran from December 22, 2021 to March 21, 2022. The following electronic databases were consulted: Embase, Scopus, Science Direct, PubMed, Cochrane Library. The articles were first selected on their title, then on their abstract and finally on their full text. At each of these sorting steps, items were retained for their relevance in answering the questions asked and others were, conversely, discarded. This approach has allowed us to gradually reduce the number of items and filter them so that we can only read fewer items in line with our goal.

Data extracted from the included documents covered:

- Names of authors, year of publication, place of study
- Type of study
- Data acquisition means
- Participants
- Sex
- Middle age
- Risk factors studied

The studies selected were observational studies, the quality of these studies is assessed by STROBE (STrengthening the Reporting of Observational studies in Epidemiology).

## **Results:**

Figure 1 shows the included studies at each phase of the review. A total of 1783 articles were screened by title and abstract, and 31 were assessed by full text. Twenty-two articles met the eligibility criteria and were included in this systematic review: 7 case-control studies ,7 cross-sectional studies and 8 retrospective studies. All the characteristics of these studies have been described in Table I.

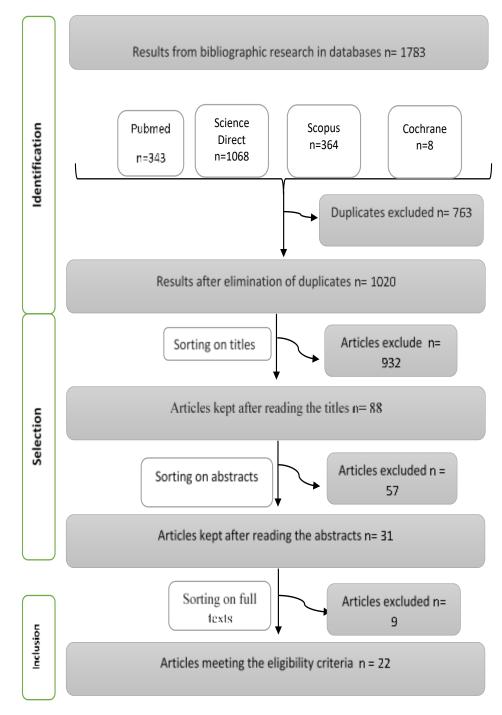



Figure 1. PRISMA flow diagram which included searches of databases (11)

## Table I. Characteristics of the studies included

| Title               | Author/Year  | Type of study      | Sample | Gender  | Age       | Means<br>acquisition | of | Risk Factors              | Statistical analysis<br>strategy | Conclusion                       |
|---------------------|--------------|--------------------|--------|---------|-----------|----------------------|----|---------------------------|----------------------------------|----------------------------------|
| Root Resorptions    | Simic and al | Cross-sectional    | 89     | 58F     | 18.3 ±4.1 | CBCT                 |    | Age, Gender               | Logistic regressions             | Significant risk factors :       |
| on Adjacent Teeth   | (2022)       | study              |        | 31M     |           |                      |    | Sagittal direction        | Spearman's correlation test      | Female gender                    |
| Associated with     |              |                    |        |         |           |                      |    | Vertical position         | Mann-Whitney test                | Palate position                  |
| Impacted Maxillary  |              |                    |        |         |           |                      |    | Horizontal position       |                                  | Angle between canine and         |
| Canines [8]         |              |                    |        |         |           |                      |    | Distance of occlusal      |                                  | central or lateral incisor       |
|                     |              |                    |        |         |           |                      |    | plane                     |                                  | and/or ASM increased             |
|                     |              |                    |        |         |           |                      |    | Distance of midline       |                                  | Distance between the cusp of     |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  | the included canine and the      |
|                     |              |                    |        |         |           |                      |    | and central or lateral    |                                  | occlusal plane of $11.7 \pm 3.6$ |
|                     |              |                    |        |         |           |                      |    | incisor                   |                                  | mm                               |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  | Distance between the cusp of     |
|                     |              |                    |        |         |           |                      |    | and the occlusal plane    |                                  | the included canine and the      |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  | midline of $9.25 \pm 4.4$ mm     |
|                     |              |                    |        |         |           |                      |    | and the midline           |                                  | Horizontal position              |
|                     |              |                    |        |         |           |                      |    |                           |                                  |                                  |
| Radiographic        | Andresen and | Cross-sectional    | 99     | 57F 42M | 13        | Panoramic            |    | Age                       | Univariate logistic              | The included canine root         |
| features in 2D      | al (2022)    | study              |        |         |           | radiography          |    | Side of the inclusion     | regression analysis              | development stage is a           |
| imaging as          |              |                    |        |         |           | CBCT                 |    | Vertical position         |                                  | significant risk factor for root |
| predictors for      |              |                    |        |         |           |                      |    | Stage of root             |                                  | resorption of adjacent lateral   |
| justified CBCT      |              |                    |        |         |           |                      |    | development               |                                  | incisors.                        |
| examinations of     |              |                    |        |         |           |                      |    | Riziform Lateral          |                                  |                                  |
| canine-induced root |              |                    |        |         |           |                      |    | Incisor / Lateral incisor |                                  |                                  |
| resorption [14]     |              |                    |        |         |           |                      |    | with distal tip           |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | and the occlusal plane    |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | and the midline           |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | Angle between canine      |                                  |                                  |
|                     |              |                    |        |         |           |                      |    | and lateral incisor       |                                  |                                  |
| Risk factors for    | Wang and al  | Case control study | 163    | _       | _         | CBCT                 |    | Age, Gender               | Cohen Kappa Test                 | Significant risk factors :       |
| maxillary impacted  | (2020)       |                    |        |         |           |                      |    | Canine angulation         | Kolmogorov Smirnov test          | Female gender                    |
| canine-linked       |              |                    |        |         |           |                      |    | Mesio distal position     | Wilcoxon Test                    | Mesial position                  |
| severe lateral      |              |                    |        |         |           |                      |    | Vertical and vestibulo    | Chi square test                  | Vertical position                |
| incisor root        |              |                    |        |         |           |                      |    | lingual position          | Binary regression                | Vertical angle between 0 and     |
| resorption: A cone- |              |                    |        |         |           |                      |    | Canine follicular bag     |                                  | 30°                              |

| beam computed<br>tomography study<br>[15]                                                                                                                             |                             |                        |    |   |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         | Relative angle ( the angle<br>between the included canine<br>and the adjacent incisor axis)<br>between 0 and 60°<br>Follicular bag widened<br>between 1 and 3 mm |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|----|---|------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Predictive factors<br>for resorption of<br>teeth adjacent to<br>impacted maxillary<br>canines [16]                                                                    | Cuminetti and<br>al (2017)  | Retrospective<br>study | 25 | _ | 21 ±7,5                      | CBCT                             | Age, Gender<br>Sagittal location of the<br>canine crown/ the<br>dental arch<br>Vertical location of the<br>canine cusp<br>Transverse location<br>Follicular bag<br>dimension<br>Shape of the follicular<br>bag                                                                                                                                                                             | Chi-2 test<br>Variance Analysis Test<br>(Anova)<br>Covariance Analysis Test<br>(ANCOVA) | The combination of the<br>sagittal and vertical situation<br>is a predictor of the risk of<br>root resorption                                                    |
| Prevalence and risk<br>factors of root<br>resorption of<br>adjacent teeth in<br>maxillary canine<br>impaction, among<br>untreated children<br>and adolescents<br>[17] | Rafflenbeul et<br>al (2018) | Retrospective<br>study | 60 | _ | Average<br>age 12.2<br>years | CBCT                             | Age, Gender<br>Size of follicular bag<br>Alpha angle (formed at<br>the intersection of the<br>occlusal line and the<br>longitudinal axis of the<br>canine)<br>Relative position of the<br>canine included in the<br>arcade<br>Mesio Distal position<br>Contact with adjacent<br>roots<br>Lateral incisor:<br>normal, agenesis or<br>riziform<br>Inclusion of single or<br>bilateral canine | Descriptive statistics and<br>multiple logistic<br>regressions                          | Contact between the canine<br>and root of adjacent teeth<br>was the only statistically<br>significant risk factor<br>identified                                  |
| Predisposing<br>factors for severe<br>incisor root<br>resorption                                                                                                      | Chaus hu et al (2015)       | Case control study     | 57 | - | 12 ± 1.4                     | Panoramic<br>radiography<br>CBCT | Age, Gender<br>Buccolingual<br>localization<br>Mesiodistal location                                                                                                                                                                                                                                                                                                                        | multivariate statistical<br>analysis                                                    | Severe root resorption of the<br>incisor was significantly<br>higher in female subjects                                                                          |

| associated with<br>impacted maxillary<br>canines [18]                                                                                                             |                                  |                          |    |              |                                                                                       |      | the overlap of the<br>adjacent incisor<br>the vertical height of<br>the crown<br>Width of canine dental<br>follicle<br>Lateral incisor<br>anomalies |                                                                                                   | with enlarged dental follicles,<br>and normal lateral incisors                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----|--------------|---------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location and<br>severity of root<br>resorption related<br>to impacted<br>maxillary canines:<br>a cone beam<br>computed<br>tomography<br>(CBCT) evaluation<br>[19] | Doğra macı and<br>al (2015)      | Cross-sectional<br>study | 85 | 60F 25M      | _                                                                                     | CBCT | Age<br>Gender<br>Inclusion site                                                                                                                     | Unidirectional analysis of<br>variance<br>Chi 2 test<br>Kruskal Wallis test<br>Poisson regression | No significant correlation<br>between age, gender, site of<br>inclusion and risk of<br>resorption                                                                                                                          |
| Cone-beam<br>computed<br>tomography<br>findings of<br>impacted upper<br>canines [20]                                                                              | Da Silva Santos<br>and al (2014) | Cross-sectional<br>study | 79 | 56 F<br>23 M | Average<br>age 22<br>years                                                            | СВСТ | Gender<br>Sagittal position<br>Width of canine<br>follicular bag                                                                                    | Chi-2 test<br>Fisher's exact test                                                                 | An association between the<br>presence of root resorption of<br>adjacent teeth and the<br>location of the canine<br>included, as well as the sex<br>and size of the follicular sac<br>was not statistically<br>significant |
| Effects of impacted<br>maxillary canines<br>on root resorption<br>of lateral incisors A<br>cone beam<br>computed<br>tomography study<br>[21]                      | Ucar et Al<br>(2017)             | Case control study       | 46 | 30F 16M      | $\begin{array}{l} F: \\ 19.44 \ \pm \\ 5.77 \\ M: \\ 19.53 \ \pm \\ 6.66 \end{array}$ | CBCT | Gender<br>Lateral incisor volume<br>Sagittal position<br>Mesiodistal position                                                                       | Intraclass Correlation<br>coefficients<br>The independent sample t<br>test                        | Gender, location and<br>different degrees of canine<br>angulation did not influence<br>the amount of root<br>resorption.                                                                                                   |
| Incisor root<br>resorption<br>associated with<br>palatal displaced<br>maxillary canines:                                                                          | Alemam et Al<br>(2019)           | Case control study       | 82 | 19 H 63<br>F | 20.84 ±<br>6.54                                                                       | СВСТ | Size of canine follicles<br>Contact with adjacent<br>incisors<br>Associated dental<br>abnormalities                                                 | Chi-2 test<br>Variance Analysis Test<br>(Anova)                                                   | Predictive factors:<br>Canine contact with adjacent<br>incisor<br>Size of canine follicle<br>Riziform lateral incisor                                                                                                      |

| Analysis and<br>prediction using<br>discriminant<br>function analysis<br>[22]                                                  |                           |                          |    |           |                |                                  | Sector analysis<br>Vertical relationship of<br>canine to adjacent root<br>Angulation and tip of<br>the lateral incisor<br>Available space for the<br>canine in the dental<br>arch                                                                                                                                                                                                           |                                                                                                             |                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|----|-----------|----------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship of<br>Angulation of<br>Maxillary Impacted<br>Canines with<br>Maxillary Lateral<br>Incisor Root<br>Resorption [23] | Ardakani et Al<br>(2020)  | Case control study       | 40 | 32F<br>8M | 18.2 ±<br>6.55 | Panoramic<br>radiography<br>CBCT | Alpha Angle<br>The $\beta$ angle (formed at<br>the intersection of the<br>cervical line and the<br>longitudinal axis of the<br>canine)<br>The cervical line (the<br>line connecting the<br>anterior and the lower<br>points of C2 (cervical<br>vertebra))<br>Sagittal position<br>The impacted canine<br>quadrant                                                                           | Chi-2 test<br>T test<br>Pearson Correlation Test<br>Mann-Whitney Spearman<br>Test<br>Exact fisherman's test | The angles a and ß, the<br>impacted canine quadrant<br>and the sagittal position had<br>no significant correlation<br>with the presence/absence of<br>root resorption in the<br>adjacent lateral incisor |
| Impacted maxillary<br>canines and root<br>resorption of<br>adjacent teeth: A<br>retrospective<br>observational study<br>[10]   | Guarnieri et al<br>(2016) | Cross-sectional<br>study | 50 | 28F 22M   | 11.7           | CBCT                             | Angulations of the<br>canines:<br>angle a : the canine<br>inclination relative to<br>the midline<br>angle b: the inclination<br>of the canine in<br>relation to the axis of<br>the lateral incisor<br>angle g: the inclination<br>of the canine in<br>relation to a horizontal<br>line through the<br>incisive edge of the<br>permanent central<br>incisor and the<br>occlusal plane of the | Binary logistic regression<br>Chi-2 test                                                                    | Angle b has the greatest<br>influence on the prediction of<br>root resorption (the<br>probability of resorption is<br>greater than 61% if angle<br>b>54°)                                                |

| Evaluation of<br>impacted canines'<br>localization and<br>adjacent lateral<br>incisors' root<br>resorption with<br>orthopantomograph<br>y and cone-beam<br>computed | Akkuc et al<br>(2020)    | Cross-sectional<br>study | 343 | 207 F<br>136 M | 10                           | CBCT                             | first permanent molar<br>on the affected side.<br>2-Lateral/canine<br>incisor overlap<br>3- Lindauer analysis<br>Contact between the<br>included canine and<br>the lateral incisor<br>Follicle size<br>Location of the canine<br>in the transverse<br>direction<br>Vertical location of the<br>canine cusp included | Chi-2 test                                                 | Resorption of the lateral<br>incisor correlates with direct<br>contact with the included<br>canine and its vertical<br>location                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|-----|----------------|------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tomography [24]<br>Incidence of lateral<br>incisor root<br>resorption<br>associated with<br>impacted maxillary<br>canines [25]                                      | Lipshatz et al<br>(2021) | Case control study       | 133 | 86F 47M        | 20                           | CBCT                             | Age , Gender<br>Type of inclusion<br>Angulation of the long<br>axis of the impacted<br>canine relative to the<br>vertical line between<br>the upper central<br>incisors<br>Canine overlap on<br>lateral and central<br>incisors                                                                                     | logistic regression: linear<br>mixed models<br>generalized | The radiographic level of<br>incisor overbite by the<br>impacted canine in the<br>mesiodistal direction is a risk<br>factor                                                  |
| Predictors of root<br>resorption<br>associated with<br>maxillary canine<br>impaction in<br>panoramic images<br>[26]                                                 | Alqerban et al<br>(2016) | Cross-sectional<br>study | 306 | 188 F<br>118 M | Average<br>age 14.7<br>years | Panoramic<br>radiography<br>CBCT | Age , Gender<br>Temporary canine root<br>resorbtion<br>Overcrowding in<br>maxillary upper<br>anterior region<br>Optimal apical zone<br>Sufficient MD space<br>Canine macrodontia<br>Open canine apex<br>Location of the canine<br>Type of impaction<br>(horizontal or vertical)                                     | Fisher's exact and Mann–<br>Whitney U-tests<br>Chi-2 test  | The gender, the apex of the<br>canine, the vertical position<br>of the crown and<br>macrodontia of the canine<br>were the strongest predictive<br>factors of root resorption |

|                      |            |                    | 1   | 1    |       |      |                           |                             | ]                              |
|----------------------|------------|--------------------|-----|------|-------|------|---------------------------|-----------------------------|--------------------------------|
|                      |            |                    |     |      |       |      | Complete canine           |                             |                                |
|                      |            |                    |     |      |       |      | development               |                             |                                |
|                      |            |                    |     |      |       |      | The presence of           |                             |                                |
|                      |            |                    |     |      |       |      | abnormalities, such as    |                             |                                |
|                      |            |                    |     |      |       |      | mesiodens or              |                             |                                |
|                      |            |                    |     |      |       |      | supernumerary teeth,      |                             |                                |
|                      |            |                    |     |      |       |      | riziform lateral incisor, |                             |                                |
|                      |            |                    |     |      |       |      | agenesis of permanent     |                             |                                |
|                      |            |                    |     |      |       |      | teeth and impaction of    |                             |                                |
|                      |            |                    |     |      |       |      | other permanent teeth     |                             |                                |
|                      |            |                    |     |      |       |      | Canine angulation         |                             |                                |
|                      |            |                    |     |      |       |      | relative to midline,      |                             |                                |
|                      |            |                    |     |      |       |      | occlusal plane and        |                             |                                |
|                      |            |                    |     |      |       |      | lateral incisor           |                             |                                |
|                      |            |                    |     |      |       |      | Vertical position of the  |                             |                                |
|                      |            |                    |     |      |       |      | canine crown              |                             |                                |
|                      |            |                    |     |      |       |      | Distal canine overbite    |                             |                                |
|                      |            |                    |     |      |       |      | with lateral incisor      |                             |                                |
| Impacted maxillary   | Lai and al | Cross-sectional    | 113 | 74 F | 19.35 | CBCT | Age, Gender               | Cohen kappa test            | This study found a             |
| canines and root     | (2013)     | study              |     | 39 M |       |      | Development stage of      | Logistic regression         | statistically significant      |
| resorptions of       |            | -                  |     |      |       |      | canine root               |                             | correlation between root       |
| neighboring teeth: a |            |                    |     |      |       |      | Size of canine follicle   |                             | resorption of adjacent teeth   |
| radiographic         |            |                    |     |      |       |      | Sagittal position         |                             | and:                           |
| analysis using       |            |                    |     |      |       |      | Transverse position       |                             | - The location of the          |
| cone-beam            |            |                    |     |      |       |      | Vertical position         |                             | impacted canine relative to    |
| computed             |            |                    |     |      |       |      | Location of canine in     |                             | bone or soft tissue            |
| tomography [27]      |            |                    |     |      |       |      | relation to bone and      |                             | - The vertical location of the |
|                      |            |                    |     |      |       |      | soft tissue               |                             | canine in relation to the long |
|                      |            |                    |     |      |       |      | Morphology of the         |                             | axis of the adjacent incisor   |
|                      |            |                    |     |      |       |      | lateral incisor           |                             | - Development stage of         |
|                      |            |                    |     |      |       |      | Contact or proximity      |                             | canine root (open or closed    |
|                      |            |                    |     |      |       |      | relationship with the     |                             | apex)                          |
|                      |            |                    |     |      |       |      | adjacent incisor          |                             | - The contact relationship     |
| Maxillary canine     | Yan et al  | Case control study | 170 | _    | 14.5  | CBCT | Age, Gender               | Cohen kappa test            | The significant risk factors   |
| impaction increases  | (2015)     |                    |     |      |       |      | Development stage of      | Intraclass correlation test | are:                           |
| root resorption risk |            |                    |     |      |       |      | canine root               | Chi 2 Test                  | Contact relationship < 1 mm    |
| of adjacent teeth: A |            |                    |     |      |       |      | Contact relationship      | Wilcoxon Test               | between canines and teeth      |
| problem of physical  |            |                    |     |      |       |      | with adjacent incisors    | "stepwise forward" logistic | affected, the mesio-distal     |
| proximity [4]        |            |                    |     |      |       |      | 5                         | regressions                 | position of the canine, the    |
| 1                    | 1          | 1                  |     | t    | 1     |      | 1                         | 0                           | 1                              |

| The prevalence of<br>root resorption of<br>maxillary incisors<br>caused by impacted<br>maxillary canines<br>[28]                                      | Strbac et al<br>(2013) | Cross-sectional<br>study | 440 | 288 F<br>152 M | Average<br>age 24.7<br>years | СВСТ                             | Position of the canine<br>in the mesiodistal<br>direction<br>Position of the canine<br>in the vestibulolingual<br>direction<br>Distance between the<br>included canine and<br>the median axis of the<br>affected tooth<br>Angle between the<br>included canine and<br>the affected tooth axis<br>Distance between<br>canine included and<br>occlusal plane<br>Distance between the<br>included canine and<br>the median sagittal<br>axis<br>Contact relationship<br>with adjacent incisors<br>Sagittal position<br>Shape and width of<br>canine follicular bag<br>Position of the canine<br>included in relation to<br>the cortical of the<br>alveolar bone and in | -Chi 2 Test<br>-Wilcoxon Test<br>- Wilcoxon ranksum test<br>- Kruskal-Wallis tests<br>- Spearman test                                                          | distance between the canine<br>included and the affected<br>teeth and the distance<br>between the included canine<br>and the median sagittal plane<br>are significant risk factor for<br>the resorption of the central<br>incisor.<br>Development stage of canine<br>root included |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|-----|----------------|------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                       |                        |                          |     |                |                              |                                  | alveolar bone and in<br>relation to the root of<br>the temporary canine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                    |
| The position of<br>maxillary canine<br>impactions and the<br>influenced factors<br>to adjacent root<br>resorption in the<br>Korean population<br>[29] | Kim et al<br>(2012)    | Cross-sectional<br>study | 148 | 89F 59M        | -                            | Panoramic<br>radiography<br>CBCT | Gender<br>Side of the affected<br>canine: right or left<br>Vestibulo lingual<br>position<br>Mesio distal position<br>Canine angulation<br>included: angle formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>The ordinal logistic</li> <li>regression analysis model</li> <li>test t</li> <li>-chi-2 test</li> <li>Single analysis of</li> <li>variance</li> </ul> | The sagittal and mesiodistal<br>positions have been<br>determined as significant<br>factors                                                                                                                                                                                        |

|                                                                                                                                                                                                          |                              |                          |     |         |                  |                                  | between the long axis<br>of the canine included<br>and the two condylar<br>line                             |                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-----|---------|------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Root resorption of<br>adjacent teeth<br>associated with<br>maxillary canine<br>impaction in the<br>saudi arabian<br>population: A<br>crosssectional<br>cone-beam<br>computed<br>tomography study<br>[30] | Alassiry et<br>Hakami (2022) | Cross-sectional<br>study | 169 | 98F 71M | 20.34<br>± 8.9   | CBCT                             | Age , Gender<br>Type of impact:<br>unilateral or bilateral<br>Impact side: left or<br>right                 | <ul> <li>ANOVA statistics</li> <li>The Kruskal– Wallis test</li> <li>Chi 2 test</li> <li>The Poisson regression<br/>model</li> </ul> | A significant association was<br>found between gender, type<br>of impaction and root<br>resorption. Women with<br>bilateral canine impaction<br>were more affected by root<br>resorption.                                                                                                             |
| Prediction of<br>maxillary lateral-<br>incisor root<br>resorption using<br>sector analysis of<br>potentially<br>impacted canines<br>[31]                                                                 | Schindelet<br>Sheinis (2013) | Cross-sectional<br>study | 40  | -       | -                | Panoramic<br>radiography<br>CBCT | Included Canine Distal<br>Mesio Position:<br>classified in sectors I,<br>II, III, IV of distal in<br>mesial | - Logistic regression                                                                                                                | There was significantly more<br>root resorption in sectors III<br>and IV when combined and<br>compared to sectors I and II                                                                                                                                                                            |
| Impacted maxillary<br>canines and their<br>relationship with<br>lateral incisor<br>resorption: A cone<br>beam computed<br>tomography study<br>[32]                                                       | Yilmaz et al<br>(2020)       | Cross-sectional<br>study | 169 | 73F 96M | 17.9 1 ±<br>6.52 | CBCT                             | Vertical, mesiodistal<br>and sagittal position                                                              | -Student t-test and<br>ANOVA<br>Mann Whitney U test and<br>the Kruskal-Wallis test<br>Chi 2 test                                     | The risk of resorption of the<br>lateral incisors increased<br>when the included maxillary<br>canines approach the mid-<br>palatine line or are on the<br>palatine side. The resorption<br>of the lateral incisors was not<br>related to the included<br>vertical position of the<br>maxillary canine |

The risk of bias of the included studies was assessed by measuring the quality of the observational studies with the STROBE tool (STrengthening the Reporting of OBservational studies in Epidemiology) summarized in Table II.

Table II. STROBE Evaluation

Av: Average G: Good M: Mediocre

|                                  |      | 1    | 1    |      |      |      | 1    | Interr | ational. | Journal o |      |      |      |      |      |      | pp 9229 | 9-9245 |      | 24   |      |      | 9241 |
|----------------------------------|------|------|------|------|------|------|------|--------|----------|-----------|------|------|------|------|------|------|---------|--------|------|------|------|------|------|
| Studies                          |      | 1    | 2    | 3 —  | 4    | 5    | 6    | 7      | 8        | 9         | 10   | -11  | -12  | 13   | 14   | -15  | 16      | 17     | 18   | 19   | 20   | 21   | -22  |
|                                  | 1-a  | 0    | 1    | 0    | 1    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 1    | 1    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 1-b  | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 0    | 1    |
|                                  | 2    | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 3    | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 0    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 4    | 1    | 1    | 1    | 0    | 0    | 1    | 0      | 1        | 0         | 1    | 1    | 1    | 1    | 0    | 0    | 0       | 1      | 0    | 0    | 1    | 1    | 1    |
|                                  | 5    | 0    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 0    |
|                                  | 6    | 1    | 1    | 1    | 1    | 1    | 1    | 0      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 0    | 1    | 1    | 0    | 0    |
|                                  | 7    | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 8    | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 9    | 1    | 1    | 1    | 1    | 0    | 0    | 1      | 0        | 1         | 1    | 0    | 0    | 1    | 0    | 0    | 1       | 1      | 0    | 1    | 0    | 0    | 0    |
|                                  | 10   | 0    | 1    | 1    | 0    | 0    | 0    | 0      | 0        | 1         | 1    | 1    | 0    | 1    | 0    | 0    | 0       | 0      | 0    | 1    | 0    | 0    | 0    |
|                                  | 11   | 0    | 1    | 1    | 1    | 1    | 0    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 12-a | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 12-b | 1    | 1    | 1    | 0    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 12-c | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
| STROBE Item:                     | 12-d | 0    | 0    | 1    | 0    | 0    | 0    | 0      | 0        | 1         | 1    | 0    | 0    | 0    | 0    | 0    | 0       | 1      | 0    | 0    | 0    | 0    | 0    |
| STROBE Item:                     | 12-e | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 0    | 1    | 0    | 1    | 1       | 1      | 1    | 1    | 1    | 0    | 1    |
|                                  | 13-a | 0    | 1    | 1    | 0    | 0    | 1    | 1      | 0        | 0         | 0    | 0    | 1    | 1    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 13-b | 0    | 1    | 1    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 13-c | 0    | 1    | 1    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 14-a | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 0    | 1    | 1    | 1    | 1    | 1       | 0      | 1    | 1    | 1    | 0    | 1    |
|                                  | 14-b | 1    | 0    | 0    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 15   | 1    | 1    | 0    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 16-a | 1    | 1    | 1    | 1    | 1    | 0    | 0      | 0        | 0         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 0    | 1    | 1    |
|                                  | 16-b | 1    | 1    | 0    | 0    | 0    | 0    | 1      | 0        | 0         | 0    | 1    | 0    | 1    | 0    | 1    | 0       | 0      | 1    | 0    | 0    | 0    | 1    |
|                                  | 16-c | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 0    | 0    | 1       | 0      | 0    | 0    | 0    | 0    | 0    |
|                                  | 17   | 1    | 1    | 0    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 18   | 1    | 1    | 1    | 1    | 1    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 19   | 0    | 1    | 1    | 0    | 1    | 1    | 1      | 0        | 0         | 1    | 1    | 0    | 1    | 1    | 1    | 1       | 1      | 0    | 0    | 0    | 0    | 0    |
|                                  | 20   | 1    | 1    | 1    | 1    | 0    | 1    | 1      | 1        | 1         | 1    | 1    | 1    | 1    | 1    | 1    | 1       | 1      | 1    | 1    | 1    | 1    | 1    |
|                                  | 21   | 0    | 0    | 0    | 0    | 1    | 0    | 0      | 0        | 0         | 0    | 0    | 0    | 0    | 1    | 1    | 0       | 0      | 0    | 1    | 0    | 0    | 1    |
|                                  | 22   | 1    | 1    | 0    | 0    | 0    | 0    | 0      | 0        | 0         | 0    | 1    | 0    | 1    | 0    | 0    | 0       | 0      | 0    | 0    | 1    | 0    | 0    |
| Total                            |      | 20   | 27   | 23   | 18   | 18   | 18   | 19     | 17       | 20        | 23   | 21   | 18   | 25   | 18   | 20   | 20      | 21     | 17   | 20   | 18   | 15   | 18   |
| Percentage                       |      | 62.5 | 84.3 | 69.6 | 56.2 | 56.2 | 54.5 | 59.3   | 53.1     | 60.6      | 69.6 | 63.6 | 56.2 | 78.1 | 54.5 | 62.5 | 62.5    | 63.6   | 53.1 | 62.5 | 56.2 | 45.4 | 56.2 |
| Grades of methodological quality |      | Av   | G    | Av   | Av   | Av   | Av   | Av     | Av       | Av        | Av   | Av   | Av   | G    | Av   | Av   | Av      | Av     | Av   | Av   | Av   | М    | Av   |

There will be two categories of general risk factors: gender and age:

- Gender : According to Simic et al [8], Wang et al [15], Alqerban et al [26], Alassiry and Hakami [30], female gender was a significant risk factor.
- Age: None of the studies demonstrated that age was a significant risk factor

Local risk factors involved the canine included, adjacent incisors and their relationships

• Risk factors relative to the included canine

*Root development of the canine:* According to Yan [4], Alqerban [26], Lai [27] and Andresen [14], The probability of root resorption on the central and lateral incisors was approximately twice as high in maxillary quadrant sites with closed canines compared to those with an enclosed canine with an open apex.

*Site of the inclusion:* According to Dogramaci [19], the site of the impaction, whether in the right or left maxilla, had no significant effect on the incidence of resorption lesions. Unlike Alassiry and Hakami [30], which raised a significant association between the site of impaction and root resorption.

*Three-dimensional position of the canine included in the sagittal, vertical and mesio-distal direction:* According to Yilmaz et al [32], and Simic et al [8], the risk of resorption of the lateral incisors increased when the maxillary canines included were on the palatine side. Unlike Kim et al [29], who report that this risk increased when the canine was in the vestibular position.

Simic et al [8] reported that the risk increases at a distance between the cusp of the included canine and the occlusal plane of 11.7 3.6 mm, thus increasing the risk in the apical region. This was confirmed by Wang [15] et al.

As reported by Kim [29], Wang [15], Schindel [31], and Yilmaz [32], the mesio-distal position was a significant risk factor, this risk increased in the mesial position.

*Canine inclination*: Based on Wang [15], Guarnierie [10] and Simic [8] the included canine tilt relative to the long axis of the lateral incisor had the greatest influence on the prediction of root resorption.

Width of canine follicular bag: According to Wang [15], Alemam et al [22], the wider the follicular bag, the greater the risk of resorption.

#### Risk factors relative to the adjacent incisors

As reported by Alemam et al [22], the presence of lateral incisors with shape abnormalities is a negative predictor of resorption.

## Risk factors based on the relationships between the canines and adjacent incisors

Yan [4], Rafflenbeul [17] Alemam [22] and Akkuc [24], reported that the resorption of the lateral incisor was correlated with direct contact with the included canine.

### Discussion

The objective of this systematic review was to investigate the various risk variables for maxillary canines included in lateral incisor resorptions. Regarding general risk factors including age and gender, none of the studies showed that age was a significant risk factor, however, it can be linked to another local risk factor which is the stage of development of the root of the impacted canine. This study focused on recent scientific research by emphasising articles published between 2011 and 2022.

These variables fell into two categories: general factors and local factors. The former refers to the elements involving the included canines, while the latter deals with the factors involving the nearby incisors.

Most local factors have been determined radiologically, such as the position and inclinations of the canine, the width and shape of the follicular sac, or the proximity to the incisor roots. The selected studies [4,8,14–22,24,25,27,28,30–32] evaluated these risk factors based on 3D CBCT imaging. Grybiene et al [34] conducted a literature review summarizing baseline diagnostic methods and treatment strategies for 23 included maxillary canine studies. In their study [34], it was reported that panoramic imaging could help predict the incidence of maxillary canines while CBCT could accurately locate the included maxillary canines. A study by Jawad et al [35] supported a 63% improvement in the detection rate of root resorption with the use of CBCT compared to 2D imaging. Other studies [14,26] have sought to determine predictive radiological factors from 2D images to reduce radiation exposure from the CBCT.

According to Andersen et al [14] the canine included at a later stage of root development (completely or almost completely formed) appears to be associated with a higher risk of moderate to severe root resorption. This was reasonable since a canine included with a nearly or completely developed root represented a later eruption stage compared to a canine with a shorter root length than its crown. Therefore, there is a greater likelihood of proximity between the included canine and the root of the lateral incisor, and therefore a higher risk of resorption.

The gender factor should be considered with caution because of the high female/male ratio. The fact that women make up the majority of the selected studies is probably due, on the one hand, to the recruitment of patients (women consult more often than men for orthodontic problems, especially in

adulthood.) and, on the other hand, differences in genetics and cranial-facial development leading to more frequent canine impaction in female subjects [16]. Walker et al [36] hypothesized that the difference in overall cranio-facial growth and development between the genders, as well as genetics, could explain this result. According to several authors [8,15,26,30], The included canines have been shown to be significantly more likely to resorb adjacent incisors when a female is involved, as for Chaushu et al [18] root resorption was more common in women but the number of people affected in this study was insufficient to draw valid conclusions. On the basis of the molecular mechanism, hypotheses have been suggested suggesting a biosynthesis of inflammatory mediators, such as leukotrienes, higher in women [37]; it has been suggested that leukotriene may positively affect the differentiation of osteoclasts and thus promote bone resorption. Therefore, the hypothesis that the osteoclasts of the patients were more active than those of the male patients was issued and thus, the roots of the incisors in the women were more likely to be resorbed under the influence of adjacent canines. Female patients with bilateral canine inclusion were more affected.

The side and location of the included maxillary canine alone were identified as probable risk factors for the development of root resorption of neighbouring incisors when it came to local risk variables. A significant association was found by el Alassiry and hakami [30] between the type of impaction and root resorption. For root resorption and three-dimensional localization of the included canines, only physical proximity between the roots of the lateral incisors and the impacted canines significantly affected the incidence of associated root resorption. Resorptions from adjacent roots could be caused by direct physical damage, increased pressure at the root, or a concentration of resorption molecules linked to the canine eruptive follicle. This physical pressure exerted by the erupting canine can lead to the activation of the dental resorption cells, the cenmentoclasts and odontoclasts, which leads to the loss of cementia or dentin on the surface of the tooth, causing root resorption [27]. The results of a meta-analysis examining the relationship between root resorption of incisors and inclusion of adjacent canines [9] showed a high prevalence of root resorptions on lateral incisors, especially when in direct contact with an included canine. The shape and width of the included canine follicular bag were also considered as local risk factors involving the included canine. According to Wang et al [15], the included enlarged canine follicular sac between 1 and 3 mm is a significant risk factor, this is in agreement with Chaushu et al [18] who reported that dental follicles wider than 2 mm increased the risk of resorption by 8.3 times compared to normal dental follicles.

For local risk factors involving adjacent incisors, Rafflenbeul et al [17] identified lateral incisor agenesis as risk factor of root resorption of the homolateral central incisor, but the normal shape and size or riziform of the lateral incisor were not risk factors for resorption of incisors by the included canines; this is consistent with other studies [22,26,29].

According to Chaushu et al [18], severely angulated canines positioned on the middle third of the root of the adjacent incisor should be considered with suspicion as to the risk of resorption of adjacent teeth. Examining the combination of multiple characteristics as a potential risk factor for lateral resorption is an intriguing concept. The probability of root resorption was predicted by the combination of the sagittal and vertical situation: There's a higher chance of mechanical obstruction by the apex of the lateral incisor when the canine is flush with the apex of the root in an intermediate position near the midpalate suture.

## Conclusion

Several risk factors must be considered to avoid resorption of lateral incisors by the impacted maxillary canines. Regarding general risk factors including age and gender, none of the studies showed that age was a significant risk factor. The sagittal and vertical situations together predicted the likelihood of root resorption: When the canine is straight with the root apex in an intermediate position close to the mid-palate suture, there is a greater likelihood of mechanical obstruction by the lateral incisor apex.

## **Conflict of interest**

The authors declare no conflict of interest.

#### References

1. Bjerklin K, Ericson S. How a computerized tomography examination changed the treatment plans of 80 children with retained and ectopically positioned maxillary canines. Angle Orthod. janv 2006;76(1):43-51.

2. Sajnani AK. Permanent maxillary canines - review of eruption pattern and local etiological factors leading to impaction. J Investig Clin Dent. févr 2015;6(1):1-7.

3. Alqerban A, Jacobs R, Lambrechts P, Loozen G, Willems G. Root resorption of the maxillary lateral incisor caused by impacted canine: a literature review. Clin Oral Investig.2009;13(3):247-55.

4. Yan B, Sun Z, Fields H, Wang L. Maxillary canine impaction increases root resorption risk of adjacent teeth: a problem of physical proximity. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. déc 2012;142(6):750-7.

5. Alqerban A, Jacobs R, Fieuws S, Willems G. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod. févr 2011;33(1):93-102.

6. Ericson S, Kurol J. Incisor resorption caused by maxillary cuspids. A radiographic study. Angle Orthod. oct 1987;57(4):332-46.

7. Kalavritinos M, Benetou V, Bitsanis E, Sanoudos M, Alexiou K, Tsiklakis K, et al. Incidence of incisor root resorption associated with the position of the impacted maxillary canines: A cone-beam computed tomographic study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. janv 2020;157(1):73-9.

8. Simić S, Nikolić P, Stanišić Zindović J, Jovanović R, Stošović Kalezić I, Djordjević A, et al. Root Resorptions on Adjacent Teeth Associated with Impacted Maxillary Canines. Diagn Basel Switz. 1 févr 2022;12(2):380.

9. Schroder AGD, Guariza-Filho O, de Araujo CM, Ruellas AC, Tanaka OM, Porporatti AL. To what extent are impacted canines associated with root resorption of the adjacent tooth?: A systematic review with meta-analysis. J Am Dent Assoc. 1 sept 2018;149(9):765-777.e8.

10. Guarnieri R, Cavallini C, Vernucci R, Vichi M, Leonardi R, Barbato E. Impacted maxillary canines and root resorption of adjacent teeth: A retrospective observational study. Med Oral Patol Oral Cir Bucal. nov 2016;21(6):e743-50.

11. Brosseau L, Guitard P, Laroche C, King J, Barette JA, Cardinal D, et al. La version franco-canadienne du « STrengthening the Reporting of OBservational studies in Epidemiology » (STROBE) Statement : L'outil STROBE. Physiother Can. 2019;71(1):1-10.

12. Limaye D, Limaye V, Pitani RS, Fortwengel G, Sydymanov A, Otzipka C, et al. DEVELOPMENT OF A QUANTITATIVE SCORING METHOD FOR STROBE CHECKLIST. Acta Pol Pharm - Drug Res.31 oct 2018;75(5):1095-106.

13. Gedda M. Traduction française des lignes directrices STROBE pour l'écriture et la lecture des études observationnelles. Kinésithérapie Rev. janv 2015;15(157):34-8.

14. Andresen AKH, Jonsson MV, Sulo G, Thelen DS, Shi XQ. Radiographic features in 2D imaging as predictors for justified CBCT examinations of canine-induced root resorption. Dento Maxillo Facial Radiol. 1 janv 2022;51(1):20210165.

15. Wang H, Li T, Lv C, Huang L, Zhang C, Tao G, et al. Risk factors for maxillary impacted canine-linked severe lateral incisor root resorption: A conebeam computed tomography study. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. Sept 2020;158(3):410-9.

16. Cuminetti F, Boutin F, Frapier L. Predictive factors for resorption of teeth adjacent to impacted maxillary canines. Int Orthod. mars 2017;15(1):54-68.

17. Rafflenbeul F, Gros CI, Lefebvre F, Bahi-Gross S, Maizeray R, Bolender Y. Prevalence and risk factors of root resorption of adjacent teeth in maxillary canine impaction, among untreated children and adolescents. Eur J Orthod. 21 sept 2019;41(5):447-53.

18. Chaushu S, Kaczor-Urbanowicz K, Zadurska M, Becker A. Predisposing factors for severe incisor root resorption associated with impacted maxillary canines. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. janv 2015;147(1):52-60.

19. Dogramaci EJ, Sherriff M, Rossi-Fedele G, McDonald F. Location and severity of root resorption related to impacted maxillary canines: a cone beam computed tomography (CBCT) evaluation. Aust Orthod J. 2015;31(1):49-58.

20. da Silva Santos LM, Bastos LC, Oliveira-Santos C, da Silva SJA, Neves FS, Campos PSF. Cone- beam computed tomography findings of impacted upper canines. Imaging Sci Dent. Déc 2014;44(4):287-92.

21. Ucar FI, Celebi AA, Tan E, Topcuoğlu T, Sekerci AE. Effects of impacted maxillary canines on root resorption of lateral incisors : A cone beam computed tomography study. J Orofac Orthop Fortschritte Kieferorthopadie OrganOfficial J Dtsch Ges Kieferorthopadie. Mai 2017;78(3):233-40.

22. Alemam AA, Abu Alhaija ES, Mortaja K, AlTawachi A. Incisor root resorption associated with palatally displaced maxillary canines: Analysis and prediction using discriminant function analysis. Am J Orthod Dentofacial Orthop. 1 janv 2020;157(1):80-90.

23. Ardakani MP, Nabavizadeh A, Iranmanesh F, Hosseini J, Nakhaei M. Relationship of angulation of maxillary impacted canines with maxillary lateral incisor root resorption. Pesqui Bras Em Odontopediatria E Clin Integrada. 2021;21.

24. Akkuc S, Duruk G, Duman S. Evaluation of impacted canines' localization and adjacent lateral incisors' root resorption with orthopantomography and cone-beam computed tomography. Oral Radiol. juill 2021;37(3):476-86.

25. Lipshatz J, Ptasznik R, Wenig S. Incidence of lateral incisor root resorption associated with impacted maxillary canines. Australas Orthod J. 2021;37(2):352-9.

26. Alqerban A, Jacobs R, Fieuws S, Willems G. Predictors of root resorption associated with maxillary canine impaction in panoramic images. Eur J Orthod. juin 2016;38(3):292-9.

27. Lai CS, Bornstein MM, Mock L, Heuberger BM, Dietrich T, Katsaros C. Impacted maxillary canines and root resorptions of neighbouring teeth: a radiographic analysis using cone-beam computed tomography. Eur J Orthod. août 2013;35(4):529-38.

28. Strbac GD, Foltin A, Gahleitner A, Bantleon HP, Watzek G, Bernhart T. The prevalence of root resorption of maxillary incisors caused by impacted maxillary canines. Clin Oral Investig. Mars 2013;17(2):553-64.

29. Kim Y, Hyun HK, Jang KT. The position of maxillary canine impactions and the influenced factors to adjacent root resorption in the Korean population. Eur J Orthod. 2012;34(3):302-6.

30. Alassiry AM, Hakami Z. Root resorption of adjacent teeth associated with maxillary canine impaction in the saudi arabian population: A crosssectional cone-beam computed tomography study. Appl Sci Switz. 2022;12(1).

31. Schindel RH, Sheinis MR. Prediction of maxillary lateral-incisor root resorption using sector analysis of potentially impacted canines. J Clin Orthod JCO. août 2013;47(8):490-3.

32. Yilmaz H, Ozlu FC, Icen M, Icen E. Impacted maxillary canines and their relationship with lateral incisor resorption: A cone beam computed tomography (cbct) study. Australas Orthod J. 2020;36(2):160-7.

33. Lindauer SJ, Rubenstein LK, Hang WM, Andersen WC, Isaacson RJ. Canine impaction identified early with panoramic radiographs. J Am Dent Assoc 1939. mars 1992;123(3):91-2, 95-7.

34. Grybienė V, Juozėnaitė D, Kubiliūtė K. Diagnostic methods and treatment strategies of impacted maxillary canines: A literature review. Stomatologija. 2019;21(1):3-12.

35. Jawad Z, Carmichael F, Houghton N, Bates C. A review of cone beam computed tomography for the diagnosis of root resorption associated with impacted canines, introducing an innovative root resorption scale. Oral Surg Oral Med Oral Pathol Oral Radiol. Déc 2016;122(6):765-71.

36. Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofac Orthop Off Publ Am Assoc Orthod Its Const Soc Am Board Orthod. oct 2005;128(4):418-23.

37. Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, et al. Androgen-mediated sex biasimpairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest. 1 août 2017;127(8):3167-76.

38. Cernochova P, Krupa P, Izakovicova-Holla L. Root resorption associated with ectopically erupting maxillary permanent canines: a computed tomography study. Eur J Orthod. Oct 2011;33(5):483-91.

39. Hadler-Olsen S, Pirttiniemi P, Kerosuo H, Bolstad Limchaichana N, Pesonen P, Kallio-Pulkkinen S, et al. Root resorptions related to ectopic and normal eruption of maxillary canine teeth – A 3D study. Acta Odontol Scand. 17 nov 2015;73(8):609-15.

40. Ericson S, Kurol J. Radiographic examination of ectopically erupting maxillary canines. Am J Orthod Dentofacial Orthop. 1 juin 1987;91(6):483-92.

41. Jiménez-Silva A, Carnevali-Arellano R, Vivanco-Coke S, Tobar-Reyes J, Araya-Díaz P, Palomino-Montenegro H. Prediction methods of maxillary canine impaction: a systematic review. ActaOdontol Scand. janv 2022;80(1):51-64.

42. Yan B, Sun Z, Fields H, Wang L, Luo L. Etiologic factors for buccal and palatal maxillary canine impaction: A perspective based on cone-beam computed tomography analyses. Am J Orthod Dentofacial Orthop. avr 2013;143(4):527-34.

43. Yu JN, Gu YG, Zhao CY, Liu K, Mo SC, Li H, et al. [Three-dimensional localization and assessment of maxillary palatal impacted canines with cone-beam computed tomography]. Shanghai Kou Qiang Yi Xue Shanghai J Stomatol. févr 2015;24(1):65-70.

44. Sajnani AK, King NM. The sequential hypothesis of impaction of maxillary canine – A hypothesis based on clinical and radiographic findings. J Cranio-Maxillofac Surg. 1 déc 2012;40(8):e375-85.

45. Ericson S, Kurol J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur J Orthod. nov 1988;10(4):283-95.

46. Ngo CTT, Fishman LS, Rossouw PE, Wang H, Said O. Correlation between panoramic radiography and cone-beam computed tomography in assessing maxillary impacted canines. Angle Orthod. juill 2018;88(4):384-9.

47. Ericson S, Bjerklin K, Falahat B. Does the canine dental follicle cause resorption of permanent incisor roots? A computed tomographic study of erupting maxillary canines. Angle Orthod. avr 2002;72(2):95-104.