WWW,IJRPR,COM

# Design of Horizontal Pressure Vessel in PVELITE Software 

Prachi H. Kasved ${ }^{1}$, Harsh S. Jadhav ${ }^{2}$, Gautam G. Kulal ${ }^{3}$, Soham N. Thakur ${ }^{4}$, Anand P. Joshi ${ }^{5}$, Ragwendra P. Singh ${ }^{6}$<br>${ }^{1,2,3,4}$ Students, Mechanical Engineering, Datta Meghe College of Engineering, Airoli, India<br>${ }^{5}$ Assistant Professor, Mechanical Engineering, Datta Meghe College of Engineering, Airoli, India<br>${ }^{6}$ Assosiate General Manager, Worley Services India Private Limited, Airoli, India

## ABSTRACT:

Pressure vessels are integral to numerous industries, facilitating the storage and processing of pressurized liquids, gases, chemicals, and more. This research focuses on the design of a horizontal pressure vessel, emphasizing safety and regulatory compliance to enhance industrial efficiency. The methodology involves identifying the problem statement, determining specifications including dimensions and materials, and utilizing PVELITE Software for design. References to standards such as ASME Sec VIII Div 1, ASME Sec II, IS 875, and IS 1893 are incorporated for material selection, manufacturing methods, and stress calculations considering wind and seismic loads. Proper design is paramount to prevent accidents and extend vessel lifespan, considering factors like corrosion resistance, suitable location, mounting, material choice, and maintenance. Furthermore, incorporating ANSYS structural analysis augments the depth of the study, providing additional insights into structural integrity and performance metrics. Results derived from these analyses are rigorously compared against industry standards to ensure compliance with safety regulations, thereby affirming the robustness and reliability of the designed horizontal pressure vessel.
Keywords: PVELITE, Horizontal Pressure Vessel, ASME Sec VIII Div 1, Design.

## 1. Introduction

Pressure vessels are very important across various industries, serving as containers for storing pressurized liquids, gases, chemicals, and other substances. There are various types of pressure vessels used in industries like horizontal, vertical, spherical, etc. The design of these vessels is very important, making sure they meet strict safety standards, regulatory requirements, and performance criteria while also being cost-effective. In this context, the focus is on using PVElite Software, a widely used tool in the industry, to simplify and improve the design process of pressure vessels. PVElite Software offers advanced capabilities for analyzing pressure vessel designs, allowing engineers to efficiently go through design iterations and optimize vessel design. Pressure Vessel Types are as follows: Types by Application: Storage Tanks, Process vessels, Heat exchangers; Types by Geometry: Vertical Pressure Vessels, Horizontal Pressure Vessels, Conical Pressure Vessels, Spherical Pressure Vessels; Types by Orientation: Available space, Manufacturing and installation, Seismic and wind, Strt


Fig. 1 - Horizontal Pressure Vessel

## Nomenclature



Fig. 2 - Nomenclature

Tan Line- The Tangent Line (TL) is defined as the common theoretical line between the straight.
Weld Line- A weld line (WL) in a vessel is the point where the closures attach to the shell.
Straight Face- Straight Face is straight section height provided in shell section to weld with Dish end.
Dish end- Dish ends are welded to the main body of a pressure vessel to seal pressure vessels and prevent leaks and spills. They can be produced in different shapes by Spinning method, during spinning there are always reduction in thickness of plate therefore always takes $10 \%$ minimum margin above required thickness obtained by calculation. There three major type of Dish end:

1. Tori spherical: The most common type of dish end, with a shape resembling a torus(donut).
2. Ellipsoidal: Has a shape resembling an ellipse, and is preferred for applications where the pressure constraint on the component is above 10 bars.
3. Hemispherical: Completely round like a hemisphere, with a maximum radial section that gives it the largest pressure dispersion zone.

Nozzles- Nozzles are crucial openings in pressure vessels for fluid entry or exit. They typically consist of a flange, nozzle neck, and reinforcing element if needed. Common types include inlet, outlet, instrumentation, and manway nozzles. Inlet and outlet nozzles accommodate fluid flow, while instrumentation nozzles are for installing instruments like gauges and sensors. Manways allow access for inspection and maintenance. Standard flanges, such as ASME B16.5, are commonly used for connection, ensuring precise assembly and construction.

Saddle Support- Saddle supports are U-shaped structures that support horizontal pressure vessels from below, providing excellent stability and weight distribution. They are made up of two half-round supports that extend along the length of the vessel, welded or bolted to the bottom, and rest on a pedestal or structural member.

### 1.1. ASME

ASME, organized in 1880 as an educational and technical society for mechanical engineers, took up the task. After years of development and public feedback, the first edition of the ASME Boiler and Pressure Vessel Code was published in 1914 and formally adopted in 1915. Subsequently, in 1925, the first Code rules for pressure vessels, titled "Rules for the Construction of Unfired Pressure Vessels," were introduced. Over time, the Code evolved into its present twelve-section document, with numerous subdivisions, parts, and subsections.

## Sections Description

I Rules for Construction of Power Boilers (ASME-Part 1)
II Materials (ASME-Part 2)
Part A — Ferrous Material Specifications
Part B - Nonferrous Material Specifications
Part C - Specifications for Welding Rods, Electrodes, and Filler Metals
Part D — Properties (Customary)
Part D — Properties (Metric)
III Rules for (Construction of Nuclear Facility Components ASME-Part 3)

Subsection NCA — General Requirements for Division 1 and Division 2
Division 1
Subsection NB - Class 1 Components
Subsection NC - Class 2 Components
Subsection ND - Class 3 Components
Subsection NE - Class MC Components
Subsection NF — Component Supports
Subsection NG - Core Support Structures
Subsection NH - Class 1 (Components in Elevated Temperature Service)
Appendices
Division 2 - Code for Concrete Containments
Division 3 - Containments for Transportation and Storage of Spent Nuclear Fuel and High-Level Radioactive Material and Waste
IV Rules for Construction of Heating Boilers (ASME-Part 4)
V Non-destructive Examinations (ASME-Part 5)
VI Recommended Rules for the Care and Operation of Heating Boilers (ASME-Part 6)
VII Recommended Guidelines for the Care of Power Boilers (ASME-Part 7)
VIII Rules for Construction of Pressure Vessels (ASME-Part 8)
Division 1: Rules for Construction of Pressure Vessels
Division 2: Alternative Rules
Division 3: Alternative Rules for Construction of High-Pressure Vessels
IX Welding and Brazing Qualifications (ASME-Part 9)
X Fiber-Reinforced Plastic Pressure Vessels (ASME-Part 10)
XI Rules for In-service Inspection of Nuclear Power Plant Components (ASME-Part 11)
XII
Rules for Construction and Continued Service of Transport Tanks (ASME-Part 12)

## 2. Literature Review

### 2.1. ASME SEC VIII Div 1

ASME Section VIII Division 1 establishes the requirements for the design, fabrication, inspection, testing, and certification of pressure vessels. This division is divided as per below diagram given.


Fig. 3 - ASME Section VIII - DIV 1 Bifurcation.

### 2.2. UG-27 Thickness of Shells Under Internal Pressure

It covers the formulae for calculating thickness of shells under internal pressure which is as below:
For Circumferential Stress (Longitudinal Joints) as shown in Fig (a)
$\mathrm{t}=\frac{\mathrm{PR}}{\mathrm{SE}-0.6 \mathrm{P}}+\mathrm{CA}$

## All dimensions in code are in corroded condition

Symbols:

(a)
$\mathrm{t}=$ min. required thickness
$\mathrm{P}=$ internal design pressure
$\mathrm{R}=$ inside radius of shell
$\mathrm{S}=$ max. allowable stress value (Sec II D)
$\mathrm{E}=$ joint efficiency (UW-12)
Fig. 4 - Circumferential Stress

### 2.3. UG-32 Formed Heads, and Sections Pressure on Concave Side

The minimum thickness required for certain types of heads, like ellipsoidal heads, under pressure on the concave side, should be calculated using specific formulas as below:

$$
\begin{aligned}
& t=\frac{P D}{2 S E-0.2 P} \\
& \cdot t / L \geq 0.002
\end{aligned}
$$

- Inside Depth $=1 / 4$ Inside diameter
$\mathrm{t}=$ minimum required thickness of head (forming)
$\mathrm{P}=$ internal design pressure
$\mathrm{D}=$ inside diameter of the head skirt, or inside length of the major axis pf an ellipsoidal head
$\mathrm{S}=$ max. allowable stress value in tension (Sec II D)
$\mathrm{E}=$ lowest efficiency of joint in the head (any)
- 2:1 ellipsoidal Head- Approximation: Knuckle Radius $=0.17 \mathrm{D}$, Spherical Radius $=0.90 \mathrm{D}$

(a) Ellipsoidal

Fig. 5 - Ellipsoidal Head.

### 2.4. UG-99(c) Standard Hydrostatic Test

Hydrostatic tests are conducted on vessels after fabrication, excluding certain operations like weld end preparation. Completed vessels must pass this test, except those exempts under UG-100 and UG-101.Vessels designed for internal pressure must undergo a hydrostatic test with a pressure at least 1.3 times the maximum allowable working pressure, adjusted by the lowest stress ratio for vessel materials. The test considers all possible loadings and adjusts for static head conditions. A calculated pressure hydrostatic test may be agreed upon between the user and manufacturer. The test pressure is determined by multiplying the basis for calculated test pressure by 1.3 and adjusting for hydrostatic head. Inspectors reserve the right to review the calculations used for determining the test pressure.

### 2.5. UW - 3 Welded Joint Category

The term "Category" denotes the location of a joint in a vessel, not its type. Categories $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D define special requirements for certain welded pressure joints based on service, material, and thickness. These requirements apply only to specified joints within each category. Category A includes longitudinal and spiral welded joints within the main shell, among others. Category B covers circumferential welded joints within the main shell and nozzles. Category $C$ pertains to joints connecting flanges, tube sheets, or flat heads. Category $D$ encompasses joints connecting communicating chambers or nozzles to various vessel components.


Fig. 6 Weld Joint Category.

## 3. Methodology

### 3.1. Problem Definition

Design the pressure vessels as per stated parameters with PVELITE software and calculate the thickness for shell \& Heads \& also calculate the weights (empty \& test). Wind and Seismic loads as per IS875(Wind), IS 1893 SCM (Seismic) applicable for foundation design.

### 3.2. Pressure Vessel Specification

The pressure vessel chosen for this study is a horizontal pressure vessel used to contain liquid having density $800 \mathrm{~kg} / \mathrm{m}^{3}$. This pressure vessel has $2: 1$ ellipsoidal heads and is designed to be used in fixed location on saddles. The pressure vessel will have an inner shell diameter 2250 mm and a shell length 5100 mm . The pressure vessel is made of carbon steel SA-516 Gr70, which is the industry standard for pressure vessel design and creation.


Fig. 7 - Vessel Sketch.

| Parameters | Values |
| :---: | :---: |
| Design Internal Pressure | 25 barg |
| Design external Pressure | FV (Full Vacuum) 1 Bar |
| Design Temp (Max./Min./external) | $225^{\circ} \mathrm{C} /-10^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C}$ |
| Corrosion allowance | 3 mm for pressure part |
| Joint Efficiency | 1 (RT-1) |
| Insulation | 150 mm thickness, Mineral Wool, density |
|  | $120 \mathrm{Kg} / \mathrm{m} 3$ |
| Wind Load | $150 \mathrm{Km} / \mathrm{hr}$ |

Fig. 8 - Design Specifications.

| Part | Materials |
| :---: | :---: |
| Shell | SA-516 Gr.70N |
| Heads | SA-516 Gr.70N |
| Nozzle pipe | SA-106 Gr. B / SA-516 Gr. 70N |
| Pipe Flanges | SA-105 |
| Reinforcement pad | SA-516 Gr.70N |
| Saddle support | SA-516 Gr.70 / SA-36 |
| Fasteners | SA-193 Gr. B7 / SA-194 Gr. 2H |
| Gasket | Spiral wound gasket |

Fig. 9 -Material Specifications.

### 3.3. Shell Design

When designing the pressure vessel shell, we consider two main factors: the pressure it will handle and the 3 mm corrosion allowance specified by ASME standards. This helps determine the thickness of the shell. Thickness Calculation of Shell:

| $\mathrm{t}=\frac{\mathrm{PR}}{\mathrm{SE}-0.6 \mathrm{P}}+\mathrm{CA}$ |  | Element Data |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Element Description | Shell |  |
|  |  | From Node | 20 |  |
| $0.2549 * 1125-3$ |  | To Node | 30 |  |
| $14.0689 * 1-0.6 * 0.2549$ |  | Element Type | Cylindricat | - |
| $\mathbf{t = 2 3 . 2 4 ~ m m ~}$ |  | Diameter Baps | ID | - |
|  |  | Inside Diameter, mm. | 2250 |  |
|  |  | Cylinder Length mm. | 5000 |  |
|  |  | Finished Thicloses, mm. | 25 |  |
|  |  | Nominal Thicknest mm. | 25 |  |
|  |  | Internal Corrosion Allowance mr | 3 |  |
|  |  | Extemal Corrosion Aliswance, mn |  |  |
|  |  | Wind Diameter Multiplier | 1.2 |  |
|  |  | Material Name | SA-51670 | - |
|  |  | Longitudinal Seam Efficiency | 1 | $\cdots$ |
|  |  | Gircumferential Seam Efficiency | 1 | - |
|  |  | Internal Pressure, biers | 25 |  |
|  | 500000 mm | Temp. for Internal Pressuate C | 225 |  |
|  |  | Extemal Pressure, bars | 1.03 |  |
|  |  | Temp, for External Pressure, C | 65 |  |

Fig. 10 - (a) Shell ; (b) Shell Input in PVELITE.

### 3.4. Dish end Design

Thickness Calculation of Dishend:
2:1 Ellipsoidal Head
Inside Depth $=1 / 4$ Inside diameter
$\mathrm{t}=\frac{\mathrm{PR}}{\mathrm{SE}-0.2 \mathrm{P}}+3$
$\mathrm{t}=\frac{0.2549 * 1125}{14.0689 * 1-0.2 * 0.2549}+3$
$\mathbf{t}=\mathbf{2 3 . 4 5 6 9} \mathbf{~ m m}$


| Element Data |  |  |
| :---: | :---: | :---: |
| Element Desciption | Right Dishend |  |
| From Node | 10 |  |
| To Node | 40 |  |
| Eiement Type | Eliptical |  |
| Diameter Eavis | 1 b |  |
| invide Dismeter, mm. | 2250 |  |
| Straight Flange Length, nam. | \$0 |  |
| Finished Thicknen, mm. | 25 |  |
| Neminal Thicinesk, mm- | 28 |  |
| Internal Conosion Alowance mur 3 |  |  |
| Enternal Cormotion Allowance, mr 0 |  |  |
| Wind Diameter Multipler | 1.2 |  |
| Material Name | 5A-316 70 | - |
| Longitudinal Semm Efficiency | 1 |  |
| Circurnferstial Seam Efficiency | 1 |  |
| Intemal Pressure, thers | 25 |  |
| Temip far internal Pressume, $C$ | 225 |  |
| External Pressure bars | 1.01 |  |
| Temp. For External Pressurs, C | 65 |  |

Fig. 11 - (a) Head; (b) Head Input in PVELITE.

### 3.5. Nozzle Design



Fig. 12 - Nozzle.


Fig. 13- Manhole

| S.N. | Nozzle Mark | Nominal Diameter (DN) | Service | Flange Rating | Flange Type |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | N1 | DN150 | Steam outlet | 600\# | WNRF |
| 2 | N2 | DN80 | Boiler feed water | 600\# | WNRF |
| 3 | N3 | DN250 | Downcomer | 600\# | WNRF |
| 4 | N4 | DN80 | Spare | 600\# | WNRF |
| 5 | N5 | DN250 | Riser | 600\# | WNRF |
| 6 | N6 | DN80 | Boiler feed water | 600\# | WNRF |
| 7 | N7 | DN100 | Vent | 600\# | WNRF |
| 8 | N8 | DN80 | Continuous blowdown | 600\# | WNRF |
| 9 | N9 | DN50 | Intermittent blowdown | 600\# | LWNRF |
| 10 | N10 | DN50 | Steam injection | 600\# | LWNRF |
| 11 | N11 | DN50 | Spare | 600\# | LWNRF |
| 12 | N12 | DN80 | Drain | 600\# | WNRF |
| 13 | L1-L4 | DN50 | Level control | 600\# | LWNRF |
| 14 | P1-P2 | DN50 | Pressure | 600\# | LWNRF |
| 15 | T1 | DN50 | Temperature | 600\# | LWNRF |
| 16 | M1 | DN600 | Manhole | 600\# | WNRF |

Fig. 14- Nozzle Table.


Fig. 15 - (a) Nozzle Input in PVELITE; (b) Manhole Input in PVELITE.

### 3.6. Supports(Saddles) Designs



Fig. 16 - (a) Saddle Sketch; (b) Saddle Specifications.


Fig. 17 - Saddle Input in PVELITE.

### 3.7. Software Output

Internal Pressure Calculation Results

## ASME Code, Section VIII Division 1, 2017

## Elliptical Head From 10 To 20 SA-516 70, UCS-66 Crv. D at $225{ }^{\circ} \mathrm{C}$

Left Dishend

Material UNS Number: K02700

Required Thickness due to Internal Pressure [tr]
$=($ PDKcor $) /(2 S E-0.2 \mathrm{P})$ Appendix 1-4(c)
$=(25.1772256 .00 .996) /(2137.91 .0-0.225 .177)$
$=20.5601+3.0000=23.5601 \mathrm{~mm}$.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.177 bars
$=(2 \mathrm{SEt}) /($ KcorD $+0.2 \mathrm{t})$ per Appendix 1-4 (c)
$=(2137.91 .022 .0) /(0.9962256 .0+0.222 .0)$
$=26.936-0.177=26.760$ bars

## Cylindrical Shell From 20 To 30 SA- 51670 , UCS-66 Crv. D at $225{ }^{\circ} \mathrm{C}$

Shell

Material UNS Number: K02700
Required Thickness due to Internal Pressure [tr]:
$=(\mathrm{PR}) /(\mathrm{SE}-0.6 \mathrm{P})$ per UG-27 (c)(1)
$=(25.1771128 .0) /(137.91 .0-0.625 .177)$
$=20.8234+3.0000=23.8234 \mathrm{~mm}$
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.177 bars
$=(\mathrm{SEt}) /(\mathrm{R}+0.6 \mathrm{t})$ per UG-27 (c)(1)
$=(137.91 .022 .0) /(1128.0+0.622 .0)$
$=26.583-0.177=26.406$ bars

## Elliptical Head From 30 To 40 SA-516 70, UCS-66 Crv. D at $225{ }^{\circ} \mathrm{C}$

Right Dishend
Material UNS Number: K02700
Required Thickness due to Internal Pressure [tr]:
$=($ PDKcor $) /(2 S E-0.2 \mathrm{P})$ Appendix 1-4(c)
$=(25.1772256 .00 .996) /(2137.91 .0-0.225 .177)$
$=20.5601+3.0000=23.5601 \mathrm{~mm}$
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
Less Operating Hydrostatic Head Pressure of 0.177 bars
$=(2 \mathrm{SEt}) /(\mathrm{KcorD}+0.2 \mathrm{t})$ per Appendix 1-4 (c)
$=(2137.91 .022 .0) /(0.9962256 .0+0.222 .0)$

## $=26.936-0.177=26.760$ bars

## Hydrostatic Test Pressure Results:

Pressure per UG99b $=1.30$ M.A.W.P. Sa/S 32.561 bars
Pressure per UG99b[36] = 1.30 Design Pres Sa/S 32.500 bars
Pressure per UG99c $=1.30$ M.A.P. - Head(Hyd) 39.091 bars
Pressure per UG100 $=1.10$ M.A.W.P. Sa/S 27.551 bars
Pressure per PED $=\max (1.43 \mathrm{DP}, 1.25 \mathrm{DPratio}) 35.750$ bars
Pressure per App 27-4 = M.A.W.P. 25.047 bars
UG-99(b), Test Pressure Calculation:
$=$ Test Factor MAWP Stress Ratio
$=1.325 .0471 .0$
$=32.561$ bars

## External Pressure Calculation Results:

ASME Code, Section VIII Division 1, 2017

## Elliptical Head From 10 to 20 Ext. Chart: CS-2 at $65^{\circ} \mathrm{C}$

Left Dishend
Material UNS Number: K02700
Required Thickness due to Internal Pressure [tr]:
$=($ PDKcor $) /(2$ SE-0.2P) Appendix 1-4(c)
$=(1.722256 .00 .996) /(2137.91 .0-0.21 .72)$
$=1.4023+3.0000=4.4023 \mathrm{~mm}$.
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
$=((2 \mathrm{SEt}) /(\mathrm{KcorD}+0.2 \mathrm{t})) / 1.67$ per Appendix 1-4 (c)
$=((2137.91 .022 .0) /(0.9962256 .0+0.222 .0)) / 1.67$
$=16.130$ bars
Maximum Allowable External Pressure [MAEP]:
$=\min ($ MAEP, MAWP $)$
$=\min (9.94,16.1296)$
$=9.942$ bars

## Elliptical Head From 30 to 40 Ext. Chart: CS-2 at $65^{\circ} \mathrm{C}$

## Right Dishend

Material UNS Number: K02700
Required Thickness due to Internal Pressure [tr]:
$=($ PDKcor $) /(2 S E-0.2 \mathrm{P})$ Appendix 1-4(c)
$=(1.722256 .00 .996) /(2137.91 .0-0.21 .72)$
$=1.4023+3.0000=4.4023 \mathrm{~mm}$.
Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:
$=((2 \mathrm{SEt}) /($ KcorD $+0.2 \mathrm{t})) / 1.67$ per Appendix 1-4 (c)
$=((2137.91 .022 .0) /(0.9962256 .0+0.222 .0)) / 1.67$

$$
=16.130 \text { bars }
$$

Maximum Allowable External Pressure [MAEP]:

```
= min( MAEP, MAWP )
= min}(9.94,16.1296
=9.942 bars
```


## Weight Summary:

| Fabricated Wt. - Bare Weight without Removable Internals | 13127.4 kg. |  |
| :--- | :---: | :---: |
| Shop Test Wt. | - Fabricated Weight + Water ( Full ) | 36377.4 kg. |
| Shipping Wt. | - Fab. Weight + removable Intls.+ Shipping App. | 14105.2 kg. |
| Erected Wt. - Fab. Wt + or - loose items (trays,platforms etc | 14105.2 kg. |  |
| Ope. Wt. no Liq - Fab. Weight + Internals. + Details + Weights | 14105.2 kg. |  |
| Operating Wt. - Empty Weight + Operating Liq. Uncorroded | 32705.2 kg. |  |
| Oper. Wt. + CA - Corr Wt. + Operating Liquid | 31520.5 kg. |  |
| Field Test Wt. - Empty Weight + Water (Full) | 37355.3 kg. |  |

## Wind Load Calculation:

| \\| W | Wind \| | Wind \| | Wind \| | \| Wind | | Element |
| :---: | :---: | :---: | :---: | :---: | :---: |
| From\| To | | Height | Diame |  | Area Pressure | \| Wind Load |
| 1 | mm. \| | mm. \| | $\mathrm{cm}^{2}$ \| | $\mathrm{Kgs} / \mathrm{m}^{2}$ \| | Kgf \| |
| 10\| 20 | | 1450 \| | 3120 \| | 16620 | \| 118.219 | | 139.092 \| |
| 20\| 30| | 1450 \| | 3120 \| | 156000 | \| 118.219 | | 1305.56 |
| 30\| 40 | | 1450 \| | 3120 \| | 16620 | \| 118.219 | | 139.092 \| |

## Seismic Analysis Results per IS-1893 (1984), Seismic Coefficient Method.

## Earthquake Load Calculation:

$$
\text { | |Earthquake |Earthquake | Element } \mid
$$

From| To | Height | Weight |Ope Load |
| | mm. $|\mathrm{Kgf}| \mathrm{Kgf} \mid$

| $10\|20\|$ | $1125 \mid$ | $6304.1\|94.5614\|$ |
| ---: | ---: | :--- |
| $20 \mid$ Sadl $\mid$ | $1125 \mid$ | $6304.1\|94.5614\|$ |
| Sadl $30 \mid$ | $1125 \mid$ | $6304.1\|94.5614\|$ |
| $20\|30\|$ | $1125 \mid$ | $6304.1\|94.5614\|$ |
| $30\|40\|$ | $1125 \mid$ | $6304.1\|94.5614\|$ |

## Nozzle Calculation Summary:

Description | MAWP| Ext $\mid$ MAPNC|UG-45 [tr]| Weld | Areas or
| bars $\mid$ bars $|\quad| \mathrm{mm} . \mid$ Path $\mid$ Stresses


## Nozzle Schedule:

Nominal or $\mid$ Schd $\mid$ Flg | Nozzle | Wall \| Reinforcing Pad \| Cut $\mid$ Flg
Actual | or FVC |Type | O/Dia | Thk|Diameter Thk|Length | Class
Description Size $\mid$ Type $\mid$ in $|\mathrm{mm} .|\mathrm{mm} . \mathrm{mm}|$.mm . $|$

| L1 | 2.000 in \| Actual | | LWN\| | 3.202 | 15.269 \| | ... \| | ... \| 240.46 | | 600 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L2 | 2.000 in \| Actual | | LWN\| | 3.202 | 15.269 \| |  | ... \| 240.46 | | 600 |  |
| P1 | 2.000 in \| Actual | | LWN\| | $3.310 \mid$ | 16.640 \| | ... \| | ... \| 225.79 | | 600 |  |
| P2 | 2.000 in \| Actual | | LWN\| | $3.310 \mid$ | 16.640 \| | ... \| | ... \| 225.79 | | 600 |  |
| N9 | 2.000 in \| Actual | | LWN\| | $2.602 \mid$ | 7.645 \| | 90.00 | \| $26.00 \mid 225$. | .49 \| | 600 |
| N10 | 2.000 in \| Actual | | LWN\| | 2.602 | 7.645 \| | 90.00 | \| 26.00 | 225 | 49 \| | 600 |
| T1 | 2.000 in \| Actual | | LWN\| | 2.766 | 9.735 | $\ldots$... | ... \| 225.55 | | 600 |  |
| N11 | \| 2.000 in | 160| | LWN\| | 2.375 | 8.738 \| | 70.00 | \| 26.00 | 225. |  | 600 |
| L3 | 2.000 in \| Actual | | LWN\| | 3.202 | 15.269 \| |  | ... \| 240.46 | | 600 |  |
| L4 | 2.000 in \| Actual | | LWN\| | 3.202 | 15.269 \| |  | ... \| 240.46 | | 600 |  |
| N2 | \| 3.000 in 160 | | WNF\| | $3.500 \mid$ | 11.125 | 120.00 | \| 25.00 | 225. |  | 600 |



## Saddle Parameters:

| Saddle Width | 300.000 mm. |
| :--- | ---: |
| Saddle Bearing Angle | 120.000 deg. |
| Centerline Dimension | 1450.000 mm. |
| Wear Pad Width | 400.000 mm. |
| Wear Pad Thickness | 25.000 mm. |
| Wear Pad Bearing Angle | 132.000 deg. |
| Distance from Saddle to Tangent | 1000.000 mm. |
| Baseplate Length | 2020.000 mm. |
| Baseplate Thickness | 25.000 mm. |
| Baseplate Width | 300.000 mm. |
| Number of Ribs (including outside ribs) | 4 |
| Rib Thickness | 16.000 mm. |
| Web Thickness | 16.000 mm. |
| Height of Center Web | 200.000 mm. |
| Number of Bolts in Baseplate | 4 |

Summary of Maximum Saddle Loads, Hydrotest Case :

| Maximum Vertical Saddle Load | 20433.23 Kgf |
| :--- | :---: |
| Maximum Transverse Saddle Shear Load | 261.32 Kgf |
| Maximum Longitudinal Saddle Shear Load | 194.50 Kgf |
| Weights: |  |
| Fabricated - Bare W/O Removable Internals | 13127.4 kg. |
| Shop Test - Fabricated + Water ( Full ) | 36377.4 kg. |
| Shipping - Fab. + Rem. Intls.+ Shipping App. | 14105.2 kg. |
| Erected - Fab. + Rem. Intls.+ Insul. (etc) | 14105.2 kg. |
| Empty - Fab. + Intls. + Details + Wghts. | 14105.2 kg. |
| Operating - Empty + Operating Liquid (No CA) | 32705.2 kg. |
| Field Test - Empty Weight + Water (Full) | 37355.3 kg. |

## ASME Code, Section VIII Division 1, 2017

Diameter Spec : 2250.000 mm . ID

| Vessel Design Length, Tangent to Tangent | 5100.00 mm. |
| :--- | :---: |
| Specified Datum Line Distance | 50.00 mm. |
| Internal Design Temperature | $225{ }^{\circ} \mathrm{C}$ |
| Internal Design Pressure | 25.000 |
| bars |  |
| External Design Temperature | $65{ }^{\circ} \mathrm{C}$ |
| External Design Pressure | 1.030 |
| bars |  |
| Maximum Allowable Working Pressure | 25.047 bars |
| External Max. Allowable Working Pressure | 6.390 bars |
| Hydrostatic Test Pressure | 32.561 |
| bars |  |
| Required Minimum Design Metal Temperature | $-10.0{ }^{\circ} \mathrm{C}$ |
| Warmest Computed Minimum Design Metal Temperature | $-29.0{ }^{\circ} \mathrm{C}$ |
| Wind Design Code | IS-875 |

## Materials of Construction:



Normalized is determined based on the UCS-66 material curve selection and Figure UCS-66.
Impact Tested is based on material selection and material data properties.

### 3.8. Structural Analysis in Ansys

ANSYS Static Structural is a software widely used for analyzing pressure vessels. It helps to evaluate the stresses and deformations caused by both the internal pressure and the weight of the vessel and the fluid it contains. SolidWorks software complements this by allowing engineers to create detailed three-dimensional models of the pressure vessels. The mathematical model employed in this analysis encompasses various aspects such as defining boundary conditions, formulating equations to calculate total deformation and equivalent stress, and utilizing numerical analysis methods for accurate simulations. In summary, ANSYS Static Structural and SolidWorks together provide a comprehensive solution for designing and analyzing pressure vessels, ensuring their safety and performance, as shown in the figure below


Fig. 18 - Ansys.
In this study, we employed a mesh consisting of 243,204 nodes and 129,585 elements. We selected this mesh due to its excellent overall quality, ensuring accurate results. Our analysis revealed that the cell aspect ratio was consistently low, with the vast majority of elements ( $99.8 \%$ ) having an aspect ratio not exceeding 0.27 . This indicates that the mesh effectively captures the geometry and details of the pressure vessel without distortion. Additionally, all three mesh quality criteria were met, further confirming the suitability of the chosen mesh for our analysis. Therefore, we confidently adopted this mesh for our study, ensuring reliable and precise simulation results. We set a boundary condition where the pressure inside the vessel is constant, caused by the fluid it contains. We fixed this pressure at 2.5 MPa , which represents the total pressure inside the vessel is subjected to as shown in the figure below


Fig. 19 - Total Pressure.
The highest equivalent elastic stress experienced by the pressure vessel is $42.18 \%$ as shown in the figure is lower than the maximum tensile strength of the material, which is 481.6 MPa . The total deformation experienced by the pressure vessel is 2.617 mm


Fig. 20 - (a) Equivalent Stress; (b) Total Deformation.
The maximum principle stress experienced by the pressure vessel is $54.45 \%$ as shown in the figure is lower than the maximum tensile strength of the material, which is 527.27 MPa .


Fig. 21 - Maximum Principal Stress.

## 4. Result

The experimentation calculations yielded the following results:

| Parameters | Values (Kg) |
| :---: | :---: |
| Erected Weight | 14100 |
| Operating Weight | 32700 |
| Field Test Weight | 37400 |


|  | Shear Forces (lbf) |
| :---: | :---: |
| Wind | 306.65 |
| Seismic | 208.47 |



Fig. 22 - (a) Weights, Wind \& Seismic Load;
(b) Horizontal Pressure Vessel In PVELITE.


| Parameters | Shell | Dishend |
| :---: | :---: | :---: |
| Nominal thickness | 25 mm | 28 mm |
| Actual Stress at <br> given Design <br> temperature | 130.606 <br> $\mathrm{~N} / \mathrm{mm} 2$ | 128.891 <br> $\mathrm{~N} / \mathrm{mm} 2$ |
| Max. Allowable <br> Pressure | 30.239 <br> bars | 30.575 <br> bars |
| Max. Allowable <br> Working Pressure | 26.406 <br> bars | 26.760 <br> bars |

Fig. 23 - (a) Horizontal Pressure Vessel In PVELITE; (b) Shell \& Dishend Summary

| Nozzle Mark | Nozzle Schedule | Wall Thickness |
| :---: | :---: | :---: |
| N1 | 600 | 15.875 mm |
| N2 | 160 | 11.125 mm |
| N3 | 80 | 15.088 mm |
| N4 | 160 | 11.125 mm |
| N5 | 80 | 15.088 mm |
| N6 | 160 | 11.125 mm |
| N7 | 120 | 11.125 mm |
| N8 | 160 | 11.125 mm |
| N9 | NONE | 7.645 mm |
| N11 | NONE | 7.645 mm |
| N12 | 160 | 8.738 mm |
| L1 to L4 | 160 | 11.125 mm |
| P1 \& P2 | NONE | 15.269 mm |
| M1 | NONE | 16.640 mm |
| NONE | 9.735 mm |  |
|  | 40 | 17.450 mm |
|  |  | 1020 |

Fig. 24 - Nozzle Summary.

## 5. Conclusion

During this study, we designed a horizontal pressure vessel using PVELITE software as per the ASME Sec VIII Div I and calculated thickness of shell and head and weights. Also calculated wind and seismic loads. Then, we used ANSYS Static Structural to model, mesh, and simulate the vessel to test its strength and study how stress and deformation are distributed across it. Hence, from result obtained from PVELITE, it's evident that the design of Horizontal Pressure Vessel ensures that stresses, pressures, and loads are within safe limits which is crucial for maintaining the safety of the vessel. Nozzle loads were within allowable limits, ensuring the integrity of the vessel connections and attached components. In Ansys, our study employed a high-quality mesh with 243,204 nodes and 129,585 elements, ensuring accurate results. The mesh effectively captured the pressure vessel's geometry, with low cell aspect ratios indicating minimal distortion. All mesh quality criteria were met, confirming the suitability of the chosen mesh. A constant pressure boundary condition of 2.5 MPa was applied to represent internal pressure. Results showed that the highest equivalent elastic stress and maximum
principle stress were both below the material's maximum tensile strength, ensuring structural integrity. The total deformation experienced by the vessel was 2.617 mm , confirming its ability to withstand pressure within safe limits.

## REFERENCES

[1] https://www.iqsdirectory.com/articles/pressure-vessel/pressure-tanks/pressurevessel.jpg?hl=en_US
[2] ASME Boiler and Pressure Vessel Code
[3] ASME SEC II Materials
[4] Worley Services India Pvt Ltd
[5] Pressure_Vessel_Design_Manual-4th_Ed-Dennis_R._Moss_and_Michael_Basic
[6] BEDNAR Pressure Vessel Design Handbook_2nd Edition
[7] Pressure_Vessel_Handbook_-E._Megyesy10th._Ed.
[8] ASME Section VIII Div 1 - 2019, "Rules for construction of Pressure Vessels"
[9] ASME Section II - 2019, "Materials"
[10] IS 875 - 1987, "Design loads other than Earthquake for building and structure"
[11] IS 1893 - 2005, "Criteria for Earthquake Resistant Design of Structures"
[12] Forged Vessel Connection an Ameri-Forge Group company
[13] PVELITE Software
[14] AutoCad Software
[15] https://images.app.goo.gl/fcsudeq2pSw6bv8H8
[16] Jacobs Engineering India Pvt. Ltd (Saddle support for Horizontal Vessel - For Vessel OD. 2000 to 3500)

