
International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Design of RISC-V Processor Using Verilog

Baggu Maneesha1, Gudla Sriram2, Ganteti Sai3, Murapaka Siddhu4, Smt. E. Jaya5

1,2,3,4 UG Student, 5Guide, M. Tech. Associate Professor

Department of Electronics and Communication Engineering, Aditya Institute of Technology and Management

ABSTRACT

This project's primary objective is to create a 32-bit pipelined processor based on the open- source RV32I Version 2.0 ISA, RISC-V, with several modules. A

processor known as a RISC (Reduced Instruction Set Computer) requires less hardware than a CISC (Complex Instruction Set Computer) in order to reduce the

complexity of the instruction set and accelerate the execution time of each instruction. With the help of the required block diagrams, we also built this processor

with five levels of pipelining, each of which has a detailed description of its operation. This project uses Verilog to develop and simulate a RISC-V. Because of its

free and open instruction set architecture (ISA), the RISC-V processor design offers computer designers an alternative for both software and hardware creation. In

addition, the five-stage pipeline procedures that the proposed RISC-V processor will employ will enhance the machine's overall performance. The pipeline register

(IF/ID, ID/IEx, IEx/IMem, and IMem/IW), alu, aludec, maindec, imem, dmem, regfile, pc_mux, result_mux, and pipeline register are the first main modules to be

implemented in the project. In addition, a hazard unit is incorporated into the design to lessen hazardous situations. Xilinx Vivado was used to simulate and validate

these modules functioning.

Keywords: Xilinx Vivado, Hazard, 5-stage pipeline, Verilog and RISC-V processor.

1. Introduction

Transistor was invented in 1948 (23 December 1947 in Bell lab). IC was invented in 1958 (Fair Child Semiconductors) By Texas Instruments J Kilby.

The first microprocessor was invented by INTEL.

1.1 Generations of microprocessors

First-generation – From 1971 to 1972, the first generation of microprocessors appeared, including the INTEL 4004, Rockwell International PPS-4, and

INTEL 8008 among others.

Second generation – From 1973 until 1978, the second generation of 8-bit microprocessors was developed. Processors such as the INTEL 8085, Motorola

6800, and 6801 were developed.

Third generation – The third generation saw the introduction of 16-bit processors such as the INTEL 8086/80186/80286, Motorola 68000 68010, and

others. This generation employed the HMOS technology from 1979 to 1980.

Fourth generation – Between 1981 and 1995, the fourth generation existed. 32-bit CPUs based on HMOS manufacturing were created. This generation's

prominent processors include the INTEL 80386 and Motorola 68020.

Fifth-generation –We've been in the fifth generation since 1995. There were 64-bit CPUs such as the PENTIUM, Celeron, twin, quad, and octa-core

processors.

1.2 Types of microprocessors

1.2.1 Complex instruction set microprocessor

These processors can download, upload, and recall data from memory, among other things. This microprocessor can also do sophisticated mathematical

calculations in a single instruction, in addition to these functions. Example: IBM 370/168, VAX 11/780.

http://www.ijrpr.com/

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2098

1.2.2 Reduced instruction set microprocessor

These processors are built to do specific tasks. They are meant to use a reduced instruction set to reduce execution time. They are capable of carrying out

minor tasks in response to particular commands. These processors are more efficient at completing commands. To implement a result at uniform execution

time, they simply need one clock cycle. There are a lot of registers and a lot of transistors. The LOAD and STORE instructions are used to access the

memory location. Example: Power PC 601, 604, 615, 620.

1.2.3 Superscalar microprocessor

These processors are capable of handling multiple tasks at once. ALUs and multiplier-like arrays can both benefit from them. They feature several

operating units and execute multiple orders to complete task.

1.2.4 Application-specific integrated circuit

Application-specific integrated circuit (ASIC) processors excel in efficiency and performance due to their tailored design for specific tasks, offering

customization advantages that optimize performance and reduce costs. Despite their complex development process, ASICs find applications across

various industries, from finance to artificial intelligence, powering critical functions in niche markets where off-the-shelf solutions fall short. Their

immutable design, once fabricated, underscores the importance of meticulous planning and optimization during the development phase. As technology

advances, ASIC processors are poised to remain indispensable, driving innovation and efficiency in specialized computing domains.

1.2.5 Digital signal multiprocessor

Signals such as analogue to digital and digital to analogue are converted using these processors. These processors' chips are found in a variety of devices,

including RADAR SONAR home theatre systems.

1.3 RISC vs CISC

Over the past decades, microprocessors and microcontrollers has been constructed around two types of architectures, Reduced Instruction Set computer

and Complex Instruction Set Computer.

CISC instructions are variable in length and are encoded for doing more micro-operations per instruction. As a result, the complex architecture of CISC

processors makes instructions take a longer time to execute. Since all instructions of a RISC processor have the same instruction length, the decoding

process becomes easier compared to a CISC processor.

RISC is widely used due to its efficient architecture which can be used for low power and high- speed processing application. It supports very few

addressing modes, LOAD and STORE instructions are the only instructions that are used to access the external memory. Hence RISC processors are

mainly dependent on software and CISC processors are mainly dependent on hardware for executing complex tasks.

1.3.1 Reduced Instruction Set Architecture (RISC)

The fundamental goal is to make hardware simpler by employing an instruction set that consists of only a few basic loading, evaluating, and storing

stages. A store command does the same thing as a load command: it stores the data.

1.3.2 Complex Instruction Set Architecture (CISC)

The basic notion is that a single instruction will handle all loading, evaluating, and storing operations, similar to how a multiplication command will

handle loading, evaluating, and storing data, which is why it's complicated.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2099

Fig 1.3 RISC vs CISC

2. Literature Review

2.1 Overview

In this chapter, the implementation of difference architectures such as MIPS, RISC, and CISC by other authors will be discussed.

2.2 Previous Work

The design of a 32-bit RISC processor based on MIPS using VHDL coding was presented by (S. P. Pitpurkar et al., 2015). They argued that RISC CPU

had more benefits than CISC such as higher speed, simpler structure, and easier implementation. They used pipeline design to describe the system and

achieve fewer clock cycles per instruction. They verified the design through extensive simulations. They used Xilinx 13.li ISE Simulator to design,

synthesize and simulate the RISC processor based on MIPS. Their results showed that the design had a combinational delay of 0.758 ns and a maximum

operating frequency of 1.350 Ghz.

Using Cadence, a software tool for electronic design automation, (Mohit N. Topiwala et al., 2014) designed and implemented a 32-bit processor based

on MIPS. MIPS is a RISC architecture, which stands for reduced instruction set computer. RISC architectures aim to increase the speed of the processor

by using a small set of simple and fast instructions. The authors stated that power consumption is a critical factor for embedded and portable applications.

However, there is a trade- off between power, area, and delay in integrated circuits. For some applications, low power circuits are required, and the design

engineers have to sacrifice more area and delay. Therefore, they suggested a power reduction technique by skipping pipeline stages that cause unnecessary

switching activities. They designed Hazard detection unit and Data forwardingunit for efficient implementation of the pipeline.

They used Verilog-HDL to implement the design and Cadence RTL complier to synthesize it using typical libraries of TSMC 0.18 μm technology.

Using Verilog HDL, (Shofiqul Islam et al., 2006) developed a high speed- pipelined execution unit of 32-bit RISC processor. They arranged the block

indifferent stages of pipeline so that the pipeline can operate at high frequency. The execution stage in a typical pipeline scheme consists of input data

mux, operational block and output ALU mux. To increase the speed of the pipeline, they selected the data for the computational blocks in the execution

stage one stage earlier in the data select stage. They also proposed a dependency resolver module to deal with a possible problem of consecutive data

dependent instruction in the pipeline. This module handles both stalling and data forwarding. They synthesized the processor at 0.1-micron technology

and achieved a working frequency of 714Mhz.

(Animesh Kulshreshtha et al., 2021) compared the behavioural models of 16- bit and 32-bit RISC processors and their different instruction sets. The 16-

bit RISC processor was a non-pipeline CPU based on Harvard architecture, which had separate data memory and instruction memory. The 32- bit RISC

processor was a pipelined CPU that followed the MIPS architecture. They aimed to study the differences between the models based on their instruction

set and performance factors such as speed and power consumption. They used an optimized Multiplier algorithm to improve the data path. In general, the

32-bitprocessor consumed about 60% more power than the 16-bit processor because of its higher operating frequency. However, the 32-bit processor was

70% faster than the 16-bit processor. These results were expected because the 32-bit processor can store more computational values and the pipelined

architecture of the processor reduces the length of each instruction cycle, which increases the operating frequency and decreases the combinational delay.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2100

Based on their results, the maximum operating frequency for the 16-bit processor and the 32-bit processor was 78.654 MHz and 139.438 MHz,

respectively. The maximum combinational delay 13.981 ns for the 16-bit processor and 7.028 ns for the 32-bit processor.

Using Verilog HDL coding, (Shawkat S. Khairullah, 2022) designed and implemented a 16-bit RISC processor with 5 pipeline stages that was simulated

using Xilinx ISE Design Suite 14.7 tool. They synthesized the design on device Xilinx XC3S200FT256 FPGA chip. They showed the experimental and

timing diagram results that indicated that the execution unit hardware design used 2%of Spartan – FPGAXC3S2000 area with a maximum speed of 56.8

MHz. They also showed that the data memory unit hardware design used 8% of the same FPGA area with a maximum speed of 67.32 MHz. Moreover,

they showed that he instruction unit hardware design used 6% of the same FPGA area with a maximum speed of 106 MHz.

Using VHDL, (Sarah M. Al-sudany et al., 2021) designed and implemented a multicore RISC processor on FPGA. They used 32-bit MIPS processor

with three main components: 32-bit data path, control unit, and hazard unit. They divided the single cycle MIPS system into five pipeline stages to create

the pipeline MIPS processor. They also solved the data hazard, control hazard, and structural hazard in their design. They developed the MIPS using

Xilinx ISE 14.7 design suite and successfully implemented it on Xilinx Virtex-6 XC6VLX240T-1FFG1156 FPGA. The multicore MIPS processor

consumed3.422 watt of power and had an operating frequency of 136.444 MHz.

2.3 Implementation and design of various processor from previous works

Author Description

Pitpurkar et al.,2015 Implement a design of 32-bit RISC based MIPS processorusing VHDL coding

RISC has more advantages, such as faster speed, simplified structure, and

easier to be implemented as compared to CISC

Xilinx 13.li ISE Simulator was used to the design, synthesis and simulation

Achieved combinational delay of 0.758ns and maximum operating frequency

of 1.350 GHz

N. Topiwala etal., 2014 Implemented a 32-bit MIPS based processor using Cadence

Power is the most important parameter for embedded and portable

applications

Proposed a power reduction technique throught by- passingpipeline stages that

cause unnecessary switching activities.

Hazard detection unit and Data forwarding unit were designed for efficient

implementation of the pipeline Implemented using Verilog-HDL and

synthesized using Cadence RTL complier using

typical libraries of TSMC 0.18 𝜇𝑚 technology

Shawkat S. Khairullah, 2022 Presented hardware realization of 5 pipeline stages of a16-bit RISC processor

Processor is simulated using Xilinx ISE Design Suite 14.7tool

Synthesis process of the proposed system is realized on device Xilinx

XC3S200FT256 FPGA chip

Execution unit uses 2% of Spartan – FPGA XC3S2000 area with maximum

allowable speed of 56.8 MHz.

Data memory unit uses 8% of Spartan – FPGAXC3S2000 area with maximum

allowable speed of 67.32 MHz Instruction unit uses 6% of the same FPGA

ship area with maximum allowable speed of 106

MHz

Iqul Islam et al.,2006 Designed a high speed-pipelined execution unit of 32- bitRISC processor

Data selection for the computational blocks in Execution stage is performed

one stage ahead Dependency Resolver module was proposed to solve

consecutive data dependent instruction in the pipeline Basically, the module

handles both stalling as

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2101

well as data forwarding

mesh Kulshreshthaet al., 2021 Analyzed behavioural model of 16-bit and 32- bit RISC processor and their

independent instruction sets

16-bit RISC processor was a non-pipeline Harvard architecture-based CPU

32-bit RISC was a pipelined processor from MIPS architecture

Total power consumption for 32-bit processor was about 60% more than 16-

bit processor due to higher operating frequency

32-bit processor was 70% faster than 16-bit processor Maximum operating

frequency for 16-bit processor and 32-bit processor is 78.654 MHz and

139.438 MHz Maximum combinational delay for 16-bit processor and 32-bit

processor is 13.981 ns and

7.028 ns

M. Al-sudany etal., 2021 Studied for multicore RISC processor implemented on FPGA

MIPS was developed using Xilinx ISE 14.7design suite and were

implemented successfully on Xilinx Virtex-6 XC6VLX240T-1FFG1156

FPGA

32-bit MIPS processor was designed using VHDL with 3 main structures: 32-

bit data path, control unit and hazard unit

Total power analysis of multicore MIPS processor is

3.422 watt, and the operating frequency is 136.444 MHz

3. Methodology

3.1 Background Theories

3.1.1 Instruction Set Architecture

Instruction Set Architecture (ISA) is a term that refers to the set of instructions that a computer processor can execute. It is a fundamental aspect of

computer architecture that determines the capabilities and limitations of a processor.

An ISA is composed of a set of instructions that define the operations that a processor can perform, as well as the format and meaning of each instruction.

Each instruction typically includes an opcode, which specifies the operation to be performed, and one of more operands, which specify the data on which

the operation is to be performed. Figure xxx shows the example of opcode and operand for a MOV instruction.

 Figure 3.1 Opcode and Operand of a MOV instruction

 From Figure 3.1, the opcode is the MOV instruction. The other parts are called the operands. Operands are manipulated by the opcode. In this example,

the operands are the register named AL and the value 34 hex.

ISAs can be classified into 2 main categories: Reduces Instruction Set Computing (RISC) and Complex Instruction Set Computing (CISC). RISC ISAs

have a smallerset of simple instructions can be executed quickly, whereas CISC ISAs have a larger set of more complex instructions that can perform

multiple operations in a single instruction. The RISC approach is generally favored in modern processors because it allows for faster execution times and

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2102

simpler processor designs. However, CISC architectures are still used in certain specialized applications where the additional complexity is justified by

the increased functionality.

One example of a CISC ISA is the x86 architecture, which is used in many personal computers and servers. The x86 ISA includes a large set of instructions

which are quite complex and can perform multiple operations in a single instruction. For example, MOV instruction from CISC ISA can transfer data

between two memory locations or between a register and a memory location in a single instruction. Besides, the x86 ISA also includes a variety of

specialized instructions for performing common tasks such as string manipulation, input/output operations, and floating-point arithmetic. x86 ISA is

known for its complexity and backward compatibility. However, this complexity can make it difficult to optimize for performance or energy efficiency.

Hence, it is more challenging to write software that runs efficiently on different processor with different implementations of the ISA.

One example of a RISC ISA is the ARM architecture, which is used in a wide range of device including smartphones, tables, and embedded systems. The

ARM ISA includes a relatively small set of simple instructions which can be executed faster. For example, the MOV instruction from RISC ISA only

copies data from one register to another. Besides, ARM ISA also includes a variety of specialized instruction such as loading and storing multiple registers

at once, performing conditional instructions, and performing arithmetic operations on multiple data types.The ARM ISA is known for its simplicity and

energy efficiency.

The simplicity of the ISA also makes it easier to optimize for performance and make it easier to write software on different processors with different

implementations of the ISA.

3.1.2 5-Stage pipeline

With traditional single cycle data path, instructions are executed in a single clock cycle. The next instruction will need to wait for the previous instruction

to be complete before it can be executed. Moreover, the execution time for each instruction is different. There are instructions that takes longer time to

execute than the other. This might lead to wasted clock cycle and reduced performance of the processor. However, this issue can be solved by using

pipelining.

Pipelining is a technique used in computer architecture to increase the overall performance of a processor. It involves breaking down the execution of a

task into smaller stages and allowing these stages to overlap in time. With this, multiple instructions can be executed simultaneously and improve the

throughput of the system.

The most common used pipeline technique in modern processor design is 5-Stage pipeline technique. As suggested by its name, the instruction execution

cycle was divided into 5 different stages. Each stage performs a specific operation on the input data and passes the result to the next stage. The output of

the first stage become the input of the second stage, and so on. Besides, every stage operates on a different part of the data, which allow multiple

instructions to be in different stages of execution at the same time. The 5 stages of a typical pipeline are: fetch, decode, execute, memory, and writeback.

The details for each stage were discussed below.

1. Fetch

In this stage, the processor fetches the instruction from memory. Then, the instruction is loaded into the instruction cache, which is used to store the

recently used instructions.

2. Decode

In this stage, the processor decodes the fetched instruction to determine the operation it needs to perform. The instruction is analyzed to determine the

type of operation, registers, and the locations of any operands.

3. Execute

In this stage, the processor performs actual operation specified by the instruction. This involves arithmetic or logical operations, such as addition and

subtraction. Besides, it also involves memory access or branching to a different part of the program.

4. Memory

In this stage, the processor access memory to read or write the data obtained from previous stage. However, this stage is optional. Some instruction such

as “add” does not involve memory access. 5.Writeback

In this stage, the results of the operation are written back to the appropriate register in the registerfile.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2103

Figure 3.2: 5 Stage pipeline

3.1.3 Xilinx Vivado

Xilinx Vivado is a sophisticated software suite designed to facilitate the development and implementation of FPGA (Field-Programmable Gate Array)

and SoC (System on Chip) systems. It serves as a comprehensive tool for engineers and designers working on a wide range of digital circuitry projects,

from simple logic designs to complex embedded systems. With its user-friendly interface and powerful features, Vivado enables users to efficiently

design, simulate, implement, and verify their FPGA designs.

At the core of Vivado's capabilities is its support for multiple design entry methods. Users can choose to create their designs using Hardware Description

Languages (HDL) such as Verilog or VHDL, allowing for low-level control and customization. Alternatively, Vivado offers a block diagram-based

design entry tool called IP Integrator, which simplifies the process of integrating pre-designed IP cores and building complex systems through a graphical

interface. This flexibility in design entry makes Vivado suitable for a wide range of users, from experienced RTL designers to those who prefer a more

visual approach. Once the design entry phase is complete, Vivado

guides users through the subsequent steps of the FPGA design flow, including synthesis, implementation, and verification. During synthesis, the RTL

code is transformed into a gate-level netlist, optimizing the design for the target FPGA device. The implementation phase involves floor planning, placing,

and routing the synthesized logic onto the physical FPGA chip while meeting timing and resource constraints. Vivado provides advanced analysis tools

to ensure that designs are functionally correct and meet performance specifications before proceeding to the next stage. One of Vivado's key strengths is

its comprehensive set of features for design optimization and debugging. Engineers can leverage built-in tools for timing analysis, power estimation, and

resource utilization to fine-tune their designs for optimal performance and efficiency. Additionally, Vivado offers robust debugging capabilities, including

hardware debugging with integrated logic analyzers and waveform viewers, enabling users to identify and resolve issues quickly.

Beyond design implementation, Vivado also supports the generation of configuration bitstreams and programming of FPGA devices, allowing users to

deploy their designs onto physical hardware for testing and deployment. Throughout the design process, Vivado provides extensive documentation and

reporting features to help users track their progress, document design decisions, and collaborate effectively with team members.

Beyond design implementation, Vivado also supports the generation of configuration bitstreams and programming of FPGA devices, allowing users to

deploy their designs onto physical hardware for testing and deployment. Throughout the design process, Vivado provides extensive documentation and

reporting features to help users track their progress, document design decisions, and collaborate effectively with team members.

Overall, Xilinx Vivado stands as a comprehensive and powerful tool suite for FPGA design, offering a seamless workflow from design entry to

deployment. Its intuitive interface, advanced features, and extensive documentation make it a preferred choice for engineers and designers working on

cutting-edge digital circuitry projects.

3.2 Implementation of Design

The processor consists of alu, aludec, maindec, imem, dmem, IF_ID, ID_IEx, IEx_IMem, Imem_IW, pc_mux, reg_file, Each component of the datapath

will be discussed in this section.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2104

3.2.1 Arithmetic Logic Unit (alu)

Arithmetic Logic Unit (alu) is a fundamental component of a CPU. It is responsiblefor performing arithmetic and logical operations on binary data. It

reads the data from pipeline register ID_IEx as an input and perform various arithmetic operationbased on the signals from aludec. The output is stored

as ALUResults. In this RISC-V processor design, 7 instructions are implemented in the ALU.

Table 3.1: Base Integer Instructions for RV321

Category inputs Description

Arithmetic

ADD rd, rs1, rs2 rd rs1 + rs2

SUB rd, rs1, rs2 rd rs1 - rs2

Logical

XOR rd, rs1, rs2 rd rs1 ^ rs2

AND rd, rs1, rs2 rd rs1 & rs2

OR rd, rs1, rs2 rd rs1 | rs2

Shifts

SHL rd, rs1, rs2 rd rs1 << rs2

SHR rd, rs1, rs2 rd rs1 >> rs2

3.2.2 ALU Decoder (aludec)

Arithmetic Logic Unit Decoder (aludec) is used to decode the instructions. It received the signal from the Main Decoder Unit (maindec) and determine

the type of operation that had to be performed by the alu. It combined all 4 inputs from ALUOp, funct3, funct7b5 and opb5 to decode the instruction.

funct7b5 is referring to instruction [31:25] funct3 is referring instruction [14:12], whereas opb5 is referring to instruction [0:6] in RISC-V instruction

format. RTypeSub is obtained by performing AND operation on funct7b5 and opb5. This is used to differentiate the R-type ADD and SUB instruction.

3.2.3 Main Decoder (maindec)

Main Decoder (maindec) is used to generate the control signals from the 7 bits opcode (instruction [6:0]) to determine the types of instruction. The control

signals are RegWrite, MemWrite, Result, Branch, ALUOp,and Jump. Each of these control signals control the multiplexer for making decisions in the

datapath to allow the data flow accordingly to the instructions.

3.2.4 Data Memory (dmem)

In computer architecture, data memory is a component of a computer system that is responsible for storing and retrieving data. Data memory is typically

used to store data that is actively being processed by alu. Usually there are 3 inputs in this module,which are write_enable, data_address, and write_data.

The module takes the memory address from the results of alu (data_address) and data from register file (write_data). Write enable (write_enable) is used

to control the write permission of the data to the data memory.

3.2.5 Instruction Memory (imem)

In computer architecture, instruction memory is a component of a computer system that stores the instruction of a program. It is responsible for holding

the sequence of instruction that the CPU fetches, decodes, and executes during the program execution. In this module, 32-bit instruction set is generated

and stored in the ram array. The instruction to be fetch is based on the program counter fetch (PCF) input. As each instruction is 4 bytes, the value of PCF

will be incremented by 4 to fetch.

3.2.6 Pipeline Register

In computer architecture, pipeline register is a temporary storage element used un a processor’s pipeline to hold data between different stages of instruction

execution process. It serves as a synchronization point between adjacent stages, allowing instruction to flow through the pipeline in a controlled manner.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2105

In 5 stages pipeline,there are 4 pipeline registers namely IF_ID, ID_IEx, IEx_IMem, and IMem_IW. The registers are named for the two stages separated

by that register. For example,the first pipeline register is IF_ID because it separates the instruction fetch and instruction decode stages.

3.2.6.1 IF_ID

IF_ID register as it names called, it separates the instruction fetch and instruction decode stages. It used to store data such as instruction fetch from

instruction memory and ready to be released to decode stage on the next clock cycle. Besides, the current PC and next incremented PC address(PCPlus4F)

is also saved in the IF_ID register in case it needed later for an instruction.

ID_IEx register as it names called, it separates the instruction decode and execute stages. It used to store information such as read data (RD1, RD2) from

the register file and extended immediate value (ImmExt). Besides, it carries forward the data of PC and PCPlus4F from IF_ID register. Instruction[11:7]

(rd), Instruction[19:15] (rs1), and Instruction[24:20] (rs2)will also be stored to ID_IEx register and send to Hazard Unit in execute.

3.2.6.2 IEx_IMem

IEx_IMem register as it names called, it separates the execute and memorystages. It is used to store the ALU results (ALUResult) and write data

(Writedata). At the same time, Instruction [11:7](rd) and PCPlus4F are also carried forward from previous pipeline registers and stored in IEx_IMem

register. The implementation of IEx_IMem Is done by Verilog code.

3.2.6.3 IMem_IW

IMem_IW register as it names called, it separates the memory and writeback stages. It used to store ALU results (ALUResult) and read data

(ReadData)from data memory. Instruction [11:7] (rd) and PCPlus4F are also carried forward from previous pipeline registers and store in IMem_IW

register. The implementation of IMem_IW done by Verilog code.

3.2.7 Write Data Selection MUX (result_mux)

The ALU has the capability to carry out arithmetic operations like addition (A+B)or logical operation like equality comparison (A=B). Depending on the

specific instructions being executed, the output of the ALU could be either a memory address or the result obtained from the ALU operation. To handle

this situation, a MUX is needed to make decision between selecting thedata address or the ALU output value for writing back to the register file. This

allows flexibility and efficient data handling in the processor’s pipeline. The implementation of result_mux is done by Verilog code.

3.2.8 Program Counter Selection MUX (pc_mux)

The Program Counter (PC) is a vital component used by the CPU to maintain the current instruction being executed. Under normal circumstances, the

program counter increments by a fixed value, typically 4 (corresponding to a 32-bit instruction) for each clock cycle. This ensures that the program

counter always points to the memory address of the next instruction to be executed. However, the program counter can be interrupted or modified by a

jump signal (jump) from the control unit. When the predetermined conditions are met, the control unit instructs the program counter to deviate from its

regular incrementation and instead updated its value to the jump.

3.2.9 Registerfile

The register file (regfile) in a CPU plays a critical role in storing and manipulating data during program execution. It serves as a high-speed storage

component that holds a set of registers, each capable of storing a fixed width if data. The Register File (regfile) in a RISC-V processor is responsible for

storing the processor's general-purpose registers (GPRs) and providing read and write access to these registers. In a simple implementation, the regfile

can be represented as an array of 32 32-bit registers, where each register holds a 32-bit value this implementation,rs1_addr, rs2_addr, and rd_addr are the

input addresses for the first source register, second source register, and destination register, respectively. wd_data is the input data to be written into the

register file, and wr_en is the write enable signal. The rs1_data and rs2_data outputs provide the data read from the first and second source registers.

3.2.10 Hazard Unit (hazard unit)

The Hazard Unit is a component in a CPU’s architecture that is responsible for detecting and handling hazards that can occur during the execution of

instructions. Hazards refer to situations where the sequential execution of instructions may lead to incorrect or unintended behavior due to dependencies

or conflicts between instructions. The hazard unit detects these hazards and takes appropriate actions to mitigate their effects. With this, the dependencies

of write data begins from a pipeline register, rather than waiting for the WB stage to write the register file. Thus, the required data exists in time for later

instructions, with the pipeline registers holding the data to be forwarded.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2106

4. Results and Discussion

4.1 Overview

In this chapter, each module that were discussed on previous chapter were simulated by using Xilinx Vivado software. Waveforms were generated from

the simulations and the results were analyzed and discussed. Besides, the results were used to verify the functionality for each module of the design.

In the simulation, the functionality for each module were tested by running a set of test sequence with different instructions. Furthermore, the clock cycle

used throughout the simulation is set to 100ps. The test sequence consists of a main code with label main, 4 branches with label around, end, and wrong,

and end with a done label. In the main label, it consists of some arithmetic and logical instruction such as add, or, and xor with these instructions, alu,

data memory, instruction memory, register file, and control unit module can be tested. Besides, the test was also designed to hit hazard conditions. The

future depends on the computing speed of these RISC processors. IOT devices has already started emerging in this century. More and more RISC based

processors will be designed and verified for the consumers. Thus, more flexible designs are needed like the one being projected in this report. We were

writing the code and design 5-stage pipeline within these 5 stages fetch, decode, execution, memory, write back and synthesis the processor and find the

power and time delay and efficiency of overall the processor.

4.2 Simulation and Analysis of Waveforms

4.2.1 PC MUX and analysis

In a RISC-V processor, the program counter (PC) multiplexer is used to select the next PC value based on different conditions, such as a branch or jump

instruction. In this module, PCMux, the pc_sel signal determines which PC value to select. When pc_sel is 2'b00, the next PC value is the next sequential

instruction (pc_next). When pc_sel is 2'b01, the next PC value is for branch or jump instructions (pc_branch). When pc_sel is 2'b10, the next PC value is

for jump instructions (pc_jump). If pc_sel does not match any of these conditions, the default behavior is to select the next sequential instruction (pc_next).

This module can be used in the control unit of a RISC-V processor to control the flow of instructions by selecting the appropriate PC value based on the

current instruction and control signals.

Figure 4.2.1 Simulation waveform pc mux

4.2.2 Instruction Memory (imem) Waveform Analysis

The instruction memory module is used to setup all the instruction flows of the test. From the simulation, there is a program counter fetch (PCF) input

determines which instruction to fetch. Since each instruction had 4 bytes, the PCF value will increase by 4 to get the following instruction.

A part simulation waveform for imem is captured and shown in Figure 4.3. The functionality of the module is verified by viewing the changes of PCF

value and the corresponding fetched instruction.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2107

Figure 4.2.2 Simulation waveform of instruction memory

4.2.3 Data memory (dmem) Waveform Analysis

The data memory (dmem) is used to store data in the datapath. The data is written to the module if write enable bit (MemWrite) is set. Else, the data is

read from the data address (a) from the alu output through IEx/IMem pipeline register.

Figure 4.2.3 Simulation waveform of dmem

The focus of the simulation for dmem module instruction because it is the only instruction that have MemWrite set to 1. Instruction 0x0471aa23 is an

example of sw instruction. It is notice that after 3 cycles after sw instruction is fetched, the data reached memory stage. In memory stage, it read the

MemWrite from the control unit. If the value is set, the writed ata (wd) is written to data memory and output the value (rd) on the next cycle. Therefore,

the functionality of dmem is verified.

4.2.4 Register File (regfile) Waveform Analysis

The register file (regfile) serves as a temporary memory to store data. From the simulation, the inputs for the regfile include read address (a1 and a2), the

write address of register (a3), the data to be written into the register (wd3), the data read from the register at the outputs (rd1 and rd2), and the control

signal (we3) to enable write data into the register.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2108

Figure 4.2.4 Simulation waveform of regfile

From Figure 4.5, it is noticed that a1 and a2 holds the addresses of rs1 and rs2. Besides, then we3 is high, the data (wd3) is written into the addressed

holds by a3.Furthermore, rd1 and rd2 output the value from the addresses holds by a1 and a2 respectively. Therefore, the functionality of regfile module

is verified.

4.2.5 Arithmetic Logic Unit (alu) Waveform Analysis

The alu is an essential component of a CPU that handles arithmetic and logical operations on binary data. It receives input data from the ID_IEx stage

and perform various arithmetic operations based on signals from the ALU decoder (ALU Control). The output is stored as ALU Results.

Figure 4.2.5 Simulation waveform of alu

operand_a and operand_b are the input operands to the ALU, alu_op is the 3-bit control signal specifying the operation to be performed, result is the

output of the ALU, and zero is a flag indicating whether the result is zero. instruction OR, XOR, ADD, BEQ, and SLT is simulated. With different ALU

Control, the alu operates different operations. For example, with ALU Control = 0011, alu will perform OR operation. The inputs are 0x0001 and 0x0005

respectively. The result of the operation is 0x0007 and stored in ALU Results. Therefore, the functionality of alu module is verified. The analysis of the

simulated alu waveform.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2109

4.2.6 Arithmetic Logic Unit Decoder (aludec) Waveform Analysis

A RISC-V processor, the ALU decoder is responsible for interpreting the ALU operation code (ALUOp) from the instruction and generating control

signals for the ALU to perform the desired operation. The ALU decoder takes the ALUOp as input and produces control signals for the ALU, such as

add, sub, mul, div, shl, shr, etc.opcode is the input representing the opcode of the instruction.

Based on the opcode, the alu_control output is set to the corresponding control signals for the ALU operation. Each case in the case statement corresponds

to a specific opcode and sets alu_control accordingly. The aludec decodes the instructions ALUOp fromthe control unit to determine the types of operation

that has to be performed by the alu.A part simulation waveform for aludec is captured.

Figure 4.2.6 Simulation waveform of aludec

4.2.7 Main decoder (maindec) Waveform Analysis

The maindec is used to generate control signals based on the 7 bits opcode (instruction [6:0]) of an instruction. Its purpose is to interpret the opcode and

determine the type of instruction being executed.

In a RISC-V processor, the main decoder is responsible for decoding the instruction opcode and generating control signals for various parts of the

processor, including the ALU, memory units, and register file. It takes the opcode of the instruction as input and produces control signals that determine

the operation to be performed in each stage of the pipeline.

Figure 4.2.7 Simulation output of maindec.

opcode is the input representing the opcode of the instruction. Based on the opcode, the main decoder generates control signals for the ALU (alu_control),

memory read and write (mem_read and mem_write), register file write (reg_write), destination register address (rd_addr), source register addresses

(rs1_addr and rs2_addr), and immediate value (imm) for I-type instructions. Therefore, the functionality of maindec is verified.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2110

4.2.8 Write Data Selection MUX (result_mux) Waveform Analysis

In a RISC-V processor, the data selection result multiplexer (mux) is used to select the result from the ALU or the memory data, depending on the

instruction being executed. alu_result is the output from the ALU, mem_data is the data read from memory, and mem_to_reg is a control signal indicating

whether to select the data from memory (mem_data) or the ALU (alu_result). The result output is the selected data that will be written back to the register

file. You would need to connect the alu_result, mem_data, and mem_to_reg signals from your processor to the inputs of this module, and the result output

to the input of the register file write port.

Figure 4.2.8 Simulation output of result_mux

4.2.9 Pipeline Register

The pipeline register is used to store information from previous stage and load them to next stage. This ensures data can be carried forward correctly and

allow instructions to be executed through the pipeline.

4.2.9.1 IF_ID

IF_ ID register located in between fetch stage and decode stage. In this Verilog module, pc_in and instruction_in are the inputs from the datapath fetch

stage, enable is a control signal indicating that the decoder stage is ready to accept the new instruction, pc_out and instruction_out are the outputs to the

decoder stage, and clk and reset are the clock and reset signals, respectively.

The pc_reg and instruction_reg registers store the values of the program counter (PC) and instruction fetched from memory. The values are updated on

the rising edge of the clock (clk) when enable is asserted. The stored values are then outputted to the decoder stage. It helps to store instructions (Instr)

from the fetch stage and load them to decode stage on the next cycle. RISC-V processor, the pipeline registers between the datapath fetch and decoder

stages is responsible for holding the instruction fetched from memory and passing it to the decoder stage. In this Verilog module, pc_in and instruction_in

are the inputs from the datapath fetch stage, enableis a control signal indicating that the decoder stage is ready to accept the new instruction, pc_out and

instruction_out are the outputs to the decoder stage, and clk and reset are the clock and reset signals, respectively.

The pc_reg and instruction_reg registers store the values of the program counter (PC) and instruction fetched from memory. The values are updated on

the rising edge of the clock (clk) when enable is asserted. The stored values are then outputted to the decoder stage.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2111

Figure 4.2.9.2 Simulation waveform of IF/ID register

4.2.9.2 ID_IEx

ID_IEx register located in between decode stage and execute stage. It helps to store read data (RD1, RD2) from the register file, extended immediate

value (Imm Ext), Instruction [11:7] (rd), Instruction [19:15] (rs1), and Instruction [24:20] (rs2) from decode stage and load them to execute stage. Besides,

PC and PCPlus4F from IF_ID register was also carried forward and stored to ID_IEx. in execute stage. It was noticed that the values from decode stage

are loaded to the respective registers in execute stage in the next clock cycle. Therefore, the functionality of ID_IEx is verified.

Figure 4.2.9.2 Simulation waveform of ID/IEX register

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2112

4.2.9.3 IEx_IMem

IEx_IMem register located in between execute stage and memory stage. It helps to store the ALU results (ALUResults) and write data (WriteData) from

execute stage and load them in memory stage. At the same time, In this module, Execute Memory Reg, we have added registers to store the values of the

program counter (pc_reg), instruction (instruction_reg), data from source register 1 (rs1_data_reg), data from source register 2 (rs2_data_reg), ALU result

(alu_result_reg), address of destination register (rd_addr_reg), ALU source B select signal (alu_src_b_reg), memory read signal (mem_read_reg),

memory write signal (mem_write_reg), and memory to register signal (mem_to_reg_reg). These registers are updated on the rising edge of the clock (clk)

when the enable signal is asserted.

The inputs to this module (pc_in, instruction_in, rs1_data_in, rs2_data_in, alu_result_in, rd_addr_in, alu_src_b_in, mem_read_in, mem_write_in,

mem_to_reg_in) are connected from the outputs of the execute stage, and the outputs (pc_out, instruction_out, rs1_data_out, rs2_data_out, alu_result_out,

rd_addr_out, alu_src_b_out, mem_read_out, mem_write_out, mem_to_reg_out) are connected to the inputs of the memory stage.

Figure 4.2.9.3 Simulation waveform of IEX/IMem register

4.2.9.4 IMem_IW

IMem_IW is located in between memory stage and writeback stage. It helps to store the ALU results (ALUResults) from the alu and read data (ReadData)

from data memory. In this module, MemoryWriteBackReg, we have added registers to store the values of the program counter (pc_reg), instruction

(instruction_reg), ALU result (alu_result_reg), data read from memory (mem_data_reg), address of destination registers (rd_addr_reg), memory to

register signal (mem_to_reg_reg), and register write signal (reg_write_reg). These registers are updated on the rising edge of the clock (clk) when the

enable signal is asserted.

The inputs to this module (pc_in, instruction_in, alu_result_in, mem_data_in, rd_addr_in, mem_to_reg_in, reg_write_in) are connected from the outputs

of the memory stage, and the outputs (pc_out, instruction_out, alu_result_out, mem_data_out, rd_addr_out, mem_to_reg_out, reg_write_out) are

connected to the inputs of the write-back stage.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2113

Figure 4.2.9.4 Simulation waveform of IMem/IW register

4.2.9.5 Hazard Unit (hazard unit)

The hazard unit is used to detect situations where the sequential execution of instructions may lead to incorrect behavior due to data dependencies from

the previous instruction. n a RISC-V processor, hazards refer to situations that can cause incorrect behavior or stalls in the pipeline. There are three main

types of hazards: structural hazards, data hazards, and control hazards. Structural hazards occur when two instructions require the same hardware resource

at the same time, leading to conflicts. For example, if one instruction needs to write to a register while another instruction is trying to read from the same

register, a structural hazard occurs. This can be resolved by adding additional hardware resources or by inserting pipeline stalls.

Data hazards occur when an instruction depends on the result of a previous instruction that has not yet completed. This can happen in situations where

the pipeline stages for different instructions overlap. For example, if one instruction writes to a register in the write-back stage while another instruction

reads from the same register in the decode stage, a data hazard occurs. Data hazards are typically resolved using techniques such as forwarding (bypassing)

or stalling the pipeline.

Control hazards occur when the flow of control is changed, such as with branch instructions. If a branch instruction is taken, the instructions following

the branch may need to be flushed from the pipeline if they have already been fetched but are no longer needed. This can lead to performance penalties.

Techniques such as branch prediction are used to mitigate the impact of control hazards by predicting whether a branch will be taken or not and fetching

the correct instructions accordingly.

Figure 4.2.10.1 Structural hazard condition

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2114

Figure 4.2.10.3 data hazard condition

Figure 4.2.10.3 control hazard condition

4.3 Integrating RISC-V processor

The RISC-V processor is developed by integrating all the verified modules together.The integration had 3 main units which namely controller unit, hazard

unit, and datapath unit. The controller unit helped to send out control signals based on different instruction being executed. Besides, the hazard unit helped

to detect hazard conditions during the execution and mitigated them. Moreover,the Datapath unit helped to carry information throughout the 5 pipeline

stages in the Datapath. Then, the riscv_pip_27 module is integrated with the imem and dmem module to form the top design.

In a 5-stage pipelined RISC-V processor, the datapath unit, control unit, and hazard unit play crucial roles in ensuring correct operation and handling of

hazards. Here's an overview of each:

Datapath Unit: The datapath unit is responsible for executing the operations specified by theinstructions in the pipeline. It consists of various components

such as registers, ALU (ArithmeticLogic Unit), data memory, and multiplexers.

Control Unit: The control unit generates control signals that manage the operation of the datapath unit based on the current instruction. It decodes the

instruction and generates signals to control the multiplexers, ALU operations, and other datapath elements.

Hazard Unit: The hazard unit detects and resolves hazards that occur due to pipeline dependencies. It identifies data hazards (when an instruction depends

on the result of a previous instruction) and control hazards (when a branch instruction changes the flow of instructions).

The Verilog code for the datapath unit includes modules for registers, ALU, data memory, and multiplexers. Each module is instantiated and

interconnected according to the RISC- V architecture.

The control unit is typically implemented as a finite state machine (FSM) in Verilog. It takes the opcode of the instruction as input and generates control

signals for the datapath based on the current state of the FSM. The hazard unit detects hazards by comparing the current instruction with the instructions

in the pipeline. It stalls the pipeline or inserts bubbles to resolve hazards.

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2115

Figure 4.3: Schematic diagram of top design

5 Conclusion and references

5.1 Conclusion and Future work

In this project, a 32-bit 5 stage pipeline RISC-V processor is designed and implemented using Verilog coding. The top design consists of 3 main modules

that are riscv_pip_27, imem and dmem. riscv_pip_27 module is an integrated module forming by control_unit, hazard_unit, and datapath_unit module.

The control_unit module is used to send out control signals based on different instruction being executed. Then, the hazard_unit module is used to detect

different hazard conditions during execution and mitigate them. Next, the datapath_unit module isused to carry information in the datapath through

pipeline registers. The imem module is used to store the instruction of a program whereas the dmem is responsible for storing and retrieving data. Besides,

several important modules such as alu, aludec, maindec, regfile, result_mux, pc_mux, pipeline register (IF/ID, ID/IEx, IEx/IMem, and IMem/IW designed

and integrated in the processor.

 Table 5.1: Table of modules and their functionality

 Module Functionality

alu Performing arithmetic and logical operations

aludec Decode the instructions and receive signal from maindec to determine the

type of operations that had the be performed

maindec Generate control signal from the Opcode to determine types of instruction

regfile Storing and manipulating data during program execution

result_mux Select some inputs and give write_data as output

IF/ID Store data from fetch stage and load them in decode stage

ID/IEx Store data from decode stage and load them in execute stage

International Journal of Research Publication and Reviews, Vol 5, no 4, pp 2097-2116 April 2024 2116

The functionality of these modules were and verified analyzing the waveform generate by using Xilinx vivado software. Besides, and also design the

overall top design and verify theoverall functionality of the 32-bit 5 stage pipeline RISC-V processor.

5.2 Reference

1. D. Bhandarkar and D.W. Clark, “Performance from Architecture: Comparing a RISC and a CISC with Similar Hardware

Organization,”Proceedings of the 4th Int’l. Conference on ASPLOS, Santa Clara, California, April 8-11, 1991.

2. Kulshreshtha, A., Moudgil, A., Chaurasia, A. and Bhushan, B., 2021, March. Analysis of 16-Bit and 32-Bit RISC Processors. In 2021 7th

International Conference on Advanced Computing and Communication Systems (ICACCS) (Vol. 1, pp. 1318-1324). IEEE.

3. Khairullah, S.S., 2022, June. Realization of a 16-bit MIPS RISC pipeline processor. In 2022 International Congress on Human-Computer.

4. M. N. Topiwala and N. Saraswathi, "Implementation of a 32-bit MIPS based RISC processor using Cadence," 2014 IEEE International

Conference on Advanced Communications, Control and Computing Technologies, 2014.

5. Islam, S., Chattopadhyay, D., Das, M.K., Neelima, V. and Sarkar, R., 2006, September.Design of High-Speed-Pipelined Execution Unit of 32-

bit RISC Processor. In 2006 Annual IEEE India Conference (pp. 1-5). IEEE.

6. S. P. 6. Ritpurkar, M. N. Thakare and G. D. Korde, "Design and simulation of 32-Bit RISC architecture based on MIPS using VHDL," 2015

International Conference on Advanced Computing and Communication Systems, 2015.Interaction, Optimization and Robotic Applications

(HORA) (pp. 1-6). IEEE.

7. Al-sudany, S.M., Al-Araji, A.S. and Saeed, B.M., 2021. FPGA-Based Multi-Core MIPS Processor Design. IRAQI JOURNAL OF

COMPUTERS, COMMUNICATION, CONTROL & SYSTEMS ENGINEERING, 21(2).

8. Wang, W., Han, J., Cheng, X. and Zeng, X., 2021. An energy-efficient cryptoextension design for RISC-V. Microelectronics Journal, 115,

p.105165.

IEx/IMem Store data from execute stage and load them in memory stage

IMem/IW Store data from memory stage and load them in writeback stage

