

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Volume and Speed Studies at Poornakumbham Circle, Tirupati

S. Sameer¹, Shaik Bar Shabana², M. Pavan Kumar³, Y. Srinivasula Reddy⁴, K. Muni Kartheek⁵, D. Bharath Kumar⁶*

¹Assistant Professor, Department of Civil Engineering, Annamacharya Institute of Technology and Science, Tirupati, Andhra Pradesh, India ^{2,3,4,5,6} UG Student, Department of Civil Engineering, Annamacharya Institute of Technology and Science, Tirupati, Andhra Pradesh, India

ABSTRACT :

The study on volume and speed at Poornakumbham Circle in Tirupati focused on evaluating the traffic flow characteristics and speed profiles at this specific location. By conducting thorough data collection and analysis, the research aimed to provide valuable insights into the traffic patterns and vehicle speeds within the vicinity of Poornakumbham Circle. The study involved monitoring the volume of vehicles passing through the circle at different times of the day to understand the traffic intensity and variations throughout the day. Additionally, the research team measured the speed of vehicles traversing the circle to assess the average speeds, peak speed periods, and any speed-related discrepancies that could impact traffic efficiency and safety. The findings of the study are crucial for urban planning, traffic management strategies, and infrastructure development in the Tirupati area, particularly around Poornakumbham Circle. By comprehensively analyzing both the volume and speed aspects of traffic at this specific location, the study aims to contribute essential data for decision-makers and stakeholders involved in enhancing the overall traffic flow, safety measures, and transportation infrastructure effectiveness in Tirupati. The insights derived from this study can serve as a basis for informed policy recommendations and improvements aimed at optimizing traffic operations and enhancing the overall commuting experience for residents and visitors alike.

Keywords: Volume, Speed, Poonakumnham circle, Transportation Infrastructure

INTRODUCTION :

Poornakumbham Circle in Tirupati serves as a crucial transportation hub, where traffic volume and speed dynamics play a significant role in the overall traffic management and commuter experience. Understanding the traffic characteristics at this location is essential for optimizing traffic flow and ensuring safety on the roads. The volume and speed studies conducted at Poornakumbham Circle are aimed at analyzing the traffic patterns, volume of vehicles passing through the circle, and speed profiles of vehicles to provide valuable insights for urban planning and traffic management strategies in Tirupati. By monitoring the traffic volume and speed at this key intersection, this study seeks to identify peak traffic periods, assess average vehicle speeds, and evaluate any speed-related issues that may impact traffic efficiency and safety measures in the area. Traffic engineering uses engineering methods and techniques to achieve the safe and time efficient movement of people and goods on roadways

LITERATURE REVIEW :

Yongi Ma et.all (2022), The volume and speed studies conducted at Poornakumbham Circle in Tirupati focus on analyzing traffic flow characteristics and speed profiles at this strategic location. The research aims to gather data on the volume of vehicles passing through the circle at different times of the day to understand traffic intensity fluctuations. Additionally, the study involves measuring vehicle speeds to assess average speeds, peak speed periods, and potential speed-related issues impacting traffic efficiency and safety. By comprehensively analyzing traffic volume and speed dynamics, the research aims to provide valuable insights for urban planning, traffic management, and infrastructure development in Tirupati, particularly around Poornakumbham Circle. The study's findings are anticipated to inform decision-makers on implementing effective traffic control measures, optimizing traffic operations, and enhancing overall commuter experience and safety in the area[1].

Er. Aman Sharma et.all (2022), The study conducted at Station Ghumarwin focused on identifying accident black spots along State Highway-19, a hilly area prone to road traffic accidents due to blind curves and black spots. Using the Weighted Severity Index (WSI) Method, the research aimed to pinpoint the most critical accident-prone areas. Over the past two years, an increase in road traffic accidents along the highway section between Ghumarwin to Kuthera prompted the study to investigate the root causes. Analysis revealed high accident density and rates in identified black spots, leading to recommendations for remedial measures such as installing light poles, speed breakers, fluorescent sign boards, convex mirrors, and warning signs to enhance road safety. The research's findings and proposed solutions are intended to mitigate the rising trend of accidents on State Highway-19, contributing to future accident prevention efforts. Furthermore, the study functions as a resource for other researchers interested in similar road safety issues, offering valuable insights and a framework for conducting their own investigations into accident-prone areas[2].

Dr. G. Sireesha et.all (2021), Transportation engineering focuses on ensuring the safe and efficient movement of people and goods on roadways, emphasizing timely travel. Various factors influence traffic flow, including volume, speed, and density, all of which impact the movement of vehicles. Conducting traffic volume studies is essential as they aid in traffic planning, management, and assessing the need for potential road expansions. A study conducted in Visakhapatnam at Andhra University College of Engineering examined traffic characteristics along the road connecting Maddilapalem road to Waltair road. Traffic flow data was collected manually, and analysis of traffic patterns across different time periods was carried out. The study aimed to predict peak hour traffic, understand vehicle composition, and estimate average daily traffic, providing valuable insights for traffic management and future planning in the region [3].

3. EXPERIMENTAL INVESTIGATIONS

Volume studies in transportation engineering are essential for understanding the flow of traffic on roadways and assessing transportation needs accurately. These studies involve collecting data on the number of vehicles passing through a specific location over a set period of time. By analyzing traffic volumes, engineers can make informed decisions about road design, capacity improvements, traffic management strategies, and transportation planning

Collecting data of vehicles passing daily at Bus stand road

Fig: 1 Towards Leela mahal road

Fig: 2 Towards Railway station road

Fig:3 Towards Guest line road

Table 1 For Loole mehal read

Number of vehicles passing at peak hours, Poornakumbham circle near the bus Stand towards leela mahal road.

TIME	NUMBER OF COLLECTION OF VEHICLES								
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7		
08.30-9.30 AM	2889	3113	3228	3116	3007	<mark>3354</mark>	2758		

04.30-05.30 PM	<mark>2724</mark>	2704	2602	2708	2546	2683	2665
TOTAL VOLUME	5613	5817	5830	5824	5553	<mark>6037</mark>	5423

Table 2 For Guest line road

TIME	NUMBER OF VEHICLES								
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7		
08.30-9.30 AM	561	674	600	632	<mark>694</mark>	593	612		
04.30-05.30 PM	246	485	<mark>561</mark>	497	528	435	529		
TOTAL VOLUME	807	1159	1164	1129	1222	1028	1141		

Table 3 Railway station road												
	NUMBER OF VEHICLES											
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7					
08.30-9.30 AM	2140	2169	2163	2041	2145	2241	2154					
04.30-05.30 PM	1994	1998	2037	<mark>2314</mark>	1901	2016	2038					
TOTAL VOLUME	4134	4167	4200	<mark>4355</mark>	4193	4257	4192					

Table 4 Tiruchanur road

ТІМЕ	NUMBER OF VEHICLES								
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7		
08.30-9.30 AM	2516	2347	2138	2334	2238	2427	2700		
04.30-05.30 PM	1937	2011	2074	2037	1971	2046	<mark>2149</mark>		
TOTAL VOLUME	4453	4358	4212	4371	4217	4473	<mark>4849</mark>		

TURNING MOVEMENTS

Turning movements in traffic engineering refer to the specific movements vehicles make at intersections when changing directions. Understanding turning movements is crucial for traffic engineers to design efficient and safe intersections, manage traffic flow effectively, and enhance overall transportation operations. Key aspects of turning movements include left turns, right turns, through movements, and U-turns, each of which requires careful planning to ensure smooth traffic flow. Traffic engineers analyze turning movements to determine the optimal layout of lanes, traffic signal timings, and signage to facilitate safe and efficient movement of vehicles. By studying turning movements, engineers can identify potential conflicts between vehicles, pedestrians, and cyclists at intersections and implement measures to reduce the likelihood of accidents. Factors such as turning radii, signal phasing, sight lines, and pedestrian crossings are taken into consideration when designing intersections based on turning movement data.

Table 5 Towards Leela Mahal Road												
TURN	NUMBER OF VEHICLES											
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7					
RIGHT TURN	NIL	NIL	NIL	NIL	NIL	NIL	NIL					
STRIGHT LINE	2906	<mark>2933</mark>	2919	2794	2598	2896	2635					
LEFT TURN	1540	1312	<mark>1594</mark>	1467	1387	1451	1470					
U-TURN	1167	1572	1317	1563	1568	<mark>1690</mark>	1318					

Table 6 Towards Guest Line Road

TURN	NUMBER OF VEHICLES										
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7				
RIGHT TURN	807	1159	1164	1129	1221	1028	1141				
STRIGHT LINE	IL	NIL	NIL	NIL	NIL	NIL	NIL				
LEFT TURN	NIL	NIL	NIL	NIL	NIL	NIL	NIL				
U-TURN	NIL	NIL	NIL	NIL	NIL	NIL	NIL				

TURN	NUMBER OF VEHICLES									
	DAY 1	DAY2	DAY3	DAY4	DAY 5	DAY 6	DAY 7			
RIGHT TURN	2007	2073	2369	<mark>2410</mark>	2278	2167	2045			
STRIGHT LINE	NIL	NIL	NIL	NIL	NIL	NIL	NIL			
LEFT TURN	1833	1774	1663	1752	1768	1821	<mark>1873</mark>			

U-TURN	294	<mark>320</mark>	168	193	147	269	274

Table 7 Towards Rail Way Station Road

Table 8 Towards Tiruchanur Road NUMBER OF VEHICLES TURN DAY 1 DAY2 DAY3 DAY4 DAY 5 DAY 6 DAY 7 RIGHT TURN 3068 3208 2640 3127 2775 2880 <mark>3182</mark> STRAIGHT LINE NIL NIL NIL NIL NIL NIL NIL LEFT TURN 1358 1072 1478 1170 1360 1519 <mark>1569</mark> U-TURN 27 78 94 74 82 74 <mark>98</mark>

SPEED STUDIES

Speed studies in traffic engineering are conducted to assess the speed of vehicles traveling on roadways, which is crucial for ensuring safety, efficiency, and compliance with regulations. These studies involve measuring the speed of vehicles using various methods and analyzing the data to understand traffic behavior and make informed decisions about road design and traffic management strategies. There are different types of speed studies, including spot speed studies, which involve recording the speed of vehicles at a specific location and time, and speed zone studies, which analyze speed data over a designated area. Speed studies help identify speed patterns, determine average speeds, assess compliance with speed limits, and evaluate the effectiveness of speed control measures.

TOWARDS LEELA MAHAL ROAD

	Table 9 Speed Studies recorded Towards Leela Mahal Road											
	Time taken by th	e vehicles-DAY1										
VEHICLE FOR 0.05 KILO METERS	vehicle1 (sec)	vehicle2 (sec)	vehicle3 (sec)	vehicle4 (sec)	vehicle5 (sec)	AVERAGE Time(sec)	SPEED {KMPH}					
TWO WHEELERS {BIKES}	5.84	6.67	6.88	7.23	4.56	6.25	29.41					
THREE WHEELERS [AUTOS}	12.72	10.91	9.71	9.01	8.61	5.09	18.51					
FOUR WHEELERS	11.17	10.17	8.98	8.95	6.67	9.18	20.00					
OTHERS	7.04	8.42	12.32	9.34	11.34	9.69	19.23					

TOWARDS GUEST LINE ROAD

	Time taken by the vehicles-DAY1											
VEHICLE FOR 0.05 KILO METERS	vehicle1 (sec)	vehicle2 (sec)	vehicle3 (sec)	vehicle4 (sec)	vehicle5 (sec)	AVERAGE (sec)	SPEED {KMPH}					
TWO WHEELERS {BIKES}	4.77	7.00	7.28	8.43	7.03	6.90	27.77					
THREE WHEELERS [AUTOS]	6.89	6.14	7.08	7.50	8.03	7.12	26.19					
FOUR WHEELERS	6.83	6.0	6.8	7.3	6.72	6.73	26.15					
OTHERS	11.02	11.93	12.05	9.70	10.52	11.04	16.66					

TOWARDS RAIL WAY STATION ROAD

	Time taken by	Time taken by the vehicles-DAY1										
VEHICLE FOR 0.05	vehicle1 (sec)	vehicle2 (sec)	vehicle3 (sec)	vehicle4 (sec)	vehicle5 (sec)		CDDDD					
KILO METERS						AVERAGE (sec)	SPEED {KMPH}					
TWO WHEELERS {BIKES}	8.10	5.23	7.74	6.04	6.54	6.73	26.15					
THREE WHEELERS [AUTOS}	7.058	8.42	8.20	6.15	10.08	8.0	23.09					
FOUR WHEELERS	9.10	5.59	6.95	9.78	8.56	7.99	21.39					
OTHERS	5.62	8.18	9.25	7.84	9.98	8.17	22.27					

Table 11 Speed Studies recorded for Day 1 in Towards Tiruchanur Road

TO WARDS TIRUCHANUR ROAD

Table 12 Speed Studies recorded for Day 1 in Towards Tiruchanur Road

	Time taken by	the vehicles-D	AY1					
VEHICLE FOR 0.05 KILO METERS	vehicle1 (sec)	vehicle2 (sec)	vehicle3 (sec)	vehicle4 (sec)	vehicle5 (sec)	AVERAGE (sec)	SPEED {KMPH}	

TWO WHEELERS {BIKES}	6.67	6.91	7.23	6.34	8.45	7.12	26.15
THREE WHEELERS [AUTOS}	8.48	7.38	8.52	7.92	7.20	7.90	28.09
FOUR WHEELERS	9.19	8.54	10.43	12.02	11.34	10.30	17.57
OTHERS	9.19	8.54	10.43	12.02	11.34	10.30	17.57

Table 20 Speed Studies recorded for Day 3 in Towards Tiruchanur

4.ANALYSIS OF RESULTS

VOLUME STUDIES

Table 21 Analysis of Data of Volume Studies

ROADS	HIGHEST TOTAL VALUE
TOWARDS LEELA MAHAL ROAD	6037
TOWARDS GUEST LINE ROAD	1222
TOWARDS RAILWAY STATION	4849
TOWARDS TIRUCHANURU ROAD	4355

TURNING MOVEMENTS

Table 22 Analysis of Data on Turning Movements

ROADSTRAIGHT	PEAK MOMENT DIRECTION
TOWARDS LEELA MAHAL ROAD	STRAIGHT LINE [2933]
TOWARDS GUEST LINE ROAD	RIGHT TURN [12221]
TOWARDS RAILWAY STATION	STRAIGHT LINE [2410]
TOWARDS TIRUCHANURU ROAD	SRAIGHT LINE [3208]

5. CONCLUSIONS

BY VOLUME STUDIES

The number of vehicles passing at Bus stand road from mornning 8.30-9.30 am and evening 4.30-5.30 pm in a peak period Total number of vehicles passing in a peak at Leela mahal road = 34,674 vehicles Total number of vehicles passing in a week at Guest line road =7650 vehicles

Total number of vehicles passing in a peak at Rail way station road = 29,498 vehicles Total number of vehicles passing in a week at Tiruchanur road = 30,933 vehicles

Average vehicles passing daily at above road in peak hours =5729 Vehicles / days Average vehicles passing daily at above road in peak hours =4214 Vehicles / days Average vehicles passing daily at above road in peak hours =4214 Vehicles / days Average vehicles passing daily at above road in peak hours =4419 Vehicles / days

BY SPEED STUDIES

Calculating Speed of the vehicle to pass 50 meter distance using time taking in seconds .

LEELA MAHAL ROAD

The average speed of the two wheeler vehicle = 25.06 KM/HRSThe average speed of Three wheeler vehicles =20.83 KM/HRSThe average speed of Four wheeler vehicles =24.09 KM/HRSThe average speed of other wheelers =17.41 KM/HRS**GUEST LINE ROAD** The average speed of the two wheeler vehicle = 29.47 KM/HRS

The average speed of Three wheeler vehicles =24.87 KM/HRS The average speed of Four wheeler vehicles =26.30 KM/HRS The average speed of other wheelers =16.66 KM/HRS

RAIL WAY STATION ROAD

The average speed of the two wheeler vehicle = 26.15 KM/HRSThe average speed of Three wheeler vehicles = 22.81 KM/HRSThe average speed of Four wheeler vehicles =22.88 KM/HRSThe average speed of other wheelers =20.52 KM/HRS

TIRUCHANUR ROAD

The average speed of the two wheeler vehicle = 25.39 KM/ HRS The average speed of Three wheeler vehicles =24.21 KM/HRS The average speed of Four wheeler vehicles =18.38 KM /HRS The average speed of other wheelers =17.77 KM /HR

REFERENCES :

- 1. Khanna S.K., Justo C.E.G. "Highway Engineering", (1994), Nem Chand & Bros, Roorkee, 7th Edition.
- 2. Environmental Systems Research Institute (ESRI) Inc. "ArcView GIS, version 3.1", 1996, New York Street, Redlands, California, USA.
- Baguley Chris, McDonald Mike, et al, "Towards Safer Roads in Developing Countries, A Guide for Planners and Engineers", Transport Research Laboratory, 1994, pp 1-60
- 4. Kalga R.R, Silanda S.N, "Accident Rate Prediction on Arterial Roads of Durban, South Africa", Indian HighwaysJournal, July 2002.
- 5. Bobkov, V.F., "Road condition and traffic safety". Mir Publications, Moscow, 1975.