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ABSTRACT 

The impact of buckling load on at structural plate element which is support on four edges is the aim of the research work. The north south direction is considered 

to be on simple and simple supported edge while the east west axis rests on also simple and fixed boundaries, forming a plate of SSSF shape arrangement. Odd 

order energy Functional was adopted in the research work. The simple simple simple fixed plate was considered as the direct independent plate, meaning that the 

material properties are uniform round about the shape of the element.  These includes the flexural rigidity, poison ratio and young elastic modulus of elasticity. 

Considering the plate arrangement, the shape functions were first formulated, after which the various integral values of the differentiated shape functions, of the 

various boundary conditions were all generated. Upon the derivation of the stiffness coefficients of the various boundary cases, the Third order strain energy 

equation emerged and further expansion of Third order strain energy equation cumulated in the Third Order Overall Potential Energy Functional. The Lead equation 

was later gotten by differentiating the Third Order Overall Potential Energy Functional, with respect to the amplitude. Further minimization of the derived Lead 

equation gave rise to the formulation of the vital buckling load equations, together with its coefficients. After which was the formulation of the non-dimensional 

buckling load parameters and upon substitution of the aspect ratios a, ranging from 1 to 2 at the increase rate of 0.1, the real relationship was established for the 

final derived outputs.  

Symbols                              Words  

❖  Op                                          Overall Potential Energy Functional,  

❖  §h   Normal Stress  

❖  ðh   Normal Strain  

❖  𝑏𝑘                                            Buckling load parameters 

❖  Le                                           Lead Equation,   

❖  Vbk                                         Vital Buckling load 

❖ S-S-S-F                                   Simple Simple Simple Fixed Plate  

❖ Ew    External Work 

❖ Є    Strain energy  

1. Introduction 

Several researches have been conducted with the target of maximizing their high values for wider structural applications; this is a result of their high 

importance and wide applications in many engineering materials. Their relevance in Structural, Mechanical and Aeronautic Engineering, cannot be played 

down on. The impact of the use of these materials cannot be over look due to their high importance in our everyday life. In 1776, when Euler carried out 

a free vibration analysis of plate problems. Euler motivated Chladni (a German physicist) into study which led to the discovery of the various modes of 

free vibration of plates. This plate element can be considered as a structural element which is either straight or curved, and also having three dimensions 

length, width and thickness also referred to as the primary, secondary and tertiary dimensions respectively. The smallest of the three dimensions is the 

tertiary dimension. This sometimes is referred  to as the plate thickness, usually very small when compared to the rest of the dimensions. The isotropic 
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rectangular SSSF plate have all their material properties in all directions as the same and so they classified as direction independent element. In structure, 

stability analysis can also be referred to as the plate buckling. Although the buckling analysis of rectangular plates has received the attention of many 

researchers for several centuries Prior to this time, other researchers have gotten solution using even order energy functional for Buckling of plate, so the 

resolution of the buckling tendency of SIMPLE SIMPLE SIMPLE FIXED isotropic plate using odd order energy functional is the addition this study will 

bring to literature of plate analysis. 

Step 1: The Buckling Load Equation.  

Some parameters forms the basis for the buckling load equation. These includes the external work, strain energy, normal strain and normal stress. Firstly, 

overall potential energy Op was gotten by adding up the Strain energy, Є and External Work, Ew . This is shown in Equation 1i  

   Ew +  Є = Op                                                1i  

Upon the formulation of the overall potential energy, the strain energy, was derived by multiplying normal stress with the normal strain, both on the 

horizontal axis as shown in Equation 1ii.   

§hðh =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑢

𝜕𝑥2
]

2

+  µ [
𝜕2𝑓𝑢

𝜕𝑥𝜕𝑦
]

2

)                          1ii 

The vertical  direction  (Y axis) given as shown  the Equation 1iii  

§vðv =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑢

𝜕𝑦2
]

2

+  µ [
𝜕2𝑓𝑢

𝜕𝑥𝜕𝑦
]

2

)        1iii 

Also the product of the in-plane shear stress and in-plane shear strain is stated in Equation 2i 

𝜏ℎ𝑣γhv = 2 
𝐸𝑧2(1 – µ)

(1 – µ2)
[

𝜕2𝑓𝑢

𝜕𝑥𝜕𝑦
]

2

          2i 

Upon the summation and further factorization of Equations 1ii, 1iii and 2i together gives 

§hðh + §vðv + 𝜏ℎ𝑣γhv    =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑢

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓𝑢

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓𝑢

𝜕𝑦2
]

2

)     2ii 

with the strain Energy is given as  Є =
1

2
∬ Є̅

xy
dxdy                 2iii 

where   Є̅ =  
Ez2

1–µ2
  ∫ ([

𝜕2𝑓𝑢

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓𝑢

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓𝑢

𝜕𝑦2
]

2

)                                                        3i 

Further rearrangement of Equation 3i, gives the third order strain energy equation 

 as    Є =
𝐺

2
∫ ∫ (

∂3𝑓𝑢

∂𝑥3
.

∂𝑓𝑢

∂x
+ 2

∂3𝑓𝑢

∂x ∂y2
.

∂fu

∂x
+

∂3𝑓𝑢

∂𝑦3
.

∂fu

∂y
)

m

0

n

0
dxdy                4 

with the external load  as ѵ = – 
𝑏𝑘𝑙𝑥

2
∫ ∫ (

  ∂fu

∂x
)

m 

0

n

0

2

dxdy                 5 

The third order total potential energy functional is expressed mathematically as  

Op=
𝐺

2
∫ ∫ (

∂3𝑓𝑢

∂𝑥3
.

∂fu

∂x
+ 2

∂3𝑓𝑢

∂x2 ∂y
.

∂fu

∂y
+

∂3𝑓𝑢

∂𝑦3
.

∂fu

∂y
) dxdy −

𝑏𝑘𝑙𝑥

2
∫ ∫

∂2𝑓𝑢

∂𝑥2
dxdy             6 

Rearranging the total potential energy equation in terms of non-dimensional 

 parameters I, J the buckling load equation is gotten as  

𝑏𝑘𝑙up =
G

a2
∫ ∫ .

1

0

1

0

([
𝜕3fu

𝜕𝐽3
] .

∂fu

∂J
+ 2

1

𝑝2
[

𝜕3fu

𝜕J𝜕𝐼2
] .

∂fu

∂J
 +

1

𝑝4
[
𝜕3fu

𝜕𝐼3
] .

∂fu

∂I
) dJdI                      7 

𝑏𝑘𝑙down = ∫ ∫ (
  ∂fu

∂J
)

1 

0

1

0

2

dJdI                                                                                                        8 

 𝑏𝑘𝑙x =
𝑏𝑘𝑙up

𝑏𝑘𝑙down
                                                                                                                                     9     

Step 2:  Formulation of the Shape Function  

For the derivation of the shape functions, the major support styles considered were Simple support and Fixed support system, Three out of the four 

supports were all simple supports with the remaining one as the fixed. For Simple support condition, the deflection equation fw and the 2nd order derivative 

of the deflection equation fw 2, were both equated to zero and these gave rise to the different simultaneous equations by considering I = 0 at the left hand 

support in the case of the x-axis and I = 1 at the right side of the same component. Also considering the top as J = 0 and J = 1 at the bottom support for 

the case of the vertical components.  These equations were solved simultaneously to obtain the various values of the primary and secondary dimensions 

(n1, m1, n2, m2 n3, m3, n4 andm4) for the SSSF plate element. Where  I and J are non-dimensional  parameters parallel to the horizontal and vertical axis 

respectively as earlier explained.   
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1.3   Formulation of  the Deflection Equation 

 

 

 

 

 

 Figure i Isotropic Rectangular SmSmFxFx Plate 

 The case of horizontal Direction (X- X axis) 

 

 

 

  Figure  ii  Horizontal  Support  

Considering the X- X axis 

 But  fwx = mo + m1I + m2 I
2 + m3I

3 + m4I
4 + m5I

5  1 

The first derivation of Equation 1 gives  

fwx
1= m1 + 2m2I + 3m3I

2 + 4m4I
3+ 5m5I

4  2 

also the second derivative of the Equation 1 gives  

fwx
2 = 2m2 + 6m3I +12m4I

2 + 20m5I
3  3 

and finally the third derivative the same Equation gives 

fwx
3 = 6m3+ 24m4I + 60m5I

2 4 

 1.3.1   Analysis of the Horizontal component  

Introducing the boundary conditions on the horizontal component 

At the left support, I = 0 

When fwx = 0 

fwx = 0 = mo + 0 + 0 + 0+ 0               5 

mo= 0 

Also when   fwx
2= 0                6  

fwx
2= 0 = 2m2 + 0+ 0+0                   7 

2m2 = 0                 8 

 m2 = 0                  9  

at the right support, I =1 

fwx
1 = m1 + 0 + 3m3

 + 4m4+ 5m5 = −
2m5

3

  10 

 Further simplifying Equation 10 gives 

m1  = −3m3 − 4m4 − 5m5  −
2m5

3

                 11 

Also for the second derivative of the deflection on the X axis, 

fwx
2 = 0 = 0 + 6m3 +12m4

 + 20m5
   12 

rearranging the equation and making n3 the subject gives  

  m3  =
−12m4− 20m5

6

   13 

xI 

YJ 

SmSmFxF
xFi  

fw = 0 

fw 2= 0 

 

fw = - 
2𝑚5

3
 

fw 2= 0 

fw 3= 0 

 

I=0 
 

I=1 
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in simpler form as 

m3  =
−10m5

3
− 2m4  14 

Solving for the third derivative of the deflection on the horizontal component gives 

fwx
3 = 0 = 6m3+ 24m4 + 60m5

 15   

 That is  

fwx
3 = 0 = m3+ 4m4 + 10m5

  16 

n3= 
−10m5−4m4

1

  17 

Resolving  Equation 14 and 17  together gives  

−10m5

3
− 2m4 =

−60m5−24m4

6

              18 

and further simplifying gives 

m4 =
−10m5

3
                  19 

But substituting Equation 19 into Equation 17 gives  

m3= 
−10m5−4(

−10m5
3

)

1
                       20  

Further simplification gives  

m3= 
10m5

3

                         21  

Putting Equations 19 and 21 into Equation 11 gives 

m1  = −
2m5

3
− 3(

10m5

3
) − 4(

−10m5

3
) − 5m5  22 

 and finally 

m1  = −
7m5

3

   23 

Recall that  fwx
2 = mo + m1I+ m2 I

2 + m3I
3 + m4I

4 + m5I
5  24 

Putting the derived values into Equation 1 gives 

fwx = n5 (−
7I

3
+

10I3

3
−

10I4

3
+ I5)               25 

1.3.2   Analysis of the Vertical Component  

The case of horizontal Direction (Y- Y axis) 

 

   

 

 

 

 

 

 

Also introducing the boundary conditions on the vertical component 

At the top support, I = 0 

When fwy = 0 

fwy = 0 = no + 0 + 0 + 0+ 0               26 

mo= 0 

Also when   fwy
2= 0                27  

f =0 

fw 2=0 
 

J = 0 

 

J=
1 
 

f = −
2𝑛5

3
 

fw 2=0 
fw 0=0 
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fwy
2= 0 = 2n2 + 0+ 0+0                   28 

2n2 = 0                  29 

 n2 = 0                  30  

at the right support, J =1 

fwy
1 = n1 + 0 + 3n3

 + 4n4+ 5n5 = −
2n5

3

 31 

 Further simplifying Equation 31 gives 

n1  = −3n3 − 4n4 − 5n5  −
2n5

3

                  32 

Also for the second derivative of the deflection on the Y axis, 

fwy
2 = 0 = 0 + 6n3 +12n4

 + 20n5
   33 

Rearranging the equation and making n3 the subject gives  

  n3  =
−12n4− 20n5

6

  34 

in simpler form as 

n3  =
−10n5

3
− 2n4 35 

Solving for the third derivative of the deflection on the vertical component gives 

fwy
3 = 0 = 6n3+ 24n4 + 60n5

 36   

 That is  

fwy
3 = 0 = n3+ 4n4 + 10n5

  37 

n3= 
−10n5−4n4

1

  38 

Resolving  Equation 35 and 38  together gives  

−10n5

3
− 2n4 =

−60n5−24n4

6

              39 

and further simplifying gives 

n4 =
−10n5

3
                  40 

But substituting Equation 19 into Equation 17 gives  

n3= 
−10n5−4(

−10n5
3

)

1
                       41  

Further simplification gives  

n3= 
10n5

3

                         42  

Putting Equations 19 and 21 into Equation 11 gives 

n1  = −
2n5

3
− 3(

10n5

3
) − 4(

−10n5

3
) − 5n5  43 

 and finally 

n1  = −
7n5

3

   44 

Recall that  fwy
2 = no + n1J + n2 J

2 + n3J
3 + n4J

4 + n5J
5  45 

Putting the derived values into Equation 1 gives 

fwy = n5 (−
7J

3
+

10J3

3
−

10J4

3
+ J5)               46 

That means  

 fw = fwx*fwy = m4 (−
7I

3
+

10I3

3
−

10I4

3
+ I5)* n5(−

7J

3
+

10J3

3
−

10J4

3
+ J5)                    47  

 Factorizing further gives the Amplitude and the shape function  

          = m4n5 (−
7I

3
+

10I3

3
−

10I4

3
+ I5)(−

7J

3
+

10J3

3
−

10J4

3
+ J5)                     48  

The shape function f is give as (−
7I

3
+

10I3

3
−

10I4

3
+ I5)(−

7J

3
+

10J3

3
−

10J4

3
+ J5)        49 
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1.4   Derivation of The Stiffness Coefficients  

Equation 49 is further differentiated at different stages, from where the stiffness coefficients were derived. These includes 

  ∂f

∂I
= (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)                 50 

  ∂2f

∂I ∂J
= (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) (−

7

3
+

30J2

3
−

40J3

3
+ 5J4)                              52 

  ∂f

∂I ∂J2
= (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) (

60J1

3
−

120J2

3
+ 20J3)                             53 

  ∂2k

∂I2
=  (

60I1

3
−

120I2

3
+ 20I3) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)                               54 

  ∂3f

∂I3
= (

60

3
−

240I

3
+ 60I2) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)                   55 

also  

  ∂f

∂J
= (−

7I

3
+

10I3

3
−

10I4

3
+ I5) (−

7

3
+

30J2

3
−

40J3

3
+ 5J4)                              56 

  ∂2f

∂J2
= (−

7I

3
+

10I3

3
−

10I4

3
+ I5) (

60J1

3
−

120J2

3
+ 20J3)                                              57 

  ∂3f

∂J3
= (−

7I

3
+

10I3

3
−

10I4

3
+ I5) (

60

3
−

240J

3
+ 60J2)                             58 

Integrating the product of the Equation 55 by 50 gives the first stiffness coefficient.  

  That is  

kssff1= ∫ ∫
  ∂3f

∂I3
∗

  ∂f

∂I

1

0

1

0
dIdJ                    59  

kssff1=∫ ∫ [(
60

3
−

240I

3
+ 60I2) (−

7J

3
+

10J3

3
−

10J4

3
+ J5) ∗ (−

7

3
+

30I2

3
−

40I3

3
+ 5I4)(−

7J

3
+                  

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   

                 60  

 bringing the like terms together gives  

      = ∫ ∫ [(
60

3
−

240I

3
+ 60I2) (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) ∗ (−

7J

3
+

10J3

3
−

10J4

3
+ J5) (−

7J

3
+                  

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   

                         60a 

multiplying them gives 

  = ∫ ∫ [(
60

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) −

240I

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) + 60I2 (−

7

3
+

30I2

3
−

40I3

3
+ 5I4)) ∗ (−

7J

3
(−

7J

3
+

10J3

3
−

10J4

3
+ J5) +

10J3

3
(−

7J

3
+

1

0

1

0

10J3

3
−

10J4

3
+ J5) −

10J4

3
(−

7J

3
+

10J3

3
−

10J4

3
+ J5) + J5(−

7J

3
+

10J3

3
−

10J4

3
+ J5))] dIdJ     60b 

further  minimization  yields 

kssff1  = 0.65455  

also integrating the product Equation 53 by 51 give the second stiffness coefficient.  

That is  

kssff2 = ∫ ∫
  ∂3f

∂I ∂J2
∗

  ∂f

∂I

1

0

1

0
dIdJ            61 

kssff2=∫ ∫ [(−
7

3
+

30I2

3
−

40I3

3
+ 5I4)(

60J1

3
−

120J2

3
+ 20J3) ∗ (−

7

3
+

30I2

3
−

40I3

3
+ 5I4)(−

7J

3
+            

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   

       62 

Bring the like terms together gives 

∫ ∫ [(−
7

3
+

30I2

3
−

40I3

3
+ 5I4) (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) ∗ (

60J1

3
−

120J2

3
+ 20J3)(−

7J

3
+            

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   

                             62a 

Multiplying the like terms gives 

= ∫ ∫ [(−
7

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) +

30I2

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) −

40I3

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) + 5I4 (−

7

3
+

30I2

3
−

40I3

3
+ 5I4)) ∗ (

60J1

3
(−

7J

3
+

1

0

1

0

  
10J3

3
−

10J4

3
+ J5) −

120J2

3
(−

7J

3
+  

10J3

3
−

10J4

3
+ J5) + 20J3(−

7J

3
+  

10J3

3
−

10J4

3
+ J5))] dIdJ                           62b 

kssff2    =   0.04043 

Furthermore  integrating the product Equation 58 by 56 give the third stiffness coefficient. That is  
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kssff3 = ∫ ∫
  ∂3f

∂J3
∗

  ∂f

∂J

1

0

1

0
dIdJ             63 

kssff3=∫ ∫ [(−
7I

3
+

10I3

3
−

10I4

3
+ I5) (

60

3
−

240J

3
+ 60J2) ∗ (−

7I

3
+

10I3

3
−

10I4

3
+ I5)(−

7

3
+              

30J2

3
−

40J3

3
+ 5J4)]

1

0

1

0
dIdJ   

        64 

kssff3   = ∫ ∫ [(−
7I

3
+

10I3

3
−

10I4

3
+ I5) (−

7I

3
+

10I3

3
−

10I4

3
+ I5) ∗ (

60

3
−

240J

3
+ 60J2) (−

7

3
+              

30J2

3
−

40J3

3
+ 5J4)]

1

0

1

0
dIdJ  

= ∫ ∫ [(−
7I

3
(−

7I

3
+

10I3

3
−

10I4

3
+ I5) +

10I3

3
(−

7I

3
+

10I3

3
−

10I4

3
+ I5) −

10I4

3
(−

7I

3
+

10I3

3
−

10I4

3
+ I5) + I5 (−

7I

3
+

10I3

3
−

10I4

3
+ I5))

1

0

1

0

∗ (
60

3
(−

7

3
+  

30J2

3
−

40J3

3
+ 5J4) −

240J

3
(−

7

3
+  

30J2

3
−

40J3

3
+ 5J4) + 60J2(−

7

3
+  

30J2

3
−

40J3

3
+ 5J4))] dIdJ 

kssff3 = 0.006047  

And  finally  integrating the product Equation 51 by 51 give the sixth stiffness coefficient.  

That is  

kssff 6 = ∫ ∫ (
  ∂f

∂I
∗

  ∂f

∂I

1

0

1

0
)dIdJ        63 

kssff6 = ∫ ∫ [(−
7

3
+

30I2

3
−

40I3

3
+ 5I4) (−

7J

3
+

10J3

3
−

10J4

3
+ J5) ∗ (−

7

3
+

30I2

3
−

40I3

3
+ 5I4)(−

7J

3
+

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   
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Collecting the like terms together gives  

= ∫ ∫ [(−
7

3
+

30I2

3
−

40I3

3
+ 5I4) (−

7

3
+

30I2

3
−

40I3

3
+ 5I4) ∗ (−

7J

3
+

10J3

3
−

10J4

3
+ J5) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   
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Opening the brackets gives 

= [[(−
7

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) +

30I2

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) −

40I3

3
(−

7

3
+

30I2

3
−

40I3

3
+ 5I4) + 5I4(−

7

3
+

30I2

3
−

40I3

3
+ 5I4)) ∗ (−

7J

3
(−

7J

3
+

10J3

3
−

10J4

3
+ J5) +

10J3

3
(−

7J

3
+

10J3

3
−

10J4

3
+ J5) −

10J4

3
(−

7J

3
+

10J3

3
−

10J4

3
+ J5) + J5(−

7J

3
+

10J3

3
−

10J4

3
+ J5))]1]1          65b                                                                      

Putting the upper and lower limit values gives 

kssff 6     =  0.0159444 

Reducing Equation xiii in terms of the stiffness coefficients gives 

bklx =
D(kssff1+2

1

𝑝2kssff2 +
1

𝑝4kssff3)

kssff6m2
       65 

Substituting the real values in to Equation 65 gives 

bklx  =
D(0.67096 +2

1

𝑝2(0.04043) +
1

𝑝4(0.006047))

(0.0159444)m2
      66 

RESULTS AND DISCUSSION. 

The results for the stiffness coefficients and the critical buckling load coefficients were derived. The critical buckling load coefficients were considered 

at different aspect ratios. The first table represents the values of the stiffness coefficients while the other contains the critical buckling coefficients for the 

aspect ratio of m/n, both for the previous and present study. The values of the aspect Ratios ranges from 2.0 to 1.0 with arithmetic increase of 0.1. From 

the values generated in the tables, it was observed that as the aspect ratio increases from 1.0 to 2.0, the critical buckling load decreases. This occurred 

both in the present and previous results.  

Table 1.1   Stiffness Coefficients from Previous researchers 

               Stiffness coefficients, sc          Derived values 

                         kssff1           0.67096 

                         kssff2           0.04043 

                         kssff3           0.006047 

                         kssff6           0.0159444 
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Table 1.2   Stiffness Coefficients from Present Work 

               Stiffness coefficients, k          Derived values 

                         kssff1           0.65455 

                         kssff2           0.0400137 

                         kssff3           0.0059651 

                         kssff6           0.0153545 

 

Table 1.3 Critical buckling load values for CSCF Plate from Previous/Present.  

 

    m/n 

 

   2 

 

 1.9 

 

1.8 

 

1.7 

 

1.6 

      B 43.9346 44.0759 44.2415 44.4373 44.6711 

 

    Bx 

Previous 43.3728 43.5151 43.6826         43.8814 44.1201 

 Present 43.9346 44.0759 44.2415 44.4373 44.6711 

 

Table 1.3  cont’d. 

 

REFERENCES 

[1] An-Chien W., Pao-Chun L. and Keh-Chynan, T. (2013)." High – Mode Buckling-restrained Brace Core Plates".Journals of the International 

Association for Earthquake Engineering. 

[2] Ali Reza Pouladkhan (2011). “Numerical Study of Buckling of Thin Plate”.International Conference on Sustainable Design and Construction 

Engineering. Vol. 78,Issue: 1, Pp. 152 – 157. 

[3]  Shinde, B.M., Sayyad, A.S.  & Kowade, A.B.  (2013). Thermal Analysis Of Isotropic     Plates  Using Hyperbolic Shear Deformation Theory. Journal 

of Applied and Computational Mechanics 7 (2013) 193-204 

[4]  Singh, S.K & Chakrabarti, A.  (2012). Buckling Analysis of Laminated Composite Plates Using an Efficient C0 FE Model. Latin American Journal 

of Solids and Structures. Soni, S.R. (1975), Vibrations of Elastic Plates and Shells of Variables Thickness. Ph.D. Thesis. University of Roarkee. 

[5] Srinivasa,C.V., Suresh, Y.J. and Prema, W.P. (2012). “Buckling Studies onLaminated Composite Skew Plate”. International Journal of 

ComputerApplications. Vol. 37,  Issue:1, Pp. 35-47. 

 [6] AydinKomur and Mustafa Sonmez (2008). “Elastic Buckling of Rectangular Plates Under Linearly Varying In-plane Normal Load with a Circular 

Cutout”. International Journal of Mechanical Sciences. Vol. 35, Pp. 361 – 371. 

 [7] Ahmed Al-Rajihy (2008). “The Axisymmetric Dynamics of Isotropic Circular Plates with Variable Thickness Under the Effect of Large Amplitudes”. 

Journal of Engineering, Vol. 14, Issue :1, Pp. 2302 – 2313. 

[8] Audoly, B., Roman, B. and Pocheau, A. (2002). Secondary Buckling Patterns of a Thin Plate under In-plane Compression. The European Physical 

Journal BCondensed Matter and Complex Systems, Vol. 27, No. 1 (May). 

 [9] Azhari, M, Shahidi, A.R, Saadatpour, M.M (2004) "Post Local Buckling of Skew and Trapezoidal Plate". Journal of Advances in Structural 

Engineering, Vol. 7, Pp 61 - 70.  

 

m/n 

 

1.5 

 

1.4 

 

1.3 

 

1.2 

 

1.1 

 

1 

B 44.9533 45.2985 45.7268 46.2674 46.9632 47.88 

 

Bx
G

n2
 

Previous 44.4101 44.7674 45.2148 45.7859 46.5315 47.5319 

Present 44.9533 45.2985 45.7268 46.2674 46.9632 47.88 



International Journal of Research Publication and Reviews, Vol 5, no 3, pp 6358-6366 March 2024                                     6366 

 

 

[10] Azhari, M. and Bradford, M.A. (2005), "The Use of Bubble Functions for the Post-Local Buckling of Plate Assemblies by the Finite Strip Method", 

International Journal for Numerical Methods in Engineering, Vol.38, Issue 6. 

[11] Bhaskara, L.R. and Kameswara, C.T. (2013)." Buckling of Annular Plate with Elastically Restrained External and Internal Edges". Journal of 

Mechanics Based Design of Structures and Machines. Vol. 41, Issue 2. Pp. 222 - 235. 

[12] Da-Guang Zhang (2014). “Nonlinear Bending Analysis of FGM Rectangular Plates with Various Supported Boundaries Resting on Two-Parameter 

Elastic ”. Archive of Applied Mechanics. Vol. 84, Issue: 1, Pp.1 -20. 

 

 


