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A B S T R A C T 

Very High Speed Integrated Circuit Hardware Description Language (VHDL) is one of the most popular and widely used hardware description languages (HDL). 

VHDL provides a powerful means to describe electronic circuits and digital systems, enabling engineers and researchers to design, simulate, and test circuits 

efficiently. This article focuses on guiding students through the process of designing a simple 8-bit computer using the VHDL language. First, the IC system is 

described in VHDL using IC design software sponsored by Xilinx and Altera. Finally, the described circuit will be tested for functionality through simulation 

software before being loaded and run on the FPGA kit. The results of this research contribute to the development and application of VHDL in the field of IC design. 
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1. Introduction 

In recent years, the remarkable development of electronic technology has opened up a new world of Very Large Scale Integrated (VLSI) circuits capable 

of integrating millions of transistors. This advancement has led to numerous new applications in information technology, electronics, telecommunications, 

automation, and other fields, meeting growing societal needs. In this context, application-specific integrated circuit (ASIC) technology has emerged as 

an alternative to traditional digital systems, aiding in reducing time and costs in the research and production processes. Additionally, Field Programmable 

Gate Arrays (FPGA) and Complex Programmable Logic Devices (CPLD) have gained popularity, allowing for the optimization of the design and 

assembly processes while providing high flexibility. 

To describe the overall structure of a computer system, high-level block diagrams are utilized. These diagrams display the main components and their 

relationships within the system. They often include blocks representing crucial components, such as: 

Central Processing Unit (CPU): Serving as the heart of the system, the CPU performs calculations and controls system operations. 

Memory: consisting of main memory (RAM) and storage memory (ROM), where data and programs are stored. 

To illustrate detailed operations, this article will employ the design of a simple 8-bit computer system. Figure 1 depicts a block diagram for an 8-bit 

computer system. 

 

Fig.1- Block diagram of an 8-bit computer 
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2. Build the internal blocks of the computer 

2.1 Build the computer's memory 

The memory system includes program memory, data memory, and input/output ports. Figure 2 shows the block diagram of the memory system. 

 

Fig.2- Block diagram of the memory system 

Program memory and data memory will be implemented using low-level components (rom_128x8_sync.vhd and rw_96x8_sync.vhd), while input and 

output ports can be emulated using a combination of RTL and combinational logic processes. The program memory and data memory components contain 

separate circuitry to handle their address ranges. Each output port also contains its own circuitry to handle its unique address. A switch is used to handle 

the routing of signals back to the CPU based on the provided address. 

The computer's memory is composed of three components: Program memory (rom_128x8), data memory (rw_96x8) and output ports. Below is the 

program for the computer's memory: 

 library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

entity memory is 

    port ( 

        address : in  std_logic_vector(7 downto 0); 

        data_in : in  std_logic_vector(7 downto 0); 

        write   : in  std_logic; 

        clock   : in  std_logic; 

        reset   : in  std_logic; 

        data_out: out std_logic_vector(7 downto 0); 

        port_in : in  std_logic_vector(15 downto 0); 

        port_out: out std_logic_vector(15 downto 0) 

    ); 

end memory; 

architecture Behavioral of memory is 

    component rom_128x8_sync 
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        port ( 

            address : in  std_logic_vector(6 downto 0); 

            data_out: out std_logic_vector(7 downto 0); 

            clock   : in  std_logic 

        ); 

    end component; 

    component rw_96x8_sync 

        port ( 

            address : in  std_logic_vector(6 downto 0); 

            data_in : in  std_logic_vector(7 downto 0); 

            write   : in  std_logic; 

            clock   : in  std_logic; 

            data_out: out std_logic_vector(7 downto 0) 

        ); 

    end component; 

    component Output_Ports 

        port ( 

            address    : in  std_logic_vector(3 downto 0); 

            data_in    : in  std_logic_vector(7 downto 0); 

            write      : in  std_logic; 

            clock      : in  std_logic; 

            reset      : in  std_logic; 

            port_out   : out std_logic_vector(7 downto 0) 

        ); 

    end component; 

    signal rom_out, ram_out        : std_logic_vector(7 downto 0); 

    signal output_port_addr        : std_logic_vector(3 downto 0); 

    signal ram_address, rom_address: std_logic_vector(6 downto 0); 

begin 

    ram_address <= address(6 downto 0) when address(7) = '1' else "0000000"; 

    rom_address <= address(6 downto 0) when address(7) = '0' else "0000000"; 

    output_port_addr <= address(3 downto 0) when address(7 downto 4) = x"E" else "0000"; 

    rom_128x8_sync_u: rom_128x8_sync port map ( 

        address => rom_address, 

        clock   => clock, 

        data_out=> rom_out 

    ); 

    rw_96x8_sync_u: rw_96x8_sync port map ( 

        address => ram_address, 
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        data_in => data_in, 

        write   => write, 

        clock   => clock, 

        data_out=> ram_out 

    ); 

    Output_Ports_u: Output_Ports port map ( 

        address   => output_port_addr, 

        data_in   => data_in, 

        write     => write, 

        clock     => clock, 

        reset     => reset, 

        port_out  => port_out(to_integer(unsigned(output_port_addr))) 

    ); 

    data_out <= 

        rom_out when address < x"80" else 

        ram_out when address < x"E0" else 

        port_in(to_integer(unsigned(address(7 downto 4)))) when address(7 downto 4) = x"F" else 

        x"00"; 

end Behavioral; 
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Figure 3. Memory structure diagram described using VHDL 

Build the CPU in VHDL 

The CPU consists of two components: the control unit (CU) and the data path (data_path). The data path contains all the registers and the ALU (Arithmetic 

Logic Unit). The ALU is implemented as a child component in the datapath (alu.vhd). The data path also contains a bus system to facilitate the movement 

of data between registers and memory. The bus system is implemented with two multichannel switches controlled by a control unit. The control unit 

contains a finite-state machine that generates all control signals for the data path as it performs the fetch-decode-execute steps of each instruction. Figure 

4 shows the block diagram of a CPU in a simple 8-bit computer. 

 

Fig.4- CPU structure diagram of a simple 8-bit computer 

a) Build a CPU program in VHDL 

A computer's CPU is composed of two components: the control unit (CU) and the data path (data_path). The data path contains all the registers and the 

ALU (Arithmetic Logic Unit). Below is the program for the computer's CPU: 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

entity cpu is 

    port ( 

        clock      : in  std_logic; 

        reset      : in  std_logic; 

        address    : out std_logic_vector(7 downto 0); 

        from_memory: in  std_logic_vector(7 downto 0); 

        write      : out std_logic; 

        to_memory  : out std_logic_vector(7 downto 0) 

    ); 

end cpu; 

architecture Behavioral of cpu is 

    component control_unit is 

        port ( 

            clock     : in  std_logic; 
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            reset     : in  std_logic; 

            IR_Load   : out std_logic; 

            IR        : in  std_logic_vector(7 downto 0); 

            MAR_Load  : out std_logic; 

            PC_Load   : out std_logic; 

            PC_Inc    : out std_logic; 

            A_Load    : out std_logic; 

            B_Load    : out std_logic; 

            ALU_Sel   : out std_logic_vector(2 downto 0); 

            CCR_Result: in  std_logic_vector(3 downto 0); 

            CCR_Load  : out std_logic; 

            Bus2_Sel  : out std_logic_vector(1 downto 0); 

            Bus1_Sel  : out std_logic_vector(1 downto 0); 

            write     : out std_logic 

        ); 

    end component; 

    component data_path is 

        port ( 

            clock     : in  std_logic; 

            reset     : in  std_logic; 

            IR_Load   : in  std_logic; 

            IR        : out std_logic_vector(7 downto 0); 

            MAR_Load  : in  std_logic; 

            address   : out std_logic_vector(7 downto 0); 

            PC_Load   : in  std_logic; 

            PC_Inc    : in  std_logic; 

            A_Load    : in  std_logic; 

            B_Load    : in  std_logic; 

            ALU_Sel   : in  std_logic_vector(2 downto 0); 

            CCR_Result: out std_logic_vector(3 downto 0); 

            CCR_Load  : in  std_logic; 

            Bus2_Sel  : in  std_logic_vector(1 downto 0); 

            Bus1_Sel  : in  std_logic_vector(1 downto 0); 

            from_memory: in  std_logic_vector(7 downto 0); 

            to_memory  : out std_logic_vector(7 downto 0) 

        ); 

    end component; 

    signal IR_Load, MAR_Load, PC_Load, PC_Inc, A_Load, B_Load, CCR_Load: std_logic; 

    signal IR: std_logic_vector(7 downto 0); 
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    signal ALU_Sel, CCR_Result, Bus2_Sel, Bus1_Sel: std_logic_vector(2 downto 0); 

    signal write: std_logic; 

begin 

    control_unit_module: control_unit port map ( 

        clock      => clock, 

        reset      => reset, 

        IR_Load    => IR_Load, 

        IR         => IR, 

        MAR_Load   => MAR_Load, 

        PC_Load    => PC_Load, 

        PC_Inc     => PC_Inc, 

        A_Load     => A_Load, 

        B_Load     => B_Load, 

        ALU_Sel    => ALU_Sel, 

        CCR_Result => CCR_Result, 

        CCR_Load   => CCR_Load, 

        Bus2_Sel   => Bus2_Sel, 

        Bus1_Sel   => Bus1_Sel, 

        write      => write 

    ); 

    data_path_u: data_path port map ( 

        clock       => clock, 

        reset       => reset, 

        IR_Load     => IR_Load, 

        IR          => IR, 

        MAR_Load    => MAR_Load, 

        address     => address, 

        PC_Load     => PC_Load, 

        PC_Inc      => PC_Inc, 

        A_Load      => A_Load, 

        B_Load      => B_Load, 

        ALU_Sel     => ALU_Sel, 

        CCR_Result  => CCR_Result, 

        CCR_Load    => CCR_Load, 

        Bus2_Sel    => Bus2_Sel, 

        Bus1_Sel    => Bus1_Sel, 

        from_memory => from_memory, 

        to_memory   => to_memory 

    ); 
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end Behavioral; 

b) CPU structure diagram described by VHDL 

 

Fig.5- CPU structure diagram described by VHDL 

3. Design and simulate the operation of a simple 8-bit computer 

3.1 Design a simple 8-bit computer on VHDL 

a) Program on VHDL 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

entity computer is 

    port ( 

        clock       : in  std_logic; 

        reset       : in  std_logic; 

        port_in     : in  std_logic_vector(15 downto 0); 

        port_out    : out std_logic_vector(15 downto 0) 
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    ); 

end computer; 

architecture Behavioral of computer is 

    component cpu is 

        port ( 

            clock      : in  std_logic; 

            reset      : in  std_logic; 

            address    : out std_logic_vector(7 downto 0); 

            from_memory: in  std_logic_vector(7 downto 0); 

            write      : out std_logic; 

            to_memory  : out std_logic_vector(7 downto 0) 

        ); 

    end component; 

    component memory is 

        port ( 

            address   : in  std_logic_vector(7 downto 0); 

            data_in   : in  std_logic_vector(7 downto 0); 

            write     : in  std_logic; 

            data_out  : out std_logic_vector(7 downto 0) 

        ); 

    end component; 

    signal address, data_in, data_out: std_logic_vector(7 downto 0); 

    signal write: std_logic; 

begin 

    cpu_u: cpu port map ( 

        clock       => clock, 

        reset       => reset, 

        address     => address, 

        write       => write, 

        to_memory   => data_in, 

        from_memory => data_out 

    ); 

    memory_unit: memory port map ( 

        address  => address, 

        data_in  => data_in, 

        write    => write, 

        data_out => data_out 

    ); 

    port_out <= port_in; 
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end Behavioral; 

b) Block diagram depicting a simple 8-bit computer on VHDL 

 

Fig.6- Block diagram depicting a simple 8-bit computer on VHDL 

Simulate the operation of a simple 8-bit computer 

a) Program on VHDL 

library IEEE; 

use IEEE.std_logic_1164.all;  

entity computer_TB is 

end entity; 

architecture computer_TB_arch of computer_TB is   

  constant t_clk_per : time := 20 ns;  -- Period of a 50MHz Clock 

  component computer 

    port ( 

      clock        : in  std_logic; 

      reset        : in  std_logic; 

      port_in      : in  std_logic_vector(15 downto 0); 

      port_out     : out std_logic_vector(15 downto 0) 

    ); 

  end component; 
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  signal clock_TB, reset_TB: std_logic; 

  signal port_in_TB: std_logic_vector(15 downto 0); 

  signal port_out_TB: std_logic_vector(15 downto 0); 

begin 

  microcontroller_unit : computer 

    port map ( 

      clock    => clock_TB, 

      reset    => reset_TB, 

      port_in  => port_in_TB, 

      port_out => port_out_TB 

    ); 

  CLOCK_STIM : process 

  begin 

    clock_TB <= '0'; wait for 0.5*t_clk_per;  

    clock_TB <= '1'; wait for 0.5*t_clk_per;  

  end process; 

  RESET_STIM : process 

  begin 

    reset_TB <= '0'; wait for 0.25*t_clk_per;  

    reset_TB <= '1'; wait;  

  end process; 

  PORT_STIM : process 

  begin 

    port_in_TB <= x"00112233445566778899AABBCCDDEEFF"; 

    wait; 

  end process; 

end architecture; 

b) Simple 8-bit computer simulation results 

When completing the SMC description program, we run the simulation test bench file, checking the internal signals and output of the computer: 
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Fig.7- Simulation results of a simple 8-bit computer 

Conclusion 

In this article, we have examined the important role of the VHDL hardware description language in IC design, especially in building a simple 8-bit 

computer. By using VHDL, we had the opportunity to effectively simulate and test the circuit before implementing it on the FPGA kit, saving time and 

increasing the reliability of the design process. The article delves into the operating structure of a simple computer and provides specific instructions on 

building its basic components using VHDL. Simulation and evaluation of results using ISE software have shown the success of this method and created 

a solid basis for continued research and development of more complex ICs in the future. . This research not only contributes to the development of the 

VHDL language in the field of IC design but also provides an important opportunity for students to better understand how computers work through 

practice design and simulation. 
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