
International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Designing an 8-Bit Computer using the VHDL Language

Nguyen Chi Vi1, Chu Manh Tuyen2, Le Ngoc Giang3*

1 Master, Head of the Department of Electrical Engineering Fundamentals, Faculty of Fundamental Technics, Air Force Officer's College of Viet Nam.
2 Master, Lecturer, Metrology Department, Faculty of Fundamental Technical, AD-AF Academy of Viet Nam, Son Tay, Ha Noi, Viet Nam
3 PhD, Head of Metrology Department, Faculty of Fundamental Technical, AD-AF Academy of Viet Nam, Son Tay, Ha Noi, Viet Nam

DOI: https://doi.org/10.55248/gengpi.5.0324.0752

A B S T R A C T

Very High Speed Integrated Circuit Hardware Description Language (VHDL) is one of the most popular and widely used hardware description languages (HDL).

VHDL provides a powerful means to describe electronic circuits and digital systems, enabling engineers and researchers to design, simulate, and test circuits

efficiently. This article focuses on guiding students through the process of designing a simple 8-bit computer using the VHDL language. First, the IC system is

described in VHDL using IC design software sponsored by Xilinx and Altera. Finally, the described circuit will be tested for functionality through simulation

software before being loaded and run on the FPGA kit. The results of this research contribute to the development and application of VHDL in the field of IC design.

Keywords: VHDL, hardware description languages, 8-bit computer, FPGA kit, IC design

1. Introduction

In recent years, the remarkable development of electronic technology has opened up a new world of Very Large Scale Integrated (VLSI) circuits capable

of integrating millions of transistors. This advancement has led to numerous new applications in information technology, electronics, telecommunications,

automation, and other fields, meeting growing societal needs. In this context, application-specific integrated circuit (ASIC) technology has emerged as

an alternative to traditional digital systems, aiding in reducing time and costs in the research and production processes. Additionally, Field Programmable

Gate Arrays (FPGA) and Complex Programmable Logic Devices (CPLD) have gained popularity, allowing for the optimization of the design and

assembly processes while providing high flexibility.

To describe the overall structure of a computer system, high-level block diagrams are utilized. These diagrams display the main components and their

relationships within the system. They often include blocks representing crucial components, such as:

Central Processing Unit (CPU): Serving as the heart of the system, the CPU performs calculations and controls system operations.

Memory: consisting of main memory (RAM) and storage memory (ROM), where data and programs are stored.

To illustrate detailed operations, this article will employ the design of a simple 8-bit computer system. Figure 1 depicts a block diagram for an 8-bit

computer system.

Fig.1- Block diagram of an 8-bit computer

http://www.ijrpr.com/
https://doi.org/10.55248/gengpi.5.0324.0752

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3127

2. Build the internal blocks of the computer

2.1 Build the computer's memory

The memory system includes program memory, data memory, and input/output ports. Figure 2 shows the block diagram of the memory system.

Fig.2- Block diagram of the memory system

Program memory and data memory will be implemented using low-level components (rom_128x8_sync.vhd and rw_96x8_sync.vhd), while input and

output ports can be emulated using a combination of RTL and combinational logic processes. The program memory and data memory components contain

separate circuitry to handle their address ranges. Each output port also contains its own circuitry to handle its unique address. A switch is used to handle

the routing of signals back to the CPU based on the provided address.

The computer's memory is composed of three components: Program memory (rom_128x8), data memory (rw_96x8) and output ports. Below is the

program for the computer's memory:

 library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity memory is

 port (

 address : in std_logic_vector(7 downto 0);

 data_in : in std_logic_vector(7 downto 0);

 write : in std_logic;

 clock : in std_logic;

 reset : in std_logic;

 data_out: out std_logic_vector(7 downto 0);

 port_in : in std_logic_vector(15 downto 0);

 port_out: out std_logic_vector(15 downto 0)

);

end memory;

architecture Behavioral of memory is

 component rom_128x8_sync

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3128

 port (

 address : in std_logic_vector(6 downto 0);

 data_out: out std_logic_vector(7 downto 0);

 clock : in std_logic

);

 end component;

 component rw_96x8_sync

 port (

 address : in std_logic_vector(6 downto 0);

 data_in : in std_logic_vector(7 downto 0);

 write : in std_logic;

 clock : in std_logic;

 data_out: out std_logic_vector(7 downto 0)

);

 end component;

 component Output_Ports

 port (

 address : in std_logic_vector(3 downto 0);

 data_in : in std_logic_vector(7 downto 0);

 write : in std_logic;

 clock : in std_logic;

 reset : in std_logic;

 port_out : out std_logic_vector(7 downto 0)

);

 end component;

 signal rom_out, ram_out : std_logic_vector(7 downto 0);

 signal output_port_addr : std_logic_vector(3 downto 0);

 signal ram_address, rom_address: std_logic_vector(6 downto 0);

begin

 ram_address <= address(6 downto 0) when address(7) = '1' else "0000000";

 rom_address <= address(6 downto 0) when address(7) = '0' else "0000000";

 output_port_addr <= address(3 downto 0) when address(7 downto 4) = x"E" else "0000";

 rom_128x8_sync_u: rom_128x8_sync port map (

 address => rom_address,

 clock => clock,

 data_out=> rom_out

);

 rw_96x8_sync_u: rw_96x8_sync port map (

 address => ram_address,

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3129

 data_in => data_in,

 write => write,

 clock => clock,

 data_out=> ram_out

);

 Output_Ports_u: Output_Ports port map (

 address => output_port_addr,

 data_in => data_in,

 write => write,

 clock => clock,

 reset => reset,

 port_out => port_out(to_integer(unsigned(output_port_addr)))

);

 data_out <=

 rom_out when address < x"80" else

 ram_out when address < x"E0" else

 port_in(to_integer(unsigned(address(7 downto 4)))) when address(7 downto 4) = x"F" else

 x"00";

end Behavioral;

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3130

Figure 3. Memory structure diagram described using VHDL

Build the CPU in VHDL

The CPU consists of two components: the control unit (CU) and the data path (data_path). The data path contains all the registers and the ALU (Arithmetic

Logic Unit). The ALU is implemented as a child component in the datapath (alu.vhd). The data path also contains a bus system to facilitate the movement

of data between registers and memory. The bus system is implemented with two multichannel switches controlled by a control unit. The control unit

contains a finite-state machine that generates all control signals for the data path as it performs the fetch-decode-execute steps of each instruction. Figure

4 shows the block diagram of a CPU in a simple 8-bit computer.

Fig.4- CPU structure diagram of a simple 8-bit computer

a) Build a CPU program in VHDL

A computer's CPU is composed of two components: the control unit (CU) and the data path (data_path). The data path contains all the registers and the

ALU (Arithmetic Logic Unit). Below is the program for the computer's CPU:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity cpu is

 port (

 clock : in std_logic;

 reset : in std_logic;

 address : out std_logic_vector(7 downto 0);

 from_memory: in std_logic_vector(7 downto 0);

 write : out std_logic;

 to_memory : out std_logic_vector(7 downto 0)

);

end cpu;

architecture Behavioral of cpu is

 component control_unit is

 port (

 clock : in std_logic;

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3131

 reset : in std_logic;

 IR_Load : out std_logic;

 IR : in std_logic_vector(7 downto 0);

 MAR_Load : out std_logic;

 PC_Load : out std_logic;

 PC_Inc : out std_logic;

 A_Load : out std_logic;

 B_Load : out std_logic;

 ALU_Sel : out std_logic_vector(2 downto 0);

 CCR_Result: in std_logic_vector(3 downto 0);

 CCR_Load : out std_logic;

 Bus2_Sel : out std_logic_vector(1 downto 0);

 Bus1_Sel : out std_logic_vector(1 downto 0);

 write : out std_logic

);

 end component;

 component data_path is

 port (

 clock : in std_logic;

 reset : in std_logic;

 IR_Load : in std_logic;

 IR : out std_logic_vector(7 downto 0);

 MAR_Load : in std_logic;

 address : out std_logic_vector(7 downto 0);

 PC_Load : in std_logic;

 PC_Inc : in std_logic;

 A_Load : in std_logic;

 B_Load : in std_logic;

 ALU_Sel : in std_logic_vector(2 downto 0);

 CCR_Result: out std_logic_vector(3 downto 0);

 CCR_Load : in std_logic;

 Bus2_Sel : in std_logic_vector(1 downto 0);

 Bus1_Sel : in std_logic_vector(1 downto 0);

 from_memory: in std_logic_vector(7 downto 0);

 to_memory : out std_logic_vector(7 downto 0)

);

 end component;

 signal IR_Load, MAR_Load, PC_Load, PC_Inc, A_Load, B_Load, CCR_Load: std_logic;

 signal IR: std_logic_vector(7 downto 0);

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3132

 signal ALU_Sel, CCR_Result, Bus2_Sel, Bus1_Sel: std_logic_vector(2 downto 0);

 signal write: std_logic;

begin

 control_unit_module: control_unit port map (

 clock => clock,

 reset => reset,

 IR_Load => IR_Load,

 IR => IR,

 MAR_Load => MAR_Load,

 PC_Load => PC_Load,

 PC_Inc => PC_Inc,

 A_Load => A_Load,

 B_Load => B_Load,

 ALU_Sel => ALU_Sel,

 CCR_Result => CCR_Result,

 CCR_Load => CCR_Load,

 Bus2_Sel => Bus2_Sel,

 Bus1_Sel => Bus1_Sel,

 write => write

);

 data_path_u: data_path port map (

 clock => clock,

 reset => reset,

 IR_Load => IR_Load,

 IR => IR,

 MAR_Load => MAR_Load,

 address => address,

 PC_Load => PC_Load,

 PC_Inc => PC_Inc,

 A_Load => A_Load,

 B_Load => B_Load,

 ALU_Sel => ALU_Sel,

 CCR_Result => CCR_Result,

 CCR_Load => CCR_Load,

 Bus2_Sel => Bus2_Sel,

 Bus1_Sel => Bus1_Sel,

 from_memory => from_memory,

 to_memory => to_memory

);

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3133

end Behavioral;

b) CPU structure diagram described by VHDL

Fig.5- CPU structure diagram described by VHDL

3. Design and simulate the operation of a simple 8-bit computer

3.1 Design a simple 8-bit computer on VHDL

a) Program on VHDL

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity computer is

 port (

 clock : in std_logic;

 reset : in std_logic;

 port_in : in std_logic_vector(15 downto 0);

 port_out : out std_logic_vector(15 downto 0)

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3134

);

end computer;

architecture Behavioral of computer is

 component cpu is

 port (

 clock : in std_logic;

 reset : in std_logic;

 address : out std_logic_vector(7 downto 0);

 from_memory: in std_logic_vector(7 downto 0);

 write : out std_logic;

 to_memory : out std_logic_vector(7 downto 0)

);

 end component;

 component memory is

 port (

 address : in std_logic_vector(7 downto 0);

 data_in : in std_logic_vector(7 downto 0);

 write : in std_logic;

 data_out : out std_logic_vector(7 downto 0)

);

 end component;

 signal address, data_in, data_out: std_logic_vector(7 downto 0);

 signal write: std_logic;

begin

 cpu_u: cpu port map (

 clock => clock,

 reset => reset,

 address => address,

 write => write,

 to_memory => data_in,

 from_memory => data_out

);

 memory_unit: memory port map (

 address => address,

 data_in => data_in,

 write => write,

 data_out => data_out

);

 port_out <= port_in;

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3135

end Behavioral;

b) Block diagram depicting a simple 8-bit computer on VHDL

Fig.6- Block diagram depicting a simple 8-bit computer on VHDL

Simulate the operation of a simple 8-bit computer

a) Program on VHDL

library IEEE;

use IEEE.std_logic_1164.all;

entity computer_TB is

end entity;

architecture computer_TB_arch of computer_TB is

 constant t_clk_per : time := 20 ns; -- Period of a 50MHz Clock

 component computer

 port (

 clock : in std_logic;

 reset : in std_logic;

 port_in : in std_logic_vector(15 downto 0);

 port_out : out std_logic_vector(15 downto 0)

);

 end component;

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3136

 signal clock_TB, reset_TB: std_logic;

 signal port_in_TB: std_logic_vector(15 downto 0);

 signal port_out_TB: std_logic_vector(15 downto 0);

begin

 microcontroller_unit : computer

 port map (

 clock => clock_TB,

 reset => reset_TB,

 port_in => port_in_TB,

 port_out => port_out_TB

);

 CLOCK_STIM : process

 begin

 clock_TB <= '0'; wait for 0.5*t_clk_per;

 clock_TB <= '1'; wait for 0.5*t_clk_per;

 end process;

 RESET_STIM : process

 begin

 reset_TB <= '0'; wait for 0.25*t_clk_per;

 reset_TB <= '1'; wait;

 end process;

 PORT_STIM : process

 begin

 port_in_TB <= x"00112233445566778899AABBCCDDEEFF";

 wait;

 end process;

end architecture;

b) Simple 8-bit computer simulation results

When completing the SMC description program, we run the simulation test bench file, checking the internal signals and output of the computer:

International Journal of Research Publication and Reviews, Vol 5, no 3, pp 3126-3135 March 2024 3137

Fig.7- Simulation results of a simple 8-bit computer

Conclusion

In this article, we have examined the important role of the VHDL hardware description language in IC design, especially in building a simple 8-bit

computer. By using VHDL, we had the opportunity to effectively simulate and test the circuit before implementing it on the FPGA kit, saving time and

increasing the reliability of the design process. The article delves into the operating structure of a simple computer and provides specific instructions on

building its basic components using VHDL. Simulation and evaluation of results using ISE software have shown the success of this method and created

a solid basis for continued research and development of more complex ICs in the future. . This research not only contributes to the development of the

VHDL language in the field of IC design but also provides an important opportunity for students to better understand how computers work through

practice design and simulation.

References

E. Ayeh, K. Agbedanu, Y. Morita, O. Adamo, P. Guturu. “FPGA Implementation of an 8-bit Simple Processor”. University of North Texas, Denton,

2008.

V. S. Balakrishnan, H. Pottinger, F. Ercal, M. Agarwal. “Design and Implementation of an FPGA-based Processor for Compressed Images”. In

Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays.

R. Fryer. “FPGA-based CPU Instrumentation for Hard Real-time Embedded System Testing”. April 2005, pp. 39-42.

P. Yiannacouras, J. Rose, and J. G. Steffan. “The Microarchitecture of FPGA-based Soft Processors”. In Proceedings of the 2005 International Conference

on Compilers, Architectures, and Synthesis for Embedded Systems, pp. 202-212.

G. Achery, C. Trinitis, R. Buchty. “CPU-independent Assembler in an FPGA”. In Field Programmable Logic and Applications, 2005. pp. 519-522.

Y Nagaonkar and M. L. Manwaring. “An FPGA-based Experiment Platform for Hardware-Software Codesign and Hardware Emulation”. In Proceedings

of The 2006 World Congress in Computer Science, Compute Engineering, and Applied Computing, pp.169-174.

