
International Journal of Research Publication and Reviews, Vol 5, no 3, pp 1182-1187 March 2024 
 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

A Review on Classification of Major Depressive Disorder from Brain 

fMRI Data using Machine Learning Techniques 

Shivani Gajanan Makde, Reet Khare, Archisha Mulmulay, Prof. Rutuja Kulkarni 

CSE department, PICT, Pune, Maharastra, India 

 

A B S T R A C T 

Major Depressive Disorder is one of the leading causes of disability worldwide. Impacting individuals across diverse age groups with far-reaching social, economic, 

and health-related implications. Clinicians confront substantial challenges in accurately diagnosing and promptly treating depression. Consequently, the emergence 

of various machine learning approaches seeks to classify this disorder utilizing brain fMRI data. This survey paper aims to achieve three primary objectives: (1) to 

present a comprehensive background on Major Depressive Disorder, brain fMRI scans, and the classification of depression using machine learning methodologies; 

(2) to delve into the methodologies employed in prior studies that leverage imaging and machine learning to explore depression; and (3) to formulate proposals for 

future depression-related studies. 
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1. Introduction 

Depressive disorder, commonly referred to as depression, constitutes a prevalent mental health condition characterized by persistent feelings of a 

depressed mood, along with a notable loss of pleasure or interest in activities endured for prolonged periods. The global impact of depression is substantial, 

affecting an estimated 5% of adults worldwide. A comprehensive breakdown reveals that 3.8% of the global population, comprising 5% of adults (with 

a gender-specific distribution of 4% among men and 6% among women), and 5.7% of adults aged 60 years and older experience depression.[1] The 

Global Burden of Diseases, Injuries, and Risk Factors Study 2016 identified it as a major contributor, causing 34.1 million years lived with disability 

(YLDs) and ranking as the fifth largest cause of YLD.[2] 

 The diagnosis of Major Depressive Disorder (MDD) relies on criteria provided by the International Classification of Diseases (ICD) and the Diagnostic 

and Statistical Manual of Mental Disorders (DSM).[3] Within clinical settings, the evaluation of depression often employs the Hamilton Rating Scale for 

Depression (HAM- D), a clinician administered tool meticulously crafted to assess the severity of depressive symptoms.[4] The original HAM-D uses 21 

items about symptoms of depression, but the scoring is based only on the first 17 items.[5] In primary care settings, the Patient Health Questionnaire-9 

(PHQ-9) serves as a valuable self-report, standardized rating scale for depression. The PHQ-9 uses 9 items corresponding to the DSM-5 criteria for MDD 

and also assesses for psychosocial impairment. The PHQ-9 scores 0 to 27, with scores of equal to or more than 10, indicate a possible diagnosis of 

MDD.[6]  

While these diagnostic tools are essential for assessing MDD across healthcare settings, they emphasize the complexity in accurately characterizing this 

mental health condition.  

In a global context, medical institutions and training institutes prioritize teaching dominant classification systems like the DSM and ICD, which primarily 

reflect Western illness presentations.[7] The inconsistency in defining MDD is apparent, with common rating scales covering over 50 diverse depressive 

symptoms, exhibiting limited content overlap with DSM-5 MDD criteria. Moreover, MDD itself is marked by high heterogeneity, where two patients 

with a DSM-5 diagnosis may share no symptoms.[8] Additionally, the notion that a single sum-score can adequately proxy for the severity of depression 

contradicts decades of psychometric literature, emphasizing that depression rating scales are not unidimensional.[9] These diagnostic challenges further 

manifest in the absence of treatment specificity, a lack of clear clinical presentation, imprecise diagnostic boundaries, high comorbidity rates, and very 

low interrater reliability associated with MDD diagnosis.[8] Addressing these complex challenges is crucial for advancing our understanding and 

developing effective classification strategies for mental health disorders.  

Functional Magnetic Resonance Imaging (fMRI) stands out as a powerful tool for delving into the pathophysiology of MDD.[10] Unlike traditional 

diagnostic methods which rely on subjective reports, fMRI unveils objective patterns of brain activity associated with MDD, potentially paving the way 

for a more precise and nuanced understanding of the disorder. As a class of imaging methods designed to showcase regional, time-varying changes in 

brain metabolism [11], fMRI provides a non-invasive means to measure brain activity in vivo during both resting and task-related states.[12] Blood 
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oxygenation level-dependent (BOLD) fMRI, commonly applied in these studies, discerns brain activation by monitoring heightened oxygen consumption, 

resulting in an elevation of BOLD signals. The distinctive activation patterns produced by patients during rest and task-related activities contribute 

valuable insights into the neural signatures of MDD. [13]  

Identifying biomarkers with fMRI is crucial for diagnosing MDD, providing unique neurobiological insights that improve diagnostic accuracy and deepen 

our understanding of the disorder’s underlying neural mechanisms. A biomarker is defined as an objectively measurable image feature serving as 

indicators of MDD diagnosis.[14] Various brain regions have been scrutinized as potential key biomarkers associated with MDD using fMRI. Among 

these, the amygdala exhibits heightened reactivity to negative stimuli, a consistent observation in MDD studies.[15], [16], [17] Conversely, the or- 

bitofrontal cortex (OFC) demonstrates dampened responses to negative emotions, with the exception of disgust, underscoring the intricate nature of 

depression’s emotional circuitry.[15] Alterations in the activation patterns of the ventral-rostral/sgACC and dorsal ACC during emotive processing have 

been observed. In the basal ganglia and thalamus, MDD patients tend to display increased activation in response to negative stimuli and decreased 

activation to positive stimuli compared to their healthy counterparts.[17] These findings exhibit the potential of fMRI to unveil neurobiological markers 

associated with MDD, paving the way for more precise diagnostics.  

The utilization of machine learning in the diagnosis of Major Depressive Disorder holds immense potential for advancing the field of computational 

psychiatry. Machine learning, recognized for its proficiency in deciphering intricate patterns from expansive datasets, plays an instrumental role in 

analyzing the complexities of neuroimaging and biomarker data associated with MDD. The primary goal of ML in this context is to develop classification 

models for accurate assessments of new data, allowing a deep exploration of the relationship between observed brain changes and depression symptoms. 

The classification of MDD studies has unfolded along two predominant streams: traditional machine learning methodologies and deep learning tech- 

niques. This survey paper aims to consolidate and evaluate various methodologies to offer a comprehensive insight into how machine learning enhances 

early diagnosis and intervention strategies for Major Depressive Disorder. 

2. Past Studies 

The compilation of studies investigating the classification of major depressive disorder based on resting state fMRI through machine learning techniques 

provides a comprehensive overview of methodologies and findings. (Table 1) This review highlights features derived from resting-state data, notably 

functional connectivity and graph theory. 

Table 1 - Past Studies Observations 

AUTHOR PATIENT SAMPLE CROSS-

VALIDATION 

METHOD 

MACHINE 

LEARNING 

METHOD 

ACCURACY 

Zhu et al. (2023)  [18] 830 MDD, 771 HC 10-fold CV

  

DGCNN  72.10% 

Zhongwan Liu et al. (2022) [19] 41 MDD, 20 HC 5000 iterations 

bootstrap 

DNN 53% 

hi et al. (2021) [20] 

Baoyu Yan et al. (2020) [21] 

Chun et al. (2020) [22] 

 

 

 

Sen et al. (2020) [23] 

Bhaumik et al. (2017) [24] 

Sundermann et al. (2017) [25] 

Wang et al. (2017) [26] 

Zhong et al (2017) [27] 

 

Drysdale et al. (2016) [28] 

1021 MDD, 1100 HC  

43 MDD, 56 HC 

262 MDD, 277 HC 

 

 

 

49 MDD, 33 HC 

38 MDD, 29 HC 

180 MDD, 180 HC                                                 

MDD = 31, HC = 29  

1st : 29 MDD, 33 HC; 

2nd : 46 MDD,57 HC 

333 MDD, 378 HC 

10-fold CV 

10-fold CV 

10-fold CV 

 

 

 

LOOCV 

 LOOCV 

10‐fold CV 

LOOCV 

LOOCV 

 

 LOOCV   

XGBoost 

SVM 

SVM  

RF 

XGBoost  

CNN 

SVM  

SVM  

SVM 

SVM 

SVM 

 

SVM 

72.80% 

95.96% 

SVM: 60.63%  

RF: 58.58% 

XGBoost: 60.62%  

CNN: 70.98% 

82% 

76.1%  

45.0%~56.1% 

95% 

91.9%,  

86.4% 

89.20% 
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3. Discussions 

3.1 SAMPLE SIZE 

The observed sample sizes across the surveyed studies demonstrate a wide range of participant numbers, emphasizing the challenges inherent in 

assembling comprehensive datasets for MDD classification using fMRI data. Studies such as Baoyu Yan et al. (2020) and Shi et al. (2021) featured large 

cohorts, each comprising over a thousand participants, while others, like Zhongwan Liu et al. (2022), reported smaller sample sizes with fewer than a 

hundred subjects in total. Larger sample sizes, as seen in Baoyu Yan et al. (2020) and Shi et al. (2021), offer the potential to enhance the generalizability 

and robustness of findings by providing more representative population coverage and statistical power. Conversely, studies with smaller sample sizes, 

exemplified by Zhongwan Liu et al. (2022), may offer more nuanced insights but may also be prone to increased variability and reduced statistical power, 

necessitating careful interpretation of results. 

3.2 FEATURES 

Features used by past studies are focused on functional connectivity and graph theory which are derived from the resting state fMRI.Functional 

connectivity analysis explores temporal correlations between brain regions, revealing disrupted communication patterns associated with MDD. Graph 

theory quantifies network properties, highlighting structural and functional abnormalities in MDD. Leveraging these features, machine learning models 

effectively distinguish between MDD patients and healthy controls, aiding in diagnostic and treatment advancements. 

3.3 CROSS VALIDATION 

Cross-validation is crucial for assessing the performance and generalization capability of machine learning models. The surveyed studies employed 

various cross-validation techniques, including k-fold cross-validation, leave-one-out cross-validation (LOOCV), and bootstrap resampling. Studies like 

Sen et al. (2021) opted for LOOCV, a method that iteratively trains the model on all but one sample, using the left-out sample for validation. This 

technique is particularly useful for small datasets, as it maximizes the use of available data for both training and validation.  

On the other hand, studies like Chun et al. (2020) utilized k-fold cross-validation, where the dataset is divided into k subsets, with each subset serving as 

the validation set while the remaining data are used for training. This method provides a balance between computational efficiency and robustness in 

estimating model performance. Additionally, bootstrap resampling, as employed by Zhongwan Liu et al. (2022), involves repeatedly sampling from the 

dataset with replacement to generate multiple bootstrap samples. Each bootstrap sample is then used for model training and validation, allowing for the 

estimation of variability in model performance. This technique is particularly useful for assessing the stability and reliability of the classification model. 

Overall, the choice of cross-validation technique should be guided by factors such as dataset size, computational resources, and the desired balance 

between bias and variance in model estimation. 

3.4 MACHINE LEARNING METHODS 

The selection of machine learning algorithms varied across the surveyed studies, reflecting the diversity of approaches in MDD classification using fMRI 

data. Support Vector Machine (SVM) emerged as a popular choice due to its ability to handle high-dimensional data and nonlinear relationships 

effectively. Several studies, including Sen et al. (2021), Baoyu Yan et al. (2020), and Bhaumik et al. (2017), leveraged SVM for its robust performance 

in distinguishing between MDD patients and healthy controls. Deep Neural Networks (DNNs) have garnered attention for their capability to automatically 

learn hierarchical representations from raw fMRI data. Zhongwan Liu et al. (2022) exemplified this trend by employing DNNs, which can capture intricate 

patterns and complex relationships within the data, potentially enhancing the discriminative power of the classification model.  

Ensemble methods such as Random Forest (RF) and XGBoost have also gained popularity for their ability to combine multiple weak learners to improve 

classification performance. Chun et al. (2020) demonstrated the effectiveness of ensemble techniques by integrating SVM, RF, XGBoost, and even 

Convolutional Neural Networks (CNN) in their classification pipeline. By leveraging the strengths of different algorithms, ensemble methods can mitigate 

the limitations of individual classifiers, leading to enhanced generalization and robustness against overfitting. The selection of the machine learning 

method should consider various factors, including data complexity, interpretability, and computational resources available. While SVM offers simplicity 

and interpretability, deep learning methods like DNNs excel at automatically learning intricate patterns but require substantial computational resources 

and expertise in hyperparameter tuning. Ensemble methods strike a balance between simplicity and complexity, offering improved performance without 

sacrificing interpretability. 

Ramasubbu et al. (2016) [29]

  

45 MDD, 19 HC 5-fold CV 

  

SVM 

 

Mild-moderate MDD: 5  

Severe MDD: 52%  

Very severe MDD: 66% 
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4. Challenges and Future Directions 

4.1 SMALL SAMPLE SIZE 

A common challenge in previous studies is the small sample size, which falls short of what’s optimal for ma- chine learning methods to improve accuracy, 

sensitivity, and specificity, especially in predicting depression treatment responses. Recruiting enough patients for such studies is tough, leading to 

understandable limitations. However, variations in imaging parameters among contributing sites may introduce biases.[14] As we move forward, 

standardizing acquisition and processing methods in neuroimaging research will enhance data pooling. Furthermore, the training of deep learning 

networks typically necessitates an extensive collection of annotated data.  

However, acquiring such data in medical imaging poses significant challenges, as it is often costly and subject to strict privacy regulations, making it 

difficult to obtain. A scarcity of data can lead to overfitting issues, where the algorithm becomes entrenched in local minimum values, resulting in 

suboptimal classification performance. To address this challenge, transfer learning offers a viable solution. In transfer learning, the network’s initial 

weights are not randomly assigned but rather transferred from a pre-trained network that has been fine-tuned on a more extensive dataset[30]. This 

approach leverages the knowledge encoded in the pre-trained network to enhance the performance of the model on the limited dataset at hand. [31]  

4.2 FEATURE REDUCTION 

Training classifiers on fMRI data poses a significant challenge due to the high-dimensional nature of the data. fMRI data consists of a multitude of voxels 

(3D pixels), resulting in a large number of potential features for each subject. However, this abundance of features leads to high computational complexity 

and prolonged processing times, making it impractical for real-world applications. Moreover, the sheer volume of features can contribute to overfitting 

issues and complicates the interpretation of results, adding further complexity to the task of analyzing fMRI data for detecting MDD. Furthermore, in the 

classification of brain disorders, such as Major Depressive Disorder, utilizing functional connectivity data may introduce redundant information. 

Employing all connections as features without addressing this redundancy could undermine classification accuracy. Therefore, integrating effective 

feature reduction strategies becomes crucial for identifying pertinent functional connectivity features. 

4.3 VARIATION IN BIOMARKERS 

Training classifiers on fMRI data poses a significant challenge due to the high-dimensional nature of the data. fMRI data consists of a multitude of voxels 

(3D pixels), resulting in a large number of potential features for each subject. However, this abundance of features leads to high computational complexity 

and prolonged processing times, making it impractical for real-world applications. Moreover, the sheer volume of features can contribute to over-fitting 

issues and complicates the interpretation of results, adding further complexity to the task of analyzing fMRI data for detecting MDD. Furthermore, in the 

classification of brain disorders, such as Major Depressive Disorder, utilizing functional connectivity data may introduce redundant information. 

Employing all connections as features without addressing this redundancy could undermine classification accuracy. Therefore, integrating effective 

feature reduction strategies becomes crucial for identifying pertinent functional connectivity features.[33] 

4.4 CLINICAL APPLICATIONS 

Focusing on the classification of MDD using fMRI scans stems from the need for advancements in mental health diagnostics. Our idea for the application 

involves utilizing the patient’s fMRI scan as input to our model, which then provides insights on whether the patient likely has MDD. Additionally, based 

on the model’s output, appropriate medications can be prescribed, and doctors can provide their valuable input to finalize the treatment approach. In a 

clinical setting, this application serves as a valuable asset for early detection, personalized treatment planning, and advancing research in neuroscience. 

[34] The utilization of fMRI-based classification of MDD in healthcare systems presents a significant opportunity to revolutionize mental health 

diagnostics. As advancements in machine learning continue to unfold, the implications for psychiatry as a whole are substantial. Therefore, the integration 

of fMRI-based classification methods into clinical practice holds immense promise for the future of mental health diagnostics and treatment. 

5. Conclusion 

The reviewed studies illuminate the complexities of classifying Major Depressive Disorder using functional Magnetic Resonance Imaging (fMRI) data. 

Variation in sample sizes, cross-validation techniques, and machine learning methods reflects the diverse landscape of this research field. While larger 

samples offer statistical robustness, smaller cohorts provide focused insights. The choice of cross-validation methods is crucial for balancing 

computational efficiency and validation rigor. Furthermore, the array of machine learning algorithms, from traditional SVM to advanced DNN, 

demonstrates the versatility in approach. Moving forward, interdisciplinary collaboration and methodological refinement are vital for advancing MDD 

classification with fMRI data. Such efforts hold promise for developing more accurate diagnostic and prognostic tools, ultimately improving our 

understanding and management of MDD. As research evolves, maintaining methodological robustness and embracing diverse perspectives will be crucial 

for unlocking the full potential of fMRI-based classification in MDD diagnosis and treatment. 
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