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ABSTRACT 

 With the increasing concerns over the fairness of educational and psychological test items, differential item functioning (DIF) approach has been widely used to 

find out items that are biased. In the educational and psychological measurement settings, a test item is recognized as differentially functioning across groups when 

the probability of an examinee’s response to it depends on group membership. This paper explored differential item functioning as the statistical characteristic of 

an item that shows the degree to which the item might be measuring different abilities for members of distinct subgroups. The framework of DIF has become an 

essential part of test validation methodology and the study of test fairness. Differential item functioning is typically identified using inferential DIF detection 

methods. Eight DIF detection methods were explained: Logistic Regression, Mantel-Haenszel, Item Response Theory, Lord’s Chi-Square, Likelihood-ratio test 

method, b-parameter method, Simultaneous item bias tests method (SIBTEST) and the Rasch model. For each method, a number of the most widely applied software 

were mentioned. 
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Introduction 

   Differential item functioning denotes to variances in the functioning of items across groups, many a time demographic, which are matched on the ability 

or more generally the characteristic being measured by the items or test. This means that when personal attributes, such as gender or ethnicity 

systematically affect examinee performance on an item, the result can be differential item functioning. This can be described as the statistical characteristic 

of an item that shows the degree to which the item might be measuring different abilities for members of distinct subgroups. If the factor bringing about 

such a difference is not part of the construct of focus in the test, then the test would be biased (Karami & Nodoushan, 2011). If, on the other hand, the 

differential performance of two groups can be attributed to a true difference in their ability levels, it is called impact rather than bias (Kamata & Vaughn, 

2004). 

Differential item functioning  

Normally, it is expected that two individuals at the same level of ability, regardless of what group they belong to, will have the same probability of 

correctly or affirmatively responding to an item. If this is not true for an item, the item is said to be functioning differentially.  

Differential item functioning (DIF) is an analysis of performance across groups on specific test items. It is a statistical technique that is used to identify 

differential item response patterns between groups of examinees such as male and female which helps in verifying potentially biased test items. DIF is of 

great interest to researchers and educators given that DIF poses a potential threat to test fairness. As an item analysis methodology different from 

comparing mean scores at test level, DIF plays an important role in detecting the items that function differentially in a test.   

Differential item functioning occurs when individuals of the same ability level from separate groups have a different probability of answering an item 

correctly (Annan-Brew, 2020). DIF is an indicator of bias observed when test takers from different groups have different probability or likelihood of 

responding correctly to an item, after controlling for ability. Subgroups typically studied in DIF analyses are examinees’ characteristics such as gender, 

school type, religion and socioeconomic status. DIF is a threat to comparability and occurs if an item is easier for one group of test takers than for another 

after controlling for overall ability.  

The framework of DIF has become an integral component of test validation methodology and the study of test fairness. All DIF methods work by 

comparing how two groups perform on each item in an exam, after matching examinees on a criterion (Davidson, Ko, Wortzman & Li, 2021). That 

criterion can be the total score on ability, or some other variable. In the two-group case, the group that is concerned about items being biased against is 

called the focal group, and the other group, is the reference group. The focal group is the focus of the analysis, and the reference group serves as a basis 
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for comparison for the focal group. When items composing a test behave differently for the reference group compared to the focal group, even after 

controlling for student proficiency, DIF is said to have occurred.  

In the case of ability testing, DIF is defined as an item level performance difference between groups of examinees matched on ability. The definition of 

DIF for surveys (an attitude measure) is slightly different because respondents on surveys are matched on overall agreement level instead of ability 

(Dodeen, 2014). 

Differential item functioning is typically identified using inferential DIF detection methods. Inferential DIF detection methods use a significance test to 

determine if an item possesses DIF. The numerical value obtained from the inferential DIF method indicates that an item is more difficult for a particular 

subgroup than originally intended. In the case of attitude item, DIF indicates that a particular subgroup responded more positively to an item than another 

group. Dodeen and Johnson (2013) stated that the correct answer in the cognitive context is similar to the positive affective of attitude towards the item.  

Items on ability or attitude assessments may exhibit DIF for several reasons. The occurrence of DIF could be due to Type 1 error or item 

multidimensionality. Type 1 error occurs if the null hypothesis is rejected when it could have been retained. If the sources of DIF cannot be explained 

after the item is evaluated, Camilli and Shepard in Oratokhai (2021) stated that the item was likely flagged for DIF due to a Type 1 error of the statistical 

method used to detect DIF. Although Type 1 error can account for unexplained DIF, it is likely that other reasons could be hypothesized as to the reason 

the DIF could not be explained. To give example, DIF may go unexplained due to lack of understanding of the examinee population taking the assessment. 

Differential item functioning that can be explained, however, can be interpreted to be caused by item multidimensionality. Item multidimensionality 

occurs when an item simultaneously measures two or more constructs.  

Shealy and Stout in Oratokhai (2021) posed a theory stating that DIF results from an item measuring an additional construct or dimension. The theory 

stated that examinees have the same ability or agreement level on the matching dimension (the primary dimension of interest), but differ in their ability 

or agreement level on the second dimension. The presence of DIF, however, is not always detrimental to a group of examinees or respondent’s trait 

inferences, but for DIF to affect examinee or respondent inferences adversely, the second dimension must be caused by a specific factor. Two factors that 

cause item multidimensionality are a construct relevant factor and a construct irrelevant factor. A construct relevant factor has no adverse effect on item 

measurement, whereas a construct irrelevant factor changes the measurement intent of an item.  

Forms of Differential Item Functioning  

         Generally, Differential item functioning is of two types, uniform and non-uniform. Uniform or unidirectional DIF exists when the probability of 

endorsing an item (answering an item correctly) is greater for one group than for the other group over all the levels of proficiency. The existence of non-

uniform or crossing DIF demonstrates that the difference in probabilities of a correct response is not the same at all levels of proficiency between the two 

comparison groups. That is, the probability of correctly answering an item is higher for one group at some points on the scale, and higher for the other 

group at other points (Ibrahim, 2017).  

        DIF can also be represented graphically as the difference between the item characteristic curves of the focal and reference groups. If there is no DIF 

present, the two curves would be superimposed on each other. Plots of items presenting uniform and non-uniform DIF are presented in Figures 1 and 2 

respectively. In uniform DIF, one group is advantaged throughout the range of the ability, that is, for the advantaged group, the probability of correctly 

responding to an item is consistently greater than for the other group. Items that show uniform DIF have different difficulty parameters for the groups 

meaning that the item is more difficult for one of the groups throughout the ability continuum. In the case when an item shows non-uniform DIF, members 

of one group find the item more difficult in one part of the ability continuum and then this is reversed for another part of the ability continuum. Items that 

function differently in a non-uniform way, have different discrimination parameters and potentially different difficulty parameters.  

 

 

Figure 1. An item presenting uniform DIF 
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Figure 2. An item presenting non-uniform DIF. The ICCs of the focal and reference groups cross because the advantage is not uniform across the scale. 

Methods of detecting differential item function 

The presence of bias in test items is a cause for concern to test developers and education researchers. If some items in a test function differently for a 

specific subgroup than the majority of the population being tested, direct comparison of their performance on the items make no sense (Krishnan, 2013). 

This led to many item bias detection procedures or differential item functioning (DIF) to flag for possible item bias. A substantial number of DIF detection 

methods have been proposed based on different test statistics. Unfortunately, most of these approaches are based on the comparison of the item parameter 

estimates between two or more pre-specified groups of examinees, such as males and females, white or non-white, as focal and reference groups. 

Researchers tend to pre-specify the focal group and reference group in advance, (e.g., males versus females) in gender-related DIF studies.  

       There are two major psychometric theories in the study of measurement procedures, which are classical test theory and item response theory and 

their corresponding models have been currently used for addressing differential item functioning studies. Classical test theory (CTT) is a psychometric 

theory of assessment/measurement that purports that every individual has some innate or “true” ability for any given attribute, and that the attribute can 

be measured, and the process of measurement inherently has error (Wang, 2018). On the other hand, item response theory (IRT) is an area of test theory 

which provides probabilistic approach to overcome some of the limitations of classical methods (Ashraf & Jaseem, 2020). The item response theory 

(IRT), also known as the latent response theory refers to a family of mathematical models that attempt to explain the relationship between latent traits 

(unobservable characteristic or attribute) and their manifestations. It is a statistical technique involving models expressing the probability of a particular 

response to a scale item as a function of the ability of the subject. 

Methods of detecting DIF which utilize classical test theory include logistic regression, correlation methods, log-linear analysis, analysis of variance, 

scheuneman’s chi-square, mantel-Haenszel method, transformed item difficulty or delta plot which is based on the difference between the difficulty 

parameter estimates obtained in each group. Other methods based on item response theory include b-parameter, Wald statistics, likelihood-ratio, Lord’s 

chi-square.  

Logistic regression method 

   Logistic regression is a classification algorithm. It is used to predict a binary outcome based on a set of independent variables. The logistic model 

computes the probability of the selected response as a function of the values of the predictor variables. If a predictor variable is categorical with two 

values, then one of the values is assigned the value 1 and the other is assigned the value 0. If a predictor variable is a categorical with more than two 

categories, then a separate dummy variable is generated to represent each of the categories except for one which is excluded. The value of the dummy 

variable is 1 if the variable has that category, and the value is 0 if the variable has any other category. If the variable has the value of excluded category, 

the entire dummy variable generated for the variables are zero. 

       The logistic regression procedure was proposed by Rogers and Swaminathan (1990) to detect differential item functioning between manifest groups 

(reference group and focal group). In this method, the outcome (dependent) variables can be identified as item responses (0 = incorrect, 1 = correct), 

whereas, the predictors (independent) can be defined as the total test score (matching criterion, K), manifest group membership (gender), and interaction 

between the total test and manifest group membership (kamala & vaughn in Sapmaz, 2019).  
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Logistic regression in general models a binary dependent variable and independent variables based on the logistic function. The independent variables 

can be binary or continuous. In the application to DIF detection, logistic regression models the binary response of an item as the dependent variable and 

test scores, group membership and interaction between test scores and group membership as the independent variables. The model for predicting the 

probability of giving the correct response according to Swaminathan and Rogers is given by  

                   P (μ=1/θ) = {℮(β0 + β1θ)} / {1 + ℮(β0 + β1θ)}                                             (1) 

      where μ is the binary response to the item, θ is the observed ability and 𝛽0, 𝛽1 are the intercept and slope.  

The logistic regression is performed first on an item using respondents in the reference group and then on the same item using respondents in the focal 

group, with the slopes and intercepts estimated. 𝛽0𝑅, 𝛽1𝑅 for the first and 𝛽0𝐹, 𝛽1𝐹 for the second. If there is no DIF, the probability of correctly answering 

the question should be the same for both groups and so the intercept and slope parameters should also be equal. Consequently, if any of the parameters 

are different then it indicates the presence of DIF. If the intercept parameters (𝛽0𝑅 𝑎𝑛𝑑 𝛽0𝐹) are the same but the slope parameters differ, then the item 

exhibits non-uniform DIF because the logistic regression curves have different slopes and so could possibly cross. On the other hand, if the slope 

parameters (𝛽1𝑅 𝑎𝑛𝑑 𝛽1𝐹) are equal and the intercept parameters differ then the item displays uniform DIF and the logistic regression curves are separate 

and parallel. In practice the two separate logistic regressions for the focal and reference groups are combined in a nested model. 

In the course of this study, the logistic regression procedure will be used to detect DIF in terms of gender. The item response (0 or 1) of the participants 

will serve as the dependent variable, with grouping variable (dummy coded as 1 = reference, 2 = focal), total scale score for each subject (characterized 

as variable TOT) and a group by TOT interaction as independent variables. This method will provide a test of DIF conditionally on the relationship 

between the item response and the total score, testing the effects of group for uniform DIF, and the interaction of group and TOT to assess non-uniform 

DIF.  

Logistic regression is a viable and flexible procedure for detecting DIF that does not require specific forms of item response function or large sample 

sizes (Narayanam & Swaminathan in Chen & Jin, 2018).  They went further to say that it also demonstrates computational simplicity and is easily 

implementable using commercial software like SPSS, SAS or STATA, without additional effort or knowledge. Logistic regression provides a more 

precise description of differential item functioning compared to the MH procedure, and allows for distinguishing between two types of DIF: uniform and 

non-uniform DIF. However, based on differential item functioning analyses from classical test theory, the logistic regression technique is quite a powerful 

approach that has been used in identifying differential item functioning in dichotomous items. 

Logistic regression approach to differential item functioning detection involves running a separate analysis for each item. The independent variables 

included in the analysis are group membership, an ability matching variable typically a total score, and an interaction term between the two. The dependent 

variable of interest is the probability or likelihood of getting a correct response or endorsing an item. Since the outcome of interest is expressed in terms 

of probabilities, maximum likelihood estimation is the appropriate procedure. The procedure can be formulaically presented as follows:              

     

  

 

 

        = b0 + b1tot + b2group + b3 (tot x group)                     (2) 

In the formula, b0 is the intercept, b1tot is the effect of conditioning variable which is usually the total score on the test, b2 group is the grouping variable, 

and finally b3 (tot x group) is the ability by grouping interaction effect. If the conditioning variable alone is enough to predict the item performance, with 

relatively little residuals, then no DIF is present. If group membership, b2group, adds to the precision of the prediction, uniform DIF is detected. That is, 

one group performs better than another group and this is a case of uniform DIF. Finally, in addition to total scores and grouping, if an interaction effect, 

signified by b3 (tot x group) in the formula, is also needed for a more precise prediction of the total scores, it is a case of non-uniform DIF (Zumbo, in 

Karami, 2012).  

            Also, the formula is based on logistic function denoted by  

 

  

 

 

where Pmi is the probability of giving a correct answer to item i by person m and 1-Pmi is the probability of a wrong response. In simple words, it is the 

natural logarithm of the odds of success to the odds of failure (Karami, 2012).  

      Identifying DIF through logistic regression is similar to step-wise regression in that successive models are built up in each step entering a 

new variable to see whether the new model is an improvement over the previous one due to the presence of the new variable.  

    Pmi 
1 
 - Pmi 

    Ln 
 

    Pmi 
1 
 - Pmi 

    Ln 
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      An advantage of logistic regression method is the ability to test for both uniform and non-uniform DIF. The presence of uniform DIF is 

evaluated by testing whether the regression coefficient of group membership (b2) differs significantly from zero. A test of the interaction coefficient 

between group membership and ability (tot) (b3) can be used to assess non-uniform DIF. Some researchers advocate first testing the presence of both 

uniform and non-uniform DIF simultaneously using a test of the null hypothesis that b2 = b3 = 0 (Roger & Swaminathan in Oratokhai, 2021). 

Zumbo in Karami (2012) argued that logistic regression has three main advantages over other DIF detection techniques in that one:  

✓ need not categorize a continuous criterion variable  

✓ can model both uniform and non-uniform DIF 

✓ can generalize the binary logistic regression model for use with ordinal item scores.  

McNamara and Roever in Karami (2012) also state that logistic regression is useful because it allows modeling of uniform and non-uniform DIF, is non-

parametric, can be applied to dichotomous and rated items, and requires less complicated computing than IRT-based analysis.    

Mantel-Haenszel procedure  

          The Mantel-Haenzel (MH) procedure was first proposed for DIF analysis by Holland and Tayer (Kamata & Vaughn, 2004). The MH 

DIF procedure compares dichotomous item performance between two groups after matching respondents on overall scores. Respondents in the focal and 

reference groups are matched on total test scores by dividing respondents in both groups into defined strata on those scores (Liu & Bradley, 2021). The 

total scores are generated by summing item scores across all item. Estimates of the odds ratio for a given item can be calculated based on 2 x 2 x k 

contingency table with K representing the k-th group (K = 1,2,…,k). The item is not DIF if the odds of answering the item correctly are about the same 

across focal and reference groups, that is, if the odds ratio.  

                                            

 

Table 1: A 2 x 2 x k Contingency Table 

 Scores on the studied items 

 1(Right) 0(Wrong) Total  

Reference group  Ak Bk Nrk 

Focal Group  Ck Dk Nfk 

Total Mik Mok Nk 

The Ak, Bk, Ck and Dk denote the numbers of respondents in the cells. Nk represents the number of respondents in the K-th stratum. The cells Ak and Ck 

represent the total number of respondents who answered the item correctly in the reference and focal groups, respectively, within the matched subgroup 

K. Bk and Dk denote the total number of respondents who answered the item incorrectly in the reference and focal groups, respectively, within k-th group. 

Mik and Mok denote the number of respondents who answered the item correct and incorrect, respectively, with K-th group (Liu & Bradley, 2021). To 

account for all total score levels simultaneously, the Mantel-Haenszel estimate of the odds ratio αMH, can be calculated as the weighted average of the 

odds ratios across the score levels:   

 

 

 

 

 

If the item functions the same for different groups for all levels of total score, K, then the odds ratio αMH, equals 1, indicating that there is no DIF, and for 

a DIF item that fovours the reference group, αMH, will be greater than 1. When a DIF item favours the focal group, αMH, will be less than 1.  

To test for the presence of DIF, the Mantel-Haenszel χ2
MH statistics can be calculated as  

 

 

 

 

 αk    = 
 Ak /Bk 

 Ck /Dk   =   Bk Ck 

 Ak Dk 
        is close to 1                             (3) 
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and compared with a critical value from the distribution with degree of freedom (df) = 1 to determine the p-value.  

MH procedure is the most widely used procedure to detect DIF in practice since it is not only easy to understand and compute,  it can provide both a 

significance test and estimate of the magnitude of DIF as well (Millsap in Lui & Bradley, 2021). Millsap went further to say that the major criticism of 

the MH procedure is the adequacy of using the total score as a substitute for the latent trait.  

Item response theory 

In item response theory, the goal is to examine how observable test performance relates to unobservable latent traits that are measured by the items in a 

test. IRT consists of methods and models that allow for analysis of particular items on a test and how they are responded to. The main difference between 

IRT DIF detection techniques and other methods including logistic regression and MH is the fact that in non-IRT approaches, “examinees are typically 

matched on an observed variable (such as total test score), and then counts of examinees in the focal and reference groups getting the studied item correct 

or incorrect are compared”. That is, the conditioning or the matching criterion is the observed score. However, in IRT methods, matching is based on the 

examinees’ estimated ability level or the latent trait, Ө (Karami, 2012).  

 Methods based on item response theory are conceptually elegant though mathematically very complicated. The building block of IRT is item 

characteristics curve (ICC). It is a smooth S-shaped curve which depicts the relationship between the ability level and the probability of correct response 

to the item. As it is evident from Fig. 3, the probability of correct response approaches 1 at the higher end of the ability scales, never actually reaching 1. 

Similarly, at the lower end of the ability scale, the probability approaches, but never reaches zero. 

 

 

 

 

 

 

 

Fig. 3. A Typical ICC 

IRT uses three features to describe the shape of the ICC: item difficulty, item discrimination, and guessing factor. Based on how many of these parameters 

are involved in the estimation of the relationship between the ability and item response patterns, there are three IRT models, namely one, two and three 

parameter logistic models. In the one parameter logistic model and the Rasch model, it is assumed that all items have the same discrimination level. The 

two parameter IRT model takes account of items difficulty and item discrimination. However, guessing is assumed to be uniform across ability levels. 

The three-parameter model includes a guessing parameter in addition to item difficulty and discrimination. The models provide a mathematical equation 

for the relation of the response to ability levels. The equation for the three-parameter model is  

 

   P(Ө) = C+ (1 - C)           (6)   

 

 

Where b is the difficulty parameter, α is the discrimination parameter, C is the guessing or pseudo-chance parameter and Ө is the ability level.  

        The basic idea in detecting DIF through IRT models is that if DIF is present in an item, the ICCs of the item for the reference and the 

focal groups should be different. However, where there is no DIF, the item parameters and hence ICCs should be almost the same. It is evident that the 

ICCs would be different if the item parameters vary from a group to another. Thus, one possible way of detecting DIF through IRT is to compare item 

parameters in two groups. If the item parameters are significantly differently, the DIF is ensured.  

        IRT DIF can be computed using BILOG-MG for dichotomously scored items, PARSCALE and MULTILOG for the polytomously scored 

items. In addition, for small sample sizes, non-parametric IRT can be employed using the Test Graft software. Pea in Karami (2012) undertook a DIF 

study of examinees with different academic backgrounds sitting the English subtest of the Korean National Entrance Exam for Colleges and Universities. 

He applied the three parameter IRT using the MULTILOG.  

 According to Osterlind and Everson in Oratokhai (2021), three major advantages of using IRT in DIF detection are:  

✓ Compared to classical test theory, IRT parameter estimates are not as confounded by sample characteristics.  

✓ Statistical properties of items can be expressed with greater precision which increases the interpretation accuracy of DIF between two groups. 

         1 
 
1+e-α(Ө-b)  
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bFj - bRj 
= Zj  √ 

{Var(bF) + Var (bR)} 

    (7) 

^ 

^ ^ 

^ ^ 
  

^ ^ 

^ ^ 

✓ These statistical properties of items can be expressed graphically, improving interpretability and understanding of how items function 

differently between groups.  

Lord’s Chi-Square (Wald Test) 

Lord (1977-1980) proposed a χ2 statistic to test for DIF detection under IRT, usually called the Wald test. To identify DIF items, the Wald test is used to 

compare vectors of IRT item parameters between groups (Gao, 2019). Initially, Lord proposed the evaluation of DIF for the location (difficulty) 

parameters only:  

   

 

   

Where bFj and bRj are the maximum likelihood estimates of the parameter bj for each focal group and reference group, and Var (bFj) and Var (bRj) are the 

corresponding estimates of the sampling variance of bFj and bRj, respectively (Lee, 2015). To test a single parameter, b, the difference between the 

estimated bs across groups is compared to its standard error;  

                  SE(bF-bR) =    √Var(bF) + Var (bR)                                (8) 

Z2 is a chi-square distribution with df = 1 for large samples. Lord extended this test to a generalized test of the joint differences between the vectors of 

discrimination and difficulty parameters across focal and reference groups. The test statistic, χ2 is 

          χj
2 = Vj∑-1Vj                          (9) 

for 2PL model, where Vj is [âFj – âRj, bFj - bRj], and let ∑-1 define the corresponding variance –covariance matrix. For large samples, the χj  test statistic 

follows a chi-square distribution with df = 2 (Lee, 2015). In general, the df are the number of parameters per item j, which is being tested for DIF.  

Likelihood-ratio test method 

        The likelihood-ratio test is another IRT based method for assessing DIF. This procedure involves comparing the ratio of two models. In 

general, the procedure begins with an omnibus test that examinees whether any item parameter for a given item (e.g. item difficulty, item discrimination, 

or both in a two-parameter logistic model) differs between the reference and focal groups (Bulut & Suh, 2017). The steps for conducting an omnibus test 

are as follows: first a compact (C) model, where all item parameters are constrained to be equal across the reference and focal groups, is estimated. Second 

an augmented (A) model, where all parameters of the item are allowed to vary across the two groups, is estimated. To test whether the item exhibits DIF, 

the likelihood test statistic, which is -2 times the difference in log likelihood from the compact and augmented models, is computed as follows. 

LR = -2InLc – (-2InLA)            (10) 

Where Lc is the log likelihood of the compact model and LA is the log likelihood of the augmented model. The LR statistic is approximately distributed 

as chi-square (χ2) distribution with degrees of freedom (df) equal to the difference in the number of parameters estimates between the two models (Bulut 

& Suh, 2017).  

         If the likelihood statistic from the omnibus test is significant, then follow-up tests should be performed to identify the type of DIF (Woods 

in Bulut & Suh, 2017). In the subsequent analyses, the discrimination parameter of the item is constrained to be equal but the difficulty parameter of the 

item is estimated for the two groups separately. This process results in a second compact model that can be compared against the same augmented model 

from the omnibus test. A significant likelihood statistic from this comparison indicates that the item should be flagged for non-uniform DIF. If this LR 

statistic is not significant, then the item should be tested for uniform DIF (Bulut & Suh, 2017). 

          Suh and Cho (2014) extended the IRT-LR test for multidimensional IRT (MIRT) models. Similar to the IRT-LR test for unidimensional 

IRT models, the IRT-LR test for MIRT models depend on the evaluation of model fit by comparing nested models. The IRT-LR test for MIRT models 

requires additional assumptions. To ensure metric indeterminacy across multiple latent traits in their application, the means and variances of two talent 

traits are fixed at o and 1s, respectively, in both groups. Also, the correlation between the two latent traits is fixed at 0 in the augmented model with freely 

estimated item parameters across the two groups. In addition, the discrimination parameter for the first item is fixed at 0 on the second latent trait for both 

groups to satisfy the model identification when the test has a non-simple structure.  

b-parameter method 

             The b-parameter is an item response theory (IRT)-based index of item difficulty. As IRT models have become an increasingly common way of 

modeling item response data, the b-parameter has become popular way of characterizing the difficulty of an individual item, as well as comparing the 

relative difficulty levels of different items.  

^ 
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  The b-parameter is used to detect differential item functioning when 1PL model is used. This means that the a-parameters are constrained to be equal 

for both groups leaving only the estimation of the b-parameters. After examine the ICCs, there is an apparent difference in b-parameters for both groups 

(Oratokhai, 2021). Using a similar method to a student’s t-test, the next step is to determine if the difference in difficulty is statistically significant, under 

the null hypothesis.  

Ho: br = bf 

Lord in Oratokhai (2021) provided an easily computed and normally distributed test statistic 

                d = (br – bf) / SE(br – bf)                       (11) 

The standard error of the difference between b-parameters is calculated by  

√[SE(br)]
2 + √[SE(bf)]

2 

Where  

         d = Estimated difficulty parameter difference  

br = Estimated difficulty parameter for males (reference group)  

bf = Estimated difficulty parameter for females (focal group)  

Simultaneous item bias tests method (SIBTEST)  

             Simultaneous item bias test (SIBTEST) employs the non-parametric multidimensional DIF model of Shealy and Stout in Alordiah (2015), which 

looks at the differences in probability of correct responses between focal and reference groups (beta index), after matching respondents on true ability 

score. Previous DIF detection procedures focus on each item separately but with SIBTEST method, multiple items can be tested to detect the amount of 

DIF in the entire subtest. To operate SIBTEST on standardized achievement test, the test items are divided into studied (suspect) subtest and the matching 

(valid) subtest. The studied subtest is comprised of the items believed to measure the primary and secondary dimensions based on the substantive analysis 

in the first stage (comprised of the items in the test that are suspected to exhibit DIF), whereas the matching subtest contains the items believed to measure 

only the primary dimension. The matching (valid) subtest is used as the internal matching criterion to control for the group differences in the “target 

ability” that is intended to be measured by the test in the detection of DIF. That is, it is used to place individual in the focal and reference groups at each 

score level. The estimate of unidirectional SIBTEST DIF index given by Atar in Alordiah (2015) is  

                 Βu = ΣPfk (Yrk – Yfk)                                                                                                 (12) 

Where  

K = number of score levels on the valid subtest  

Βu = maximum score level on the valid subtest  

Pfk = proportion of the focal group examinees that obtain a valid subtest score of K  

Yrk = mean suspect subtest score for reference group  

Yfk = mean suspect score for focal group at the Kth valid subtest score level.  

The null hypothesis of no unidirectional DIF is  

Ho: βu = 0  

The SIBTEST test statistic associated with the null hypothesis is  

SIBTESTu = βu/ (σβu)                                                                                                       (13) 

Where (σβu) is the estimated error for unidirectional SIBTEST DIF index, β.  

Roussos and Stout in Alordiah (2015) classified the strength of DIF as:  

1) A- level DIF: the absolute value of beta index is less than 0.059  

2) B- level DIF: the absolute value of beta index is between  

3) C- Level DIF: the absolute value of beta index is equal or higher than 0.088. The A, B and C level of DIF is also categorized as negligible, moderate 

respectively. Sometimes group differences in the ability distribution might le estimate of the SIBTEST DIF index indicating the presence of DIF when 

there is no DIF. In this case, regression correction is used to compute an unbiased estimate of the SIBTEST DIF index.   
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Rasch model 

The Rasch model focuses on the probability of endorsing item 𝑖 by person 𝑚. In aiming to model this probability, it essentially takes into account person 

ability and item difficulty. Probability is a function of the difference between person ability and item difficulty. The following formula shows just this:  

P (x = 1/ θ, δ) = 𝑓 (𝜃𝑛 − 𝛿𝑖)         (14) 

        where 𝜃𝑛 is person ability and 𝛿𝑖 is item difficulty.  

The formula simply states that the probability of endorsing the item is a function of the difference between person ability, 𝜃𝑛, and item difficulty, 𝛿𝑖. 

This is possible because item difficulty and person ability are on the same scale in the Rasch model. It is also intuitively appealing to conceive of 

probability in such terms. The Rasch model assumes that any person taking the test has an amount of the construct gauged by the test and that any item 

also shows an amount of the construct. These values work in the opposite direction. Thus, it is the difference between item difficulty and person ability 

that counts. The exact formula for the Rasch model is given as: 

Ln {𝑃𝑛𝑖 /1 − 𝑃𝑛𝑖} = 𝜃𝑛 − 𝛿𝑖          (15) 

The Rasch model provides us with sample independent item difficulty indices. Therefore, DIF occurs when invariance is not accrued in a particular 

application of the model (Karami, 2012). That is, the indices are dependent on the sample who takes the test. The amount of DIF is calculated by a 

separate calibration t-test approach first proposed by Wright and Stone (Smith in Karami, 2012). The formula is given below: 

 𝑡 = di2 − di1 /√(𝑆2 − 𝑆2)                                    (16) 

where di1 is the difficulty of item i in calibration on group 1, di2 is the difficulty of item i in calibration based on group 2, S2    is the standard error of 

estimate for di1, and S2  is the standard error of estimate for di2. Among the software for DIF using the Rasch model are ConQuest, Winsteps and Facets. 

Sample Size and DIF Detection 

Many DIF detection methods are based on inferential statistics, thus sample size can impact the statistical power of DIF detection. When small sample 

sizes are confronted in real testing situations, statistical power can be compromised in a way that the inferences made in DIF analyses could be unstable. 

Sufficient sample sizes are needed in both focal and reference groups when conducting DIF analysis to have enough power for DIF detection across 

groups. Sample sizes of 200 to 250 per group will likely have enough power to detect DIF using non-IRT methods (Liu, 2017). IRT-based methods for 

detecting DIF generally require larger sample sizes in order to estimate model parameters for both the reference and focal groups.  

A substantial body of research has examined the impact of sample size on DIF detection using a variety of DIF detection approaches (Bernstein, Samuels, 

Woo & Hagge, 2013). There is wide agreement that DIF detection rates typically improve with larger sample sizes.  

Wise cited in Liu (2017) conducted a simulation study using the M-H DIF detection model with two different sample sizes, 400 and 800. He found that 

the power of the M-H method increased substantially as sample size increased. It was also noted that detection rates were best with items with moderately 

high discrimination as opposed to items with lower or higher discrimination values. 

Conclusion 

Differential item functioning (DIF) ensues when items that are supposed to measure a latent trait are unfair, favouring one group of individuals over 

another. Hence, it is normal to assume that there are one or more variables, in addition to the target ability, that account for or explain a group difference 

in item performance.  DIF analysis aims to detect items that differentially favour candidates of the same ability levels but from different groups. In 

educational measurement and quantitative psychology, the absence of DIF is regarded as an important aspect of test fairness by educational and 

psychological researchers. Detecting items having DIF in a test is important, as it helps in maintaining the tests’ fairness and validity.  

In terms of DIF detection methods, it is significant that all DIF detection methods available are designed to match the groups, either directly or indirectly, 

on the proficiency measured by the items (Angoff, 1993), and all DIF measurements investigate how different groups perform on individual test items to 

determine whether the test items are creating problems for a particular group (Zumbo, 1999). DIF detection methods are all based on the philosophy that 

if different groups of examinees (like, males versus females) have approximately the same level of ability, they should perform similarly on individual 

test items regardless of group membership.  
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