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ABSTRACT 

The article empathize on finding non-zero different solutions in integers  to  binary third degree diophantine equation 𝑥2 + 𝑥𝑦 = 𝑦3 + 2𝑦2.  Different sets of 

solutions in integers are presented. Some fascinating relations from the solutions are obtained. The method to get second order Ramanujan numbers is exhibited.. 
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Notations :                   
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1. Introduction 

The third degree Diophantine equations are enormous in variety and they have contributed to expansion of research in this filed[1,2]. For an extensive 

approach of these types of problems , one may refer [3-28]. In this article a search is made to get solutions in integers for the considered problem through 

different methods and also the method of getting second order  Ramanujan   numbers from the obtained solution is discussed. Some fascinating relations 

from the solutions are presented. 

2. Methods for finding solutions 

Consider 

                                    

232 2 yyyxx +=+
                                                        (2.1)                                                 

   Method 2.1 

               Treating (2.1) as a quadratic in x  and solving for the same , 

              we have 
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            The square-root on the R.H.S. of (2.2) is removed when 

                                       
)3()( +== aaayy

                                                           (2.3) 

              and from (2.2) , taking the positive sign before the square-root , 

               it  is obtained that 

                               
)3()1()( ++== aaaaxx

                                                          (2.4)         

                 It is seen that (2.3) and (2.4) satisfy (2.1). 

            After performing some algebra , a few solutions in integers are given below 

             in Table 2.1: 

                                        Table 2.1 Solutions in integers 

a  )(ax
 

)(ay
 

1 8 4 

2 30 10 

3 72 18 

4 140 28 

5 240 40 

3. Fascinating relations 

(i) 
2)()1(2)2( =++−+ ayayay

 

(ii) 
)2(3)()1(3)3( ++=+++ ayayayay

 

(iii) 
6)()1(3)2(3)3( =−+++−+ axaxaxax

 

(iv) 
)6mod(2)()1(2)2( ++−+ axaxax
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(vii) 
aa tPax ,3

5 62)( +=
 

(viii) 
aa tPax ,3

3 26)( +=
 

(ix) 

539)( aa PPax −=
 

(x) 
]2)()([3 5

aPayax −−
 is a nasty number 

(xi) 
]18)()(3[3 3

aPayax −−
 is a square multiple of 6 
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(xii) 
)42()142( 22 ssyssy +−++

 is a perfect square 

(xiii) 
)35( −sy

 is a multiple of 10 

(xiv) 
)24()14( 33 −−− sysy

 is a perfect cube 

(xv) 
)()( ayax −

 is a perfect square  when 
222 −= ssa

 

(xvi) 

526)(3)( aPaayax =+−
                                             

4.Formulation of second order Ramanujan numbers (𝑅2 numbers) 

             From each of the solutions of (2.1) given by (2.3) &(2.4), we can find R2  numbers having base numbers as real integers as well as gaussian 

integers.  

Illustration 4.1 

 Consider (2.3) as  

                            
say

aaaa

aaay

,**

*)3(1*)3(

)3()(

2

2

 ==

+=+=

+=

 

     It is observed that 

           
16116)32()13(3)13(

)()()()(

234222222

2222

++++=++−+=+++

++−=−++

aaaaaaaaa



 

Thus, 
16116 234 ++++ aaaa

 represents the second order Ramanujan number  as it is written as sum of two squares in two different ways. 

Here , the base numbers are real integers. 

Illustration 4.2 

Consider (2.4) as 

                        
say

aaaaaa

aaaax

,**

)1(*)3()3(*)1(

)3()1()(

 ==

++=++=

++=

 

It is seen that  

108882

)]1()3([)]3()1([)]1()3([)]3()1([

)()()()(

234

2222

22222222

−−++=

+++++−+=+−+++++

−+−=++−=−++

aaaa

aiaaaiaaaiaaaiaa

iiii 

 

Thus, 
108882 234 −−++ aaaa

 represents the second order Ramanujan number  as it is written as sum of two squares in two different 

ways. Here , the base numbers are gaussian integers 

5.Remarks 

  Remark 5.1     

      In addition to the solutions (2.3) &(2.4) , we have an another set of solutions in integers to (2.1) by taking the negative sign before the square-root of 

(2.2) given as 

              
)3()(,)3()2()( +==++−== sssyyssssxx
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Remark 5.2 

   Albeit tacitly , we have two more sets of solutions in integers to (2.1) shown  below  

                 
)3()(,)3()1()(

,)3()(,)3()2()(

−==−−==

−==−−==

sssyyssssxx

sssyyssssxx

 

 

6.Conclusion 

This article gives an approach to solve third degree equation with two unknowns though different methods to get solutions in integers. The researchers  

in this field may attempt to find various other methods to solve binary cubic equation and also approach to get second order Ramanujan numbers and find 

various other relation from the obtained solutions.       
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