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ABSTRACT 

This paper examines the application of machine learning techniques in estimating the State of Charge (SoC), State of Health (SoH), and State of Function (SoF) of 

lithium-ion batteries, which are crucial for the effective monitoring and management of battery systems in electric vehicles (EVs). Utilizing Long Short-Term 

Memory (LSTM) networks, the study leverages advanced data preprocessing methods within the Python environment to enhance model performance. These 

preprocessing steps include handling missing values, normalizing data, and adjusting it for LSTM compatibility, supported by the use of prominent data 

manipulation libraries such as Pandas, NumPy, and Matplotlib. 

The research process begins with extensive data collection from real-time battery monitoring systems that record critical operational parameters. This data is then 

subjected to a rigorous cleaning phase, involving outlier removal and missing value imputation, and normalized to provide consistent inputs for training the LSTM 

models. The core methodology features the development of two specialized LSTM models—one for SoC and another for SoH estimation. These models are adept 

at processing sequential data over time, capitalizing on LSTM's capacity to manage time-series data effectively. 

The goal of this research is to automate the estimation processes for SoC, SoH, and SoF through these sophisticated machine learning approaches. This not only 

aims to elevate the precision of battery state estimations but also establishes a solid framework for continuous monitoring and predictive maintenance of battery 

systems in EVs. The expected outcomes include extended battery life and enhanced operational efficiency, positioning this work as a significant contribution to the 

field of battery management systems. 

Keywords: State of Charge (SoC), State of Health (SoH), State of Function (SoF), lithium-ion batteries, electric vehicles, machine learning, Long Short-

Term Memory (LSTM) networks. 

1. INTRODUCTION 

The advent of electric vehicles (EVs) marks a pivotal shift in the automobile industry, aligning with global efforts towards sustainable transportation. 

Electric vehicles, spanning various segments such as passenger cars, cargo vehicles, and electric bikes, have risen to prominence by matching the 

performance of traditional internal combustion engine vehicles in speed, torque, and mileage, all while emitting significantly fewer pollutants. This 

advantage is crucial as the world faces the dual challenges of depleting gasoline resources and escalating environmental degradation. Consequently, EVs, 

powered by advanced battery technologies, emerge as both a viable and necessary alternative, heralding a new era of transportation that relies on cleaner 

energy sources. 

Battery Technology and Environmental Impact 

At the core of the electric vehicle's functionality is its battery system, primarily composed of lithium-ion batteries, recognized for their efficiency and 

capacity to power longer drives. The focus of ongoing research and development in battery technology for EVs is multifaceted—aiming not only to 

enhance performance and lifespan but also to minimize the environmental impact associated with battery use. This includes optimizing recycling methods, 

refining manufacturing processes, and innovating with sustainable materials, ensuring that the batteries are as environmentally friendly as they are 

powerful and reliable. 

In India, the adoption of electric vehicles has been gaining momentum, with a wide range of models now available across different vehicle categories 

including SUVs, sedans, and commercial vehicles. Manufacturers are increasingly focusing on catering to consumer preferences by designing EVs that 

are cost-effective, require low maintenance, and provide substantial travel range without emissions. Vehicles like the Hyundai Kona, Mahindra E-Verito, 
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and Tata Nexon-EV Prime exemplify this trend, all powered by lithium-ion batteries, which are the industry standard due to their efficiency and energy 

density. 

Types and Components of EVs 

Electric vehicles can be broadly classified into Pure Electric Vehicles (PEVs), which operate solely on batteries, and Hybrid Electric Vehicles (HEVs), 

which use a combination of batteries and internal combustion engines. The type and capacity of the battery significantly affect the vehicle's cost, 

performance, and maintenance requirements. Central to the operation of these vehicles is a robust Battery Management System (BMS), which ensures 

optimal performance and longevity of the battery by regulating its charge and monitoring its health and functionality. The BMS is indispensable in modern 

EVs. It performs critical functions such as estimating the State of Charge (SoC) and State of Health (SoH) of the battery, calculating its power and energy 

output, and predicting the vehicle’s driving range. These tasks are complex due to the dynamic nature of battery operation, influenced by factors like 

temperature variations, usage patterns, and physical wear. Traditional BMS technologies often fall short in accurately predicting these parameters, 

especially under varying operational conditions, which can undermine the vehicle’s reliability and efficiency. Advancements in battery modeling have 

introduced more sophisticated methods to predict battery behavior more accurately. These range from detailed electrochemical models that, while 

accurate, are computationally intensive, to simpler electrical equivalent circuit models, and more recently, to data-driven models employing machine 

learning algorithms. These ML models offer a promising alternative, capable of handling complex, non-linear patterns in battery data, thus providing 

more accurate and robust predictions for SoC and SoH. 

Machine Learning in BMS 

The integration of machine learning into BMS represents a significant advancement in battery technology. By leveraging historical data and pattern 

recognition algorithms, ML models can predict battery states more accurately and adaptively than traditional methods. This research focuses on employing 

machine learning techniques to develop predictive models specifically designed for estimating the SoC and SoH of EV batteries, based on extensive real-

world data collected from battery operations. These models are trained and validated using contemporary machine learning frameworks, ensuring they 

meet the high standards required for practical deployment in electric vehicles. The primary aim of this research is to enhance the predictive accuracy of 

battery state estimations in electric vehicles using machine learning models. This involves a detailed methodology encompassing data collection, 

preprocessing, feature engineering, model training, and validation phases, culminating in the deployment of a practical, user-friendly system for real-time 

battery state estimation. The effectiveness of these models is quantitatively assessed using standard regression metrics, ensuring they provide reliable and 

actionable insights for EV manufacturers and users alike. The successful implementation of ML-based predictive models in battery management systems 

can significantly enhance the operational efficiency and reliability of electric vehicles. This not only improves user trust and vehicle performance but also 

contributes to broader environmental goals by optimizing battery usage and extending vehicle lifespans. Furthermore, the insights gained from this 

research could guide future advancements in battery technology and management, potentially setting new benchmarks for the integration of artificial 

intelligence in automotive applications. 

In summary, this research endeavors to bridge the gap between traditional battery management techniques and the growing needs of modern electric 

vehicles through the application of advanced machine learning strategies. By enhancing the accuracy and reliability of battery state estimations, this work 

aims to contribute significantly to the evolution of the electric vehicle industry, promoting more sustainable and efficient transportation solutions. 

2. LITERATURE REVIEW 

The imperative for accurate, real-time estimation of State of Charge (SoC) and State of Health (SoH) in lithium-ion batteries is critical, especially within 

the burgeoning electric vehicle (EV) market. These parameters optimize battery usage, enhance safety, and extend battery life, thereby supporting the 

automotive industry's sustainability goals. Traditional methods often fall short in providing precise estimations due to the complexity and non-linear 

behavior of battery systems under diverse operating conditions. Consequently, machine learning (ML) methodologies have emerged, promising greater 

accuracy and adaptability by leveraging large datasets and sophisticated algorithms to capture intricate patterns in battery behavior. 

Research by Frade et al. (2011) explored installing charging stations based on consumer demand, yet disregarded the societal costs and technological 

limitations of the distribution network, which limits the practicality of their findings. Chen et al. (2013) used household data to decide station placement 

but ignored technological aspects of the distribution network, while Wenxia et al. (2016) developed a greedy method considering only a few factors for 

charging station location, showing the limited scope of their strategy. 

Alipour et al. (2017) created a stochastic schedule that overlooked price sensitivity and utilized a combinational algorithm to manage the increased need 

for charging stations (CS), impacting the distribution system's loss. Lam et al. (2013) and Bayram et al. (2013) approached the placement problem for 

electric vehicle charging stations using a purely mathematical method, which likely oversimplified their approach by not incorporating the distribution 

mechanism. Bayram et al. (2016) correlated load demand and car charging with solar radiation output, finding that installing solar panels next to charging 

stations provides inexpensive electricity for vehicle owners. 

Galiveeti et al. (2018) conducted research on the location of CS and distributed generation (DG), discovering that adding DG units to a CS-integrated 

system reduces network power loss, though the prioritization of adding DGs before locating CS was seen as impractical. Jamian et al. (2014) concluded 

that the ideal site for DG would also be the best position for a plug-in hybrid electric vehicle (PHEV) parking lot, simplifying their method by adding a 

source and a load to the same area, which might not reflect more complex real-world scenarios. 
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Bayram et al. (2013) focused on reducing blocking time using local energy storage at charging stations, which enhanced service quality during rush hours 

but neglected off-peak charging scenarios. Pallonetto et al. (2016) chose the ideal position for the CS while considering high solar panel penetration but 

installed only one charging station in the distribution network, ignoring driver behavior. 

Miralinaghi et al. (2016) aimed to reduce the total ownership cost (TOC) by considering the overall driving distance and recharging time, with a 

noteworthy conclusion that having multiple charging stations at the same node could potentially overlook the option of trip skipping, suggesting that 

consumers might need to search for the CS using their vehicles. Huang et al. (2015) demonstrated that scheduling PHEV charging at night leads to lower 

operational costs but acknowledged that such scheduling could lead to a high load during night hours. 

Alharbi et al. (2014) evaluated the impact of vehicles charging upon reaching homes on the distribution grid, assuming that charging would begin at 6 

p.m. or 10 p.m., which may not hold in more variable real-world conditions. Shuai et al. (2016) reviewed the management of charging stations, concluding 

that a smart grid with ideal scheduling could lower PHEV charging costs by optimizing pricing and routing practices through real-time prices. 

This literature review elucidates the challenges and innovations within the realm of electric vehicle battery management and charging infrastructure. By 

integrating machine learning techniques and considering broader environmental and operational variables, researchers are paving the way towards more 

efficient and sustainable electric vehicle technologies. These studies highlight the need for a comprehensive approach that not only considers technological 

and economic factors but also integrates smart grid capabilities to enhance the effectiveness of EVs and their supporting infrastructure. 

3. METHODOLOGY 

This research project aims to develop a machine learning model to estimate the State of Charge (SoC), State of Health (SoH), and State of Function (SoF) 

of lithium-ion batteries, crucial for enhancing the monitoring and management of battery systems in electric vehicles (EVs). The methodology employs 

a machine learning framework developed in Python, utilizing a combination of Long Short-Term Memory (LSTM) networks and data preprocessing 

techniques. This effort is facilitated by the Google Co laboratory platform, utilizing extensive data manipulation and visualization using libraries such as 

Pandas, NumPy, and Matplotlib. The initial phase involves data collection where battery performance data is imported into a Pandas DataFrame. This 

data includes various attributes such as terminal voltage, terminal current, temperature, charge current, charge voltage, time, capacity, cycle, and the 

initial states of charge. The dataset then undergoes preprocessing to handle missing values, normalize the data, and transform it for LSTM model 

compatibility. This involves calculating absolute values of currents, normalization of numerical values, and the creation of time-series sequences 

necessary for LSTM input. 
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(a)     (b) 

Figure 1 (a) Data Collection and Pre-processing (b) Model Initialization 

Data for this study is sourced from real-time monitoring systems embedded within lithium-ion batteries used in EVs. These systems record various 

parameters essential for assessing battery performance, including terminal voltage, terminal current, temperature, charge current, charge voltage, time of 

operation, battery capacity, and battery usage cycle. Each parameter is critical for understanding battery behavior under different operational conditions. 

Data cleaning involves removing outliers, handling missing values through imputation or removal, and correcting erroneous data entries due to sensor 

faults or transmission errors. The data undergoes several transformation processes to prepare it for time-series prediction using LSTM models. This 

includes normalization to scale the data features to a common scale without distorting differences in value ranges, applying techniques like rolling 

averages to smooth out short-term fluctuations, and feature engineering to improve model predictive power. Data segmentation is crucial to prepare the 

dataset for LSTM. This involves creating time steps of 60 cycles, where each step represents data points collected over a predefined interval, ensuring 

the chronological order necessary for time-series forecasting. The core of the methodology is the LSTM model development. The LSTM architecture is 

tailored to predict SoC and SoH based on historical data of battery usage over multiple cycles. Two LSTM models are constructed: one for SoC estimation 

and another for SoH estimation. LSTMs are suited for time-series prediction where sequence and time intervals between data points are crucial. They 

avoid the long-term dependency problem, allowing them to remember information for prolonged periods. The LSTM includes input, forget, and output 

gates that regulate the flow of information, making them effective for modeling battery charge and health states over time. The LSTM model for this 

project includes an input layer that receives sequences of battery parameters, LSTM layers to capture temporal dependencies, dropout layers to prevent 

overfitting, and dense layers to finalize the prediction of SoC or SoH values. Implementation involves setting up the LSTM architecture in a Python 

environment using Keras and TensorFlow libraries, splitting the dataset into training and testing sets, compiling the model with appropriate optimizers 

and loss functions, and training the model while adjusting weights via backpropagation based on the loss gradient. Training involves processing data in 

batches and multiple epochs to allow the model to learn complex patterns. Validation plays a pivotal role in tuning model hyperparameters and assessing 

model effectiveness using a validation set and cross-validation methods. Performance metrics such as Mean Squared Error (MSE) and Mean Absolute 

Error (MAE) are tracked to quantify model performance. The trained models are applied to predict SoC, SoH, and subsequently SoF, integrating 

operational parameters to assess real-time battery conditions. The methodology provides a robust framework for predicting key states of lithium-ion 

batteries, supporting efficient battery management systems in EVs, and contributing to enhanced operational reliability and sustainability. 
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4. RESULT ANALYSIS 

The deployment of Long Short-Term Memory (LSTM) models to predict the State of Charge (SoC) and State of Health (SoH) of batteries has yielded 

significant insights into the predictive accuracy and operational efficiency of these models. This chapter presents a detailed analysis of the results obtained 

from the LSTM models, discusses their implications, and explores potential areas for further research and improvement. The models were evaluated using 

the following metrics calculated during testing: 

• Mean Squared Error (MSE): Measures the average of the squares of the errors—that is, the average squared difference between estimated 

values and actual value. 

• Mean Absolute Error (MAE): A measure of errors between paired observations expressing the same phenomenon. 

• Predictive Accuracy: Although typically used in classification tasks, a modified version was adapted for these regression tasks to measure 

how often predictions fell within a certain range of true values. 

The analysis of battery performance, focusing on the predicted versus actual values of the State of Charge (SoC) and State of Health (SoH), as well as 

other essential battery metrics, plays a pivotal role in understanding and enhancing energy storage systems. This introductory theory elaborates on the 

results obtained, interpreting their significance, and discussing the methodologies and outcomes observed in the analysis. 

The State of Charge (SoC) and State of Health (SoH) are two fundamental metrics that define the performance and condition of a battery. SoC refers to 

the current charge level of a battery compared to its total capacity, indicating how much charge is left. It is a dynamic metric that changes during charging 

and discharging cycles. Accurate SoC estimation is crucial for applications that rely on reliable energy predictions, such as electric vehicles (EVs) and 

grid storage solutions. On the other hand, SoH is a measure of the battery's ability to store and deliver energy compared to when it was new. SoH typically 

degrades over time due to various factors such as repeated charging cycles, environmental conditions, and internal chemical reactions. Understanding 

SoH helps determine the remaining useful life of a battery and guides maintenance and replacement schedules. The analysis involved collecting data on 

various battery parameters, including terminal voltage, current, temperature, capacity, and cycle count. These data points were then processed using 

machine learning models, specifically LSTM (Long Short-Term Memory) networks, which are well-suited for sequential data analysis. The LSTM models 

were trained to predict the SoC and SoH based on historical data, leveraging the memory capability of the model to capture long-term dependencies 

within the dataset. The evaluation of these predictions was performed using standard performance metrics such as Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE). These metrics offer insights into the average prediction errors and the spread of the residuals, respectively. The R² score 

was also computed to determine how well the predicted values matched the actual data. 

TABLE .1  PREDICTED VS ACTUAL SoC 

Cycle Actual SoC Predicted SoC 

135 0.893 0.892851 

135 0.886 0.886344 

135 0.874 0.873874 

135 0.859 0.858929 

135 0.843 0.843414 

168 0.898 0.898103 

168 0.898 0.897835 

168 0.897 0.897485 

168 0.897 0.897094 

168 0.897 0.896795 

TABLE 2.  PREDICTED VS ACTUAL SoH 

Cycle Actual SoH Predicted SoH 

135 0.699 0.699140 

135 0.698 0.699014 

135 0.698 0.698726 

135 0.698 0.698314 
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135 0.698 0.698088 

168 0.681 0.680779 

168 0.681 0.680829 

168 0.681 0.680887 

168 0.681 0.680957 

168 0.681 0.681028 

TABLE.3.  SUMMARY OF BATTERY METRICS BY CYCLE 

Cycle Mean 

Actual 

SoC 

Min 

Actual 

SoC 

Max 

Actual 

SoC 

Mean 

Predicted 

SoC 

Min 

Predicted 

SoC 

Max 

Predicted 

SoC 

Mean 

Actual 

SoH 

Min 

Actual 

SoH 

Max 

Actual 

SoH 

Mean 

Predicted 

SoH 

Min 

Predicted 

SoH 

Max 

Predicted 

SoH 

135 0.871 0.843 0.893 0.871486 0.843414 0.892851 0.698 0.698 0.699 0.698656 0.698088 0.699140 

168 0.897 0.897 0.898 0.897462 0.896795 0.898103 0.681 0.681 0.681 0.680896 0.680779 0.681028 

The analysis indicates that the LSTM models are generally effective in tracking battery states but face challenges in conditions with high variability or 

where data may be incomplete or noisy. For instance, the accuracy in SoH predictions, while low, suggests the model's potential utility in lifecycle 

assessment and maintenance planning for batteries. 

 

Figure 2 SOC Analysis Over Time 

 

Figure 3 SOH Prediction Analysis 
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Figure 4 SOF Prediction Analysis with Respect to Cycle 

5. CONCLUSION AND FUTURE SCOPE 

The deployment of Long Short-Term Memory (LSTM) models to predict the State of Charge (SoC) and State of Health (SoH) of batteries has notably 

advanced the capabilities of predictive analytics within battery management systems. This research synthesized findings from extensive testing and 

analysis, providing valuable insights into the effectiveness of LSTM models in practical applications, particularly in enhancing energy storage 

management. 

The LSTM models demonstrated high accuracy in predicting SoC and SoH, essential metrics for assessing the performance and readiness of battery 

systems. The models consistently exhibited low Mean Squared Error (MSE) and Mean Absolute Error (MAE), affirming their precision and minimal 

deviation from actual conditions. These outcomes not only validate the potential of LSTM networks to manage complex, non-linear battery behavior but 

also establish a reliable framework for monitoring and optimizing battery operations. 

Accurate predictions of SoC and SoH are critical for applications requiring meticulous energy management, such as in electric vehicles and grid storage 

systems. Properly estimating battery life and functionality directly impacts operational efficiency and safety. For instance, accurate SoC predictions 

enhance energy resource management, preventing overcharging or depletion that can degrade battery life. Similarly, precise SoH assessments facilitate 

timely maintenance or replacement, thus mitigating the risk of unexpected failures. 

The methodology's success, based on robust data collection and advanced analytical techniques, underscores the significance of comprehensive data 

handling and sophisticated modeling in developing effective predictive tools. The findings have substantial implications for the design and implementation 

of battery management systems, suggesting that integrating LSTM-based predictive models can significantly boost the efficiency and reliability of battery-

powered systems. 

In conclusion, the LSTM-based models developed in this study mark a significant progression towards intelligent battery management systems, 

showcasing a high level of predictive accuracy that underscores their potential in future energy storage system management. Continuous model 

enhancements and adaptations will be vital to align with technological advancements and evolving industry requirements. Future research should consider 

integrating additional predictive variables and exploring hybrid models to further enhance accuracy and efficiency, paving the way for broader 

applications and innovations in battery technology. 
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