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A B S T R A C T 

The present study investigates the environmental impacts of exhaust emissions from a spark-ignition (SI) engine fueled with a 4% High-Density Polyethylene 

(HDPE) pyrolysis oil-gasoline blend. Employing Artificial Neural Network (ANN) modeling, the research focuses on predicting and analyzing key emissions 

parameters such as carbon monoxide (CO), nitrogen oxides (NOx), oxygen (O2), hydrocarbons (HC), and carbon dioxide (CO2). A comprehensive dataset, 

encompassing various operational conditions, load, and speed, is collected from experiments. The analysis involves feature selection, data preprocessing, and the 

design of a feedforward back propagation neural network architecture. The model is trained, tested, and validated, using the dataset, with performance evaluation 

against environmental standards and regulations. Results from the trained ANN are then utilized to assess the environmental impact of the fuel blend under different 

scenarios. Sensitivity analysis identifies influential factors affecting emissions, providing insights into the complex relationship between input features and 

environmental effects. The study concludes with a detailed interpretation of findings, highlighting potential future considerations for mitigating environmental 

impacts associated with the use of HDPE pyrolysis oil-gasoline blends in SI engines. This research contributes to a deeper understanding of the interplay between 

fuel composition and environmental sustainability. 
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1. Introduction 

Plastic oil generated from discarded plastics has been investigated for potential use as an alternative fuel source in internal combustion (IC) engines[1]. 

According to detailed researches, plastic pyrolysis oil (PPO) might be a feasible alternative to petroleum diesel in CI engines[2]. Because of the scarcity 

of fossil fuels, researchers have investigated the use of waste plastic oil in automotive engines[3]. The use of plastic-derived fuel in internal combustion 

engines is viewed as a renewable and sustainable energy source, providing an effective method of recycling discarded plastics[4]. In addition, studies have 

revealed that distilled waste plastic oil has the potential to replace diesel fuel in diesel engines. The growing usage of plastics and the difficulty of waste 

plastic disposal have encouraged studies into reusing trash[5][6]. 

High-density polyethylene, a commonly used plastic, poses significant challenges in terms of disposal and environmental impact. The conversion of 

HDPE into pyrolysis oil, a process involving the thermal breakdown of plastic waste, presents an intriguing opportunity to transform a pollutant into a 

potential energy source.[7–9]. Integrating this pyrolysis oil with gasoline aims to harness its energy content while potentially reducing the overall carbon 

footprint associated with transportation[10,11]. To comprehensively assess the environmental implications of adopting this fuel blend, it is imperative to 

scrutinize the exhaust emissions profile[12,13]. The combustion of fuels in an internal combustion engine releases various pollutant, including carbon 

monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and carbon dioxide (CO2). Understanding how the introduction of HDPE pyrolysis oil to 

gasoline influences the emission characteristics of an SI engine is crucial for evaluating the viability of such a blend from an environmental standpoint[14–

16] 

Artificial neural network (ANN) has been employed to forecast and evaluate various attributes such as efficiency, combustion behavior, and emissions 

of internal combustion (IC) engines, thereby offering efficiencies in time and energy utilization. However, the intricate structure of ANNs can result in 

significant computational demands, energy consumption, and space requirements. Recent research endeavors have focused on altering network 

architectures, exploring deep learning methodologies, and refining the design of ANNs to achieve optimal performance outcomes[17,18].  Jahirul et al. 

(2009) found that a neural network model accurately predicted experimental data for a modified multi-cylinder diesel engine, indicating potential 

improvements in future performance of NG-fueled engines.[19]. Carbot-Rojasa et al. (2019) mathematically modelled an IC engine with hydrogen-enriched 
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E10 blend, revealing improved efficiency and torque. The optimal spark timing is 15.2° before BTDC at 1500 rpm[20]. Khatri et al. (2023) developed an 

Artificial Neural Network-based model for a micro-tri-generation system on a CI engine, predicting performance and emissions using data from multiple 

fuel blends. The model showed a higher correlation with observed values[21]. To extend the research, neural networks were employed by researchers to 

investigate the impact of cetane number on diesel engine emissions and performance enhancement[22–24].  Ahmed et al. (2021) studied the performance 

and emissions of a four-stroke, single-cylinder SI engine using methanol-gasoline blends and they found that adding methanol up to 12% improved engine 

performance but reduced emissions except for NOx [25]. Similar research have been carried out to predict the performance  and emission characteristics 

in  SI engines fueled with different gasoline and other alternate fuel blends like ethanol, I amyl alcohol, LPG etc[26–28].  

Certain researchers are intrigued by Response Surface Methodology (RSM), which holds diverse applications within engine research, notably in 

enhancing engine performance, minimizing emissions, and refining combustion characteristics. RSM accurately predicts the relationship between input 

factors and output responses in engine tests, especially in ICE. It plays a crucial role in optimizing engine combustion, performance, and emissions. 

However, its application may have limitations, and integrating RSM with other optimization techniques can improve data learning and estimation 

accuracy.[29,30]. Aydın et al. (2020) predicted and optimized the performance and emission characteristics of a single-cylinder diesel engine driven by 

mixes of biodiesel and diesel fuel by using ANN and RSM. Emissions and performance metrics were predicted with accuracy by the ANN model[31]. Dey 

et al. (2021) used RSM and ANN models to predict engine responses in a single-cylinder CI engine powered by bio-diesel with ethanol(diesel-palm oil-

ethanol) blends. Their ANN model showed lower prediction error and higher correlation, and the D75B20E5 blend was found best for optimizing BTE, 

BSEC, and NOx emissions[32]. Many researches have been carried out to analyze the engine performance and emissions with different alternate fuel 

blends by ANN and RSM techniques[33–36]. 

The present investigation takes a multidisciplinary approach, combining experimental data collection and advanced modeling techniques. The subsequent 

application of Artificial Neural Network (ANN) modeling enables the creation of a predictive tool capable of estimating exhaust emissions based on 

various input parameters, such as engine speed, and load and compared with RSM output. By focusing on a 4% HDPE pyrolysis oil-gasoline blend, this 

research aims to strike a balance between the benefits of incorporating bio-derived components and the potential challenges associated with altering the 

fuel composition. The study addresses key questions regarding the performance of the engine under different conditions, compliance with environmental 

regulations, and the overall impact on air quality. 

As the world transitions towards a more sustainable and environmentally conscious energy landscape, the findings from this research contribute valuable 

insights to the ongoing dialogue on alternative fuels and their role in shaping the future of transportation. The exploration of unconventional fuel blends 

not only provides potential solutions to waste management challenges but also offers a pathway to reduce the carbon footprint of conventional internal 

combustion engines. Through a systematic analysis of the environmental effects, this study aims to inform decision-makers, researchers, and industry 

stakeholders about the potential benefits and challenges associated with adopting a 4% HDPE pyrolysis oil-gasoline blend in SI engines. 

2. Materials and Methods 

ANN modeling is employed in this study to establish a correlation between engine speed and load with emission traits. The chosen architecture for this 

task is a multi-layer feed-forward ANN, a robust technique for non-linear regression analysis. This architecture comprises an input layer with input 

variables, one hidden layer with 10 neurons, and an output layer with response variables. Each neuron is hidden layer is connected by weights between 

input and output layers. Neurons in the hidden layer may have linear activation functions, such as purelin, ReLU, etc, or nonlinear functions such as 

logsig, tansig, etc. Biases are introduced to each neuron in hidden and output layers for additional flexibility[37,38]. The training process involves adjusting 

the weights and bias tolerance parameters based on experimental data to minimize errors, achieved through the back-propagation technique. The 

effectiveness of the ANN modeling is assessed using the correlation coefficient (R), with the goal of selecting the most effective configuration for training, 

adaptability, learning, and performance, including hidden layers, activation functions, and neurons[39]. 

Figure 1 illustrates the artificial neural network architecture used in the experiment. MATLAB R2022a is utilized for ANN modeling in this study, 

incorporating two input and five outputs (2-10-5 configuration) with feed-forward and backward propagation, utilizing the Levenberg algorithm, gradient 

descent, momentum weight, and bias learning functions. The error analysis is conducted using the TANSIG activation function for both output and hidden 

layers. The TANSIG processing normalizes the ANN tool, restricting values between -1 and +1[40]. Subsequently, training, testing, and validation are 

conducted in the ratio of 70:15:15 based on given data. The actual output is compared to the desired parameter, and an error value is calculated. The 

training process continues until the minimum error is achieved. Weights and biases are adjusted through additional iterations of training, testing, and 

validation[41].  
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Figure 1- ANN architecture for emission traits of 4% HDPE pyrolysis oil-gasoline blends in SI engine 

The connectivity between the input layer and hidden layer is represented by weights, wij, connecting input factors (i) to hidden layer neurons (j), with B1j 

denoting the first bias to the jth   neuron of the hidden layer. The generalized equation from hidden layers to input is expressed in Equation (1).  

𝐻𝑗 = ∑ 𝑤𝑖𝑗𝑋𝑖 + 𝐵1𝑗
𝑖,𝑗=3,10
𝑖,𝑗=1         (1) 

where, Xi represents ith input factor. 

The connection between the hidden layer and the output layer, represented by weights wjk, is governed by Equation (2). 

𝑌𝑘 =  ∑ tanh(𝐻𝑗) ∗ 𝑤𝑗𝑘 + 𝐵2𝑘
9
𝑖=1     (2)   

where Yk represents the kth  output factor. The training process adheres to the parameters using default settings of MATLAB without modifications. 

3. Results and Discussion 

Table 1 presents the experimental and Artificial Neural Network (ANN) predicted values of response variables. The input layer comprises speed and load 

of engine, while the output layer includes carbon monoxide (CO), nitrogen oxides (NOx), oxygen (O2), hydrocarbons (HC), and carbon dioxide (CO2) 

as response variables. 

Table 1. Effect of engine speed and load on experimental and ANN predicted values of emission 

Speed 

(rpm) 

Torque 

(Nm) 

Experimental values ANN predicted values 

CO HC CO2 O2 NOx CO HC CO2 O2 NOx 

2000 4.5 3.866 2123 1.6 14.08 136 3.955 2150 1.5 14.95 140 

2200 5.8 4.492 1359 1.9 13.22 150 4.29 1340 1.8 13.32 156 

2000 6.2 4.092 738 2.3 13.11 134 4.15 725 2.4 13.25 145 

2500 8 4.763 612 2.5 12.25 151 4.69 618 2.6 12.35 140 

3000 8.8 4.76 543 2.4 12.37 185 4.71 531 2.6 12.26 198 

3200 9.5 3.895 411 3.8 11.36 239 3.81 420 3.6 11.28 225 

3600 12 3.723 364 3.5 11.89 271 3.69 351 3.7 11.75 268 

 

Figure illustrates the progress of the ANN in predicting emission parameters from SI engine loaded with 4% HDPE pyrolysis oil-gasoline blend using 

the Levenberg-Marquardt algorithm.  
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Figure 2 - Progress of the ANN in predicting emission parameters 

The weights and bias from the training dataset, used to develop the model, is tabulated in table 2.  

Table 2. Weights and bias from input to hidden layer of the ANN architecture for prediction 

Neuron Speed Torque Bias to layer 1 

1 -3.8256 2.2196 4.4404 

2 4.7237 -0.76012 -2.9272 

3 -0.46822 -3.9442 3.6688 

4 1.4336 -4.7132 -2.8202 

5 -4.1471 1.6402 1.0993 

6 -2.8697 -2.4591 -2.56 

7 -2.4016 -4.6262 0.281 

8 -4.9552 -4.1653 -1.405 

9 5.406 2.7806 1.5233 

10 2.9475 -7.3182 -3.8193 

Table 3 depicts the weights from the hidden layer to the output layer. The bias to output layer are -1.6116, 1.2021, -0.55901, -0.47164, and -12.3847 for 

CO, HC, CO2, O2 and NOx, respectively. 
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Table 3. Weights from hidden to output layer of the ANN architecture 

Neuron CO HC CO2 O2 NOx 

1 0.51553 -0.21136 0.37175 -0.16834 -13.4998 

2 -0.81924 -1.2441 -0.08835 -0.43945 14.712 

3 0.14015 0.6638 -0.25814 0.70877 -16.2419 

4 -0.0111 2.3216 -0.81252 0.10631 15.3626 

5 -0.40579 -0.74459 -1.2487 0.93166 -21.6385 

6 0.052651 0.34553 0.58225 0.038993 -20.9888 

7 0.47265 3.8641 0.064396 0.62963 -8.0449 

8 0.35339 7.7208 -0.23455 -0.70429 -4.0057 

9 0.72073 11.0908 0.1379 -0.05218 5.284 

10 -0.51896 1.471 -0.11937 1.1023 -0.65322 

The error analysis of the ANN model is portrayed in figure 3. Correlation coefficients (R) for training, testing, and validation are 0.99895, 0.99307, and 

1, respectively. The overall result is determined to be 0.98653, signifying a substantial and clear connection. 

 

Figure 3 -Correlation coefficients of training, testing, validation, and all prediction set of emission parameters 

The experimental values are optimized by Response Surface Methodology (RSM) and the results are listed below 
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Table 4. Experimental model through RSM 

 

 

Figure 4 -Ramp output from RSM 

Sl.No 

Factor 1 

A: Speed 

rpm 

Factor 2 

A: Torque 

rpm 

Response 1 

CO 

% 

Response 2 

HC 

PPM 

Response 3 

CO2 

% 

Response 4 

O2 

% 

Response 5 

NOx 

% 

1 2000 4.5 3.866 2123 1.6 14.08 136 

2 2200 5.8 4.492 1359 1.9 13.22 150 

3 2000 6.2 4.092 738 2.3 13.11 134 

4 2500 8 4.763 612 2.5 12.25 151 

5 3000 8.8 4.76 543 2.4 12.37 185 

6 3200 9.5 3.895 411 3.8 11.36 239 

7 3600 12 3.723 364 3.5 11.89 271 

8 2000 6.2 4.092 738 2.3 13.11 134 

9 2500 8 4.763 612 2.5 12.25 151 
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Figure 5- Model graphs of responses from RSM 

4. Conclusion 

This study highlights the feasibility of using a 4% HDPE pyrolysis oil-gasoline blend in SI engines, offering potential for reduced emissions and 

sustainable waste management. The integration of ANN modeling proved effective in accurately predicting emissions and identifying influential 

operational factors. The findings underscore the importance of optimizing fuel blends and engine configurations to balance performance with 

environmental compliance. This work contributes to the development of alternative fuels, addressing both energy demands and environmental challenges. 

Future studies could focus on refining blend ratios and exploring long-term impacts to ensure broader applicability and sustainability. 
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