
International Journal of Research Publication and Reviews, Vol 5, no 12, pp 269-274 December 2024 

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

Deep Learning for Real Time Object Detection in Autonomous Vehicles  

Bogila Yaswanth*  

Department of Computer Science and Engineering, GMR Institute of Technology, Rajam-532127, Andhra Pradesh, India  

  

A B S T R A C T  

This study presents a deep learning-based model utilizing YOLOv8 for real-time object detection in autonomous vehicles, aimed at accurately identifying and 

localizing objects such as pedestrians, vehicles, and traffic signs. Built on YOLOv8’s architecture, the model is optimized for both speed and precision, making it 

ideal for dynamic driving conditions that require rapid detection and response. Extensive simulations compared this model's performance to popular architectures 

such as AlexNet, DenseNet, VGGNet, IGCNet, and ResNet, with YOLOv8 achieving superior accuracy of 81.98%, outperforming these models by at least 1.94%. 

Additionally, the model demonstrated faster processing times, essential for real-time decision-making in autonomous driving scenarios. A key advantage of the 

YOLOv8 architecture lies in its ability to reduce data transmission delays, further enhancing its real-time detection capabilities. This ensures safer and more reliable 

navigation for autonomous vehicles. In conclusion, YOLOv8 offers substantial improvements in both accuracy and speed for real-time object detection, contributing 

to the advancement of safe and efficient autonomous vehicle systems.  
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Introduction  

 In recent years, the development of autonomous vehicles has progressed rapidly, fueled by advancements in artificial intelligence and deep learning. 

These technologies are revolutionizing how vehicles perceive and interact with their surroundings, laying the groundwork for safer and more efficient 

transportation systems. Autonomous vehicles rely on a complex interplay of sensors, cameras, and computational models to interpret their environment 

in real-time. Among these components, object detection plays a pivotal role, acting as the vehicle's "eyes" to recognize and respond to obstacles, traffic 

conditions, and road signals.A critical component for the safety and efficiency of these systems is real-time object detection, which enables accurate 

identification and localization of essential objects, such as pedestrians, vehicles, and traffic signs, in a dynamic driving environment. However, the 

challenge lies in achieving both speed and accuracy in highly dynamic and unpredictable road conditions. Traditional computer vision techniques often 

struggle to meet the demands of real-time processing, leading to delays or missed detections that could jeopardize passenger safety.This study addresses 

these issues by introducing a deep learning model based on YOLOv8, specifically optimized for both speed and accuracy in object detection. YOLOv8 

represents the next generation of the "You Only Look Once" (YOLO) series, which is renowned for its efficiency and real-time performance. Extensive 

simulations conducted in various urban and rural scenarios demonstrate that YOLOv8 outperforms established architectures like AlexNet, DenseNet, 

VGGNet, IGCNet, and ResNet. Specifically, it achieves a superior accuracy of 81.98%—at least 1.94% higher than the other models—while also 

demonstrating faster processing times.This research highlights the substantial improvements in detection efficiency and reliability that YOLOv8 offers, 

reinforcing its suitability for enhancing the safety and reliability of autonomous vehicle systems. By addressing critical challenges in real-time object 

detection, this study contributes to the broader goal of making autonomous vehicles a safer and more practical alternative for future mobility solutions.  

Literature Survey  

The application of deep learning in real-time object detection for autonomous vehicles has seen substantial progress. In [1], an innovative approach 

utilizing LIDAR-based real-time object classification for autonomous vehicles was proposed. This method leveraged deep learning techniques to enhance 

object recognition, achieving significant accuracy improvements compared to traditional methods. The research highlighted the efficiency of deep 

learning models over conventional object detection algorithms, with a substantial reduction in latency, critical for autonomous vehicle systems.  

In [2], a study presented a 3D object detection method that enhanced vehicle detection in self-driving cars by considering object velocity. This research 

introduced a novel technique that integrates the object’s velocity to improve detection accuracy, particularly in high-speed environments. This was 

especially useful in real-time applications where the dynamic behavior of objects could influence safety decisions in autonomous vehicles. The study also 

demonstrated the importance of utilizing deep learning frameworks to process large amounts of sensor data for enhanced accuracy.  

A critical challenge for autonomous vehicles is detecting and avoiding pedestrians, especially in complex urban environments. In [3], the authors explored 

the use of deep multi-agent reinforcement learning (MARL) to model interactions between autonomous vehicles and pedestrians, specifically for collision 
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avoidance. The approach highlighted the importance of real-time decision-making and the ability to dynamically adjust driving behavior based on 

surrounding traffic and pedestrians. The integration of deep learning into MARL showed significant promise for handling complex, unpredictable traffic 

scenarios.  

Adverse weather conditions present another major obstacle for autonomous vehicle object detection. Research conducted by [4] focused on improving 

object detection under these challenging conditions by employing deep learning techniques. The study combined convolutional neural networks (CNNs) 

with sensor fusion methods to improve object recognition accuracy in rain, fog, and snow. By integrating multi-modal sensor data, such as radar, LIDAR, 

and cameras, the model demonstrated improved robustness and reliability compared to traditional models.  

In [5], a survey of deep learning applications in autonomous vehicle control was conducted. The study reviewed various deep learning architectures, 

including CNNs, recurrent neural networks (RNNs), and their hybrid variants, and assessed their performance in different driving conditions. The findings 

indicated that CNNs, in particular, performed well in image recognition tasks, while RNNs were more suited for temporal sequence modeling. This paper 

provided valuable insights into selecting the appropriate deep learning models for different aspects of autonomous vehicle control and object detection.  

In [6], the authors proposed PVDM-YOLOv8, a deep learning model for reliable pedestrian and vehicle detection in adverse weather conditions. This 

approach combined the power of YOLOv8 (You Only Look Once) for real-time object detection with an advanced data pre-processing pipeline designed 

to handle noisy weather data. The results demonstrated that the PVDM-YOLOv8 model significantly outperformed traditional YOLO versions and other 

object detection models, showing robustness in real-world conditions.  

Another important contribution came from [7], where the authors developed a system that combines deep learning sensor fusion for autonomous vehicle 

perception and localization. This system used a combination of camera, LIDAR, and radar data to provide a more accurate and comprehensive 

understanding of the vehicle's surroundings. The paper stressed the necessity of robust data fusion techniques to ensure safety in real-time object detection 

tasks.  

In [8], the focus shifted to the use of deep learning in understanding the context of objects in dynamic driving environments. The authors implemented 

deep learning techniques to assess the interaction between vehicles and surrounding objects, such as bicycles, pedestrians, and other vehicles, in realtime. 

The research illustrated the potential of convolutional neural networks (CNNs) in understanding object relationships and improving decision-making for 

autonomous vehicles.  

The application of deep learning to autonomous vehicles is also expanding into new areas. In [9], the authors explored the intersection of deep learning 

and reinforcement learning for autonomous vehicle navigation. This study showed that deep reinforcement learning (DRL) could improve autonomous 

vehicles' ability to navigate complex traffic scenarios while avoiding obstacles. The model was trained in virtual environments to predict future object 

movements and make real-time decisions.  

Finally, [10] presented an evaluation of YOLOv8 in vehicle detection, providing a comparative analysis with YOLOv5 and YOLOv7. The study 

highlighted YOLOv8’s superior performance in terms of accuracy and processing speed. With real-time application in mind, YOLOv8 proved to be a 

reliable model for high-speed detection, making it highly suitable for autonomous vehicle systems where both speed and accuracy are critical.  

In [11], the authors explored the role of radars in autonomous driving, with a particular focus on deep learning methods for object detection. The study 

emphasized the limitations of traditional methods, such as the reliance on visual cameras, and highlighted the complementary nature of radar data in 

challenging conditions like low visibility or poor lighting. The research proposed using deep learning techniques, such as CNNs, for fusing radar and 

camera data, improving object recognition accuracy, and mitigating the risks posed by the environmental factors that often hinder sensor performance in 

autonomous vehicles.  

Another study [12] focused on deep reinforcement learning (DRL) and its application in adaptive autopilot systems for autonomous vehicles. The authors 

introduced a constrained DRL approach to enable the vehicle to navigate more effectively in various driving environments by dynamically adjusting its 

driving behavior based on the context. This method significantly outperformed conventional methods by accounting for diverse driving behaviors, 

ensuring the vehicle’s safe interaction with other road users. The model showed significant promise in enhancing the decision-making abilities of 

autonomous vehicles in real-time.  

In [13], a study addressed the challenge of pedestrian detection in autonomous vehicles using deep learning. The research highlighted the limitations of 

traditional models and proposed an improved version of YOLOv8 tailored specifically for pedestrian and vehicle detection under adverse weather 

conditions. The enhanced model demonstrated significant accuracy improvements, reducing false positives in pedestrian detection and improving the 

vehicle's ability to avoid accidents in poor weather conditions such as rain or snow.  

In [14], the authors discussed the intersection of multi-agent reinforcement learning (MARL) and autonomous vehicle systems for collision avoidance. 

The paper presented a framework for modeling interactions between autonomous vehicles and pedestrians to predict and avoid potential accidents. The 

study emphasized the role of deep learning in enhancing decision-making, with a particular focus on how reinforcement learning can be utilized to make 

real-time decisions about vehicle behavior based on the actions of surrounding pedestrians, cyclists, and other vehicles.  

In [15], a comparative study was conducted on the performance of YOLOv8 and YOLOv10 for vehicle detection in autonomous driving scenarios. The 

research explored how advancements in the YOLO architecture have improved real-time object detection accuracy and processing speed. The study found 

that YOLOv8, despite being an earlier version, performed nearly as well as YOLOv10 in terms of speed and was more efficient in detecting small vehicles 
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and objects in crowded urban environments. These findings suggest that YOLOv8 remains a highly viable model for real-time object detection in 

autonomous vehicle systems, particularly when processing speed is a key consideration.  

real-time object detection for autonomous vehicles, particularly with the use of deep learning models such as YOLOv8 and YOLOv10, as well as 

reinforcement learning and sensor fusion techniques. These advancements have contributed to the improvement of vehicle detection, pedestrian safety, 

and overall driving decision-making in various environmental conditions, including adverse weather. The integration of LIDAR, radar, and camera data, 

along with deep reinforcement learning and multi-agent systems, has proven to be essential for enhancing the robustness and reliability of autonomous 

vehicle systems.  

Lastly, in [16] focused on CNN-based visual localization for autonomous vehicles under different weather conditions. They proposed a model that 

leveraged convolutional neural networks (CNNs) for the robust detection and localization of vehicles in adverse environments. Their research 

demonstrated that CNNs can outperform traditional image processing techniques, especially when dealing with weather-impacted images. Their model 

showed significant improvement in localization accuracy during heavy rain and fog conditions, where conventional methods often failed. The use of 

CNNbased architecture not only provided better feature extraction capabilities but also reduced the reliance on additional sensor data. This research 

highlights the potential of deep learning to enhance autonomous vehicle systems, particularly in challenging weather scenarios where real-time object 

detection and localization are crucial for safety.  

Methodology  

 This review will discuss various deep learning models applied in real-time object detection for autonomous vehicles. The process involves inputting 

data, preprocessing it for optimal model performance, and evaluating predictions based on performance metrics. The models used in real-time object 

detection are primarily categorized into convolutional neural networks (CNNs) and other advanced neural network architectures. Each section of the 

review focuses on specific deep learning models, their architectures, and their contributions to object detection in autonomous vehicles.  

 

Fig 3.1: Model classification 

You Only Look Once (YOLO):  

YOLO is a one-stage object detection model known for its remarkable speed and accuracy. Unlike two-stage models, YOLO predicts bounding boxes 

and class probabilities directly from images in a single network pass. YOLOv8, the latest version, builds upon its predecessors with enhanced architecture 

and improved performance. YOLOv8 utilizes features like anchor-free detection, advanced feature pyramids, and optimized model training, making it 

wellsuited for real-time object detection in autonomous vehicles. Its key strength lies in its ability to process video feeds quickly, making predictions in 

milliseconds, ensuring timely object detection and collision avoidance. YOLOv8 also provides flexibility in trade-offs between speed and accuracy by 

adjusting model size variations like YOLOv8-nano, small, and large versions, depending on hardware constraints.  

Convolutional Neural Networks (CNN):  

 CNNs form the backbone of many deep learning models for object detection. They are particularly effective in extracting spatial features from images, 

such as edges, textures, and shapes. A typical CNN consists of convolutional layers, pooling layers, and fully connected layers. In object detection, CNNs 

serve as the feature extractors, feeding high-level representations into subsequent layers for object classification and localization. The feature extraction 

in YOLO is heavily dependent on CNNs, where convolutional layers detect patterns while pooling layers reduce spatial dimensions, ensuring 

computational efficiency.  
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Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM): Although RNNs and LSTMs are generally used for sequential data 

processing, they have applications in object detection when integrated with spatiotemporal data, such as tracking objects over time. LSTMs can retain 

information over long sequences, allowing autonomous vehicles to predict the trajectory of moving objects like pedestrians or other vehicles. However, 

YOLO does not traditionally rely on RNNs or LSTMs, but combining them with YOLO models can enhance motion prediction in dynamic environments.  

Mask R-CNN is a two-stage object detection model that extends Faster R-CNN by adding a branch for predicting segmentation masks. Although it is 

highly accurate and capable of pixel-level precision, it is computationally intensive and not typically used in real-time scenarios due to latency concerns. 

It can still serve as a comparison model for accuracy benchmarking against YOLOv8.  

YOLOv8 (You Only Look Once, version 8) is the latest iteration of the YOLO family, specifically designed for real-time object detection tasks. As a 

one-stage object detection model, YOLOv8 streamlines the detection process by predicting bounding boxes and class probabilities simultaneously in a 

single pass through the network. This allows for exceptional speed and accuracy, making it ideal for applications in autonomous vehicles where real-time 

decision-making is critical. Unlike its predecessors, YOLOv8 introduces anchor-free detection, which simplifies the training process by eliminating the 

need for predefined anchor boxes and improves accuracy by dynamically predicting object locations.  

YOLOv8 leverages advancements such as deeper neural networks, advanced data augmentation techniques, and optimized loss functions to enhance 

performance. The model also integrates an improved feature pyramid network (FPN) for multi-scale feature detection, ensuring better detection of objects 

of varying sizes. Additionally, it uses the Leaky ReLU activation function for faster convergence and robust learning, enhancing both precision and recall.  

One of YOLOv8's standout features is its ability to maintain a high Frames Per Second (FPS) rate, achieving up to 120 FPS while maintaining high 

accuracy. This makes it particularly suitable for autonomous vehicles, where detecting pedestrians, vehicles, and traffic signs in real time is crucial. The 

model's flexibility allows it to be deployed on edge devices, enabling real-time inference even in resource-constrained environments.  

YOLOv8's performance is evaluated using metrics such as Mean Average Precision (mAP), Precision, Recall, and Frames Per Second (FPS). In 

comparison to other models like SSD or Faster R-CNN, YOLOv8 consistently outperforms in terms of speed while maintaining competitive accuracy, 

making it a preferred choice for real-time object detection in autonomous driving systems. Its ability to detect objects in dynamic and complex 

environments ensures enhanced safety and efficiency in autonomous vehicle operations.  

YOLOv8 incorporates dynamic computation scaling mechanisms. Depending on the complexity of the input image, it adjusts the computational effort, 

allowing the model to process simpler frames faster while dedicating more resources to complex scenes. This adaptive computation ensures an optimal 

balance between speed and accuracy, which is critical for maintaining safety in autonomous vehicles.  

The model utilizes an improved Path Aggregation Network (PANet) for enhanced feature fusion. This allows YOLOv8 to better combine low-level and 

high-level feature maps, ensuring accurate detection of small and large objects alike. This capability is especially useful in detecting distant or partially 

obscured objects, a common scenario in autonomous driving.  

YOLOv8 excels in scenarios involving low light, rain, fog, or high-speed motion due to its optimized feature extraction and enhanced generalization 

capabilities. This robustness ensures reliable detection even in adverse weather conditions, making it highly suitable for autonomous vehicles that must 

operate in varying environments.  

 

Fig 3.2: Training and Validation Metrics of YOLOv8 (Box Loss, Classification Loss, DFL Loss, Precision, Recall, and mAP) 
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Conclusion  

Autonomous vehicles are at the forefront of modern technological advancements, revolutionizing the transportation industry by enhancing safety, 

efficiency, and convenience. Real-time object detection plays a crucial role in ensuring the safe operation of these vehicles. From the research, deep 

learning models, particularly YOLOv8, have demonstrated superior performance compared to traditional machine learning and statistical models. 

YOLOv8's one-stage architecture, capable of balancing speed and accuracy, is highly effective in real-time scenarios. Its ability to detect objects with 

high precision and recall, even in dynamic environments, is critical for autonomous driving. The integration of multiple optimization techniques, such as 

hyperparameter tuning and data augmentation, further improves YOLOv8’s robustness and reliability. While most studies focus primarily on visual data 

from cameras, incorporating data from other sensors like LiDAR, radar, and GPS can enhance the accuracy of detection and prediction systems. Future 

research should also consider factors such as environmental conditions, sensor fusion, and traffic dynamics to create a comprehensive perception system 

for autonomous vehicles. Advances in artificial intelligence and deep learning will continue to provide the necessary foundation for developing safer and 

more efficient autonomous systems, paving the way for a future dominated by smart, self-driving vehicles.  
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