

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Analytical Method Development and Validation for Simultaneous Estimation of *Montelukast & Bilastine* by RP-HPLC and Stability Studies

¹Agalduty Neha*, ²Dr.S. Shoba Rani

¹Post Graduate Student, ² Professor &Head, ¹Pharmaceutical Analysis ¹Centre for Pharmaceutical Sciences, IST, JNTU-H, Hyderabad, India

ABSTRACT

A simple, Accurate, precise method was developed for the simultaneous estimation of the Bilastine and Montelukast in bulk and pharmaceutical dosage form. Chromatogram was run through Std Asce RP C18 150 x 4.6 mm, 5 μ m. Mobile phase containing Buffer Methanol: water taken in the ratio 70:30 was pumped through column at a flow rate of 1.0 ml/min. Buffer used in this method was 0.01N Na2hpo4 buffer. Temperature was maintained at 30°C. Optimized wavelength selected was 215.0 nm. Retention time of Bilastine and Montelukast were found to be 2.231 min and 2.865 min. %RSD of the Bilastine and Montelukast were and found to be 0.1% and 0.3% respectively. %Recovery was obtained as 100.07% and 99.81% for Bilastine and Montelukast respectively. LOD, LOQ values obtained from regression equations of Bilastine and Montelukast is y = 80029x + 24896, y = 54895x + 363.57 of Bilastine. Retention times were decreased and that run time was decreased, so the method developed was simple and economical that can be adopted in regular Quality control test in Industries.

Key Words: Montelukast, Bilastine, RP-HPLC

INTRODUCTION:

The safety and efficacy of a medication are significantly influenced by its quality. The quality of analytical data is contingent upon the methodologies used to generate it. Consequently, it is imperative to develop robust and dependable analytical methods in order to formally certify medications and their formulations to regulatory bodies. In general, the quality and safety of a medicine are guaranteed by the effective monitoring and control of the assay and contaminants. The safety of the drug is determined by impurities, while its potency is determined by a test. The efficacy of pharmaceuticals in treating patients is dramatically impacted by their assay.

Drug Profile Bilastine and Montelukast:

1. Drug: Bilastine

Description: Bilastine is an innovative, next-generation antihistamine with a short half-life, lengthy duration of action, and good selectivity for the H1 histamine receptor.

Structure of Bilastine

MOA: During an allergic reaction, mast cells degranulate, releasing many chemicals including histamine. By attaching to and blocking the activation of H1 receptors, bilastine reduces allergy symptoms caused by mast cell histamine production. Absorption: 1.13 hrs Tmax ¹/₂: 14.5 hrs

2. Drug: Montelukast

Description: Asthma treatment includes montelukast to counteract exercise-induced bronchoconstriction.

Structure of Montelukast

MOA: Mast cells and eosinophils produce cysteine leukotrienes (CysLT) such LTC4, LTD4, and LTE4, Absorption: 64% bioavailability, Metabolism: Analysis has established that montelukast undergoes significant metabolism, mostly mediated by the cytochrome P450 3A4, 2C8, and 2C9 isoenzymes.

MATERIALS AND METHODS

Materials:

- Bilastine and Montelukast pure drugs (API) received from spectrum labs. Combination Bilastine and Montelukast Tablets received from local market. Distilled water, Acetonitrile, Phosphate buffer, Methanol, Potassium dihydrogen ortho phosphate buffer, Ortho-phosphoric acid. All the above chemicals and solvents are from Rankem
- INSTRUMENTATION OF Rp-HPLC

Instruments:

- Electronics Balance-Denver
- p^H meter -BVK enterprises, India
- Ultrasonicator-BVK enterprises
- WATERS HPLC 2695 SYSTEM equipped with quaternary pumps, Photo Diode Array detector and Auto sampler integrated with Empower 2 Software.
- UV-VIS spectrophotometer PG Instruments T60 with special bandwidth of 2 mm and 10mm and matched quartz cells integrated with UV win 6 Software was used for measuring absorbances of Bilastine and Montelukast solutions.

Methods:

Diluent: Based up on the solubility of the drugs, diluent was selected, Acetonitrile and Water taken in the ratio of 50:50

Preparation of buffer:

0.1%OPA Buffer: 1ml of ortho phosphoric acid was diluted to 1000ml with HPLC grade water.

Buffer: 0.01N Sodium hydrogen phosphate

Accurately weighed 1.42gm of Sodium hydrogen phosphate in a 1000ml of Volumetric flask add about 900ml of milli-Q water added and degas to sonicate and finally make up the volume with water then added 1ml of triethylamine then PH adjusted to 4.0 with dil. Orthophosphoric acid solution

High quality or grade 1 materials are used for the purpose of this method spectrum labs provided us with the API gift sample required

Other Chemicals and Solvents used are:

Water	0.1 - 2 N HCl
MeCN	H ₂ O ₂
Trimethyl Amine	NaOH
KH ₂ PO ₄	OPA

Sample Processing

Diluent: H₂0 and MeCN taken in a 50:50 ratio.

Std stock sol prep	Dispense 10 mg of BLTE and 5 mg of MKST in 10 mL of vf, fill to the neck, sonicate for 10 to 15 minutes, and then fill to the mark with diluent. And designate as stocl sol (100µg/ml of MKST and 200µg/ml BLTE).
sample stock sol	On average, 10 tablets were weighed and then put to 50 ml of vf. 25 ml of diluent was then added and the mixture was sonicated for couple of minutes. then filled with dil to the indicator mark (100µg/ml of MKST and 200µg/ml BLTE).
100% solution or working sample/working std	1ml of the stock sol was added in 10ml vf and makeup with diluent. ($10\mu g/ml$ of MKST and $20\mu g/ml$ BLTE).

Validation:

System suitability parameters:

The system suitability parameters were determined by preparing standard solutions of Montelukast (10ppm) and Bilastine (20ppm) and the solutions were injected six times and the parameters like peak tailing, resolution and USP plate count were determined.

The % RSD for the area of six standard injections results should not be more than 2%.

Specificity:

Checking of the interference in the optimized method. We should not find interfering peaks in blank and placebo at retention times of these drugs in this method. So this method was said to be specific.

Precision:

std working sols (100% sol) From stock sol 1 ml of the sol was added to a 10 ml vf and makeup with diluent. (50µg/ml BLTE, 25µg/ml MKST)

Linearity:

From stock sol following volumes are pipetted out in different vol flasks.

Level	ml	Level	ml
25 % 0.25 ml from Pipette		100 %	1.0 ml from Pipette
50 % 0.5 ml from Pipette		125 %	1.25 ml from Pipette
75 % 0.75 ml from Pipette		150 %	1.5 ml from Pipette

Accuracy:

50% sol	0.5 ml of sample stock and 1 ml stock added to 10ml and makeup witl dil
100% sol	1 ml of sample stock and 1 ml stock added to 10ml and makeup witl dil
150% sol	1.5 ml of sample stock and 1 ml stock added to 10ml and makeup witl dil

All levels must have a recovery rate between 98% and 102% to be eligible.

LOD and LOQ prep: 0.31 ml of stocl sol was added in 2 different 10ml vf and filled with dil

LO-D	From above sol 0.1 ml taken in 10ml vf and makeup wil dil
LO-Q	0.3 ml in 10ml vf and makeup with dil

Degradation studies:

method	prep
Oxidation study	After adding 1ml of a stock solution to 10ml of a 20% volume fraction of H2O2 and allowing it to sit in an oven at 60°C for 30 minutes, a chromatogram was produced by injecting a 10 μ g/ml & 20 μ g/m solution at 10 μ l into HPLC.
Thermal Study	The stock solution was allowed to undergo thermal deterioration in an oven set at 105oC for 6 hours. Subsequently, a chromatogram was prepared by injecting a $10 \mu g/ml \& 20 \mu g/m$ solution at $10 \mu l$ into HPLC.
UV study	The stock underwent degradation by exposure to UV radiation in the laboratory for a duration of 7 days. Upon injecting a 10 μ g/ml & 20 μ g/m solution at a volume of 10 μ l into HPLC, a chromatogram was developed.
Neutral study	After refluxing the stock for 6 hours at 60 degrees Celsius, a chromatogram was prepared by injecting a 10 μ g/ml & 20 μ g/m solution at 10 μ l into HPLC.

RESULTS AND DISCUSSION

Optimized wavelength selected was 224nm.

Optimized Chromatogram

Movable phase	Methanol: Water (70:30 v/v)		
Column used	Asce C18 (4.6mm x 150mm, 5µm)		
Stream rate	1 ml/min		
λ max	215		
С Тетр	24°C		
Inj	10 µL		
Range	5 min		
Observation	Bilastine and Montelukast peak has good r2, tailing, plate count.		

Structure of optimized Chromotogram

Remark: With good resolution, Bilastine and Montelukast were eluted at 2.231 and 2.865 minutes, respectively. The plate count and tailing factor were highly satisfactory, leading to the optimization and validation of this approach.

Validation:

System Suitability:

S no	Bilastine			Montelukast			
Inj	RT (min)	USP Plate Count	Tailing	RT (min)	USP Plate Count	Tailing	RS
1	2.219	5818	1.25	2.794	8117	1.19	4.7
2	2.219	5542	1.27	2.796	8161	1.19	4.6
3	2.221	5761	1.24	2.800	8250	1.21	4.6
4	2.222	5490	1.28	2.801	8650	1.22	4.6
5	2.223	5457	1.25	2.801	8183	1.21	4.6
6	2.223	5475	1.24	2.809	8347	1.19	4.8

Chromatogram of System Suitability

Remark: The ICH criteria state that a plate count of more than 2000, a tailing factor of less than 2, and a resolution of more than 2 are required. Every system-appropriate parameter passed and remained within the range.

Specificity:

Chromatogram of blank

Chromatogram of placebo

Linearity:

Table 6.2 Linearity table for Bilastine and Montelukast and Pioglitazone.

Bilastine		Montelukast		
Conc (µg/mL)	Peak area	Conc (µg/mL)	Peak area	
0	0	0	0	
5	424274	2.5	131611	
10	827338	5	277455	
15	1261574	7.5	424775	
20	1650367	10	545673	
25	2011775	12.5	677432	
30	2402025	15	827604	

Calibration data of Bilastine

Calibration data of Montelukast

Precision:

System Precision:

Table 6.3 System precision table of Bilastine and Montelukast

S. No	Area of Bilastine	Area of Montelukast
1.	1651717	546353
2.	1649748	548458
3.	1650174	544158
4.	1655838	548523
5.	1650423	548347
6.	1650761	549023
Mean	1651444	547477
S.D	2253.0	1869.9
%RSD	0.1	0.3

Discussion: Average area, standard deviation and % RSD were calculated for two drugs. % RSD obtained as 0.1% and 0.3% respectively for Bilastine and Montelukast. As the limit of Precision was less than "2" the system precision was passed in this method.

Accuracy:

Table 6.6 Accuracy table of Bilastine and Montelukast

	Bilastine			Montelukast		
% Level	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery
	10	10.0	99.7	5	5.01	100.08
50%	10	9.9	99.5	5	4.99	99.89
	10	9.9	99.5	5	4.98	99.54
100%	20	19.8	99.2	10	9.99	99.91
	20	19.9	99.4	10	9.93	99.31

	20	19.7	98.4	10	9.95	99.53
150%	30	30.0	99.9	15	14.83	98.85
	30	30.0	100.1	15	15.01	100.05
	30	30.0	99.9	15	15.13	100.88
Mean 100.07			99.81			
% recovery						

Discussion: Three levels of Accuracy samples were prepared by standard addition method. Triplicate injections were given for each level of accuracy and mean %Recovery was obtained as 100.07% and 99.81% for Bilastine and Montelukast respectively.

Sensitivity:

Table 6.8 Sensitivity table of Bilastine and Montelukast

Robustness:

0.004

0.50

1.00

1.50

2.00

2.50

Minutes
Fig.No. 6.25 LOQ Chromatogram of of Standarard

3.00

3.50

4.00

4.60

5.00

Table 6.9 Robustness data for Bilastine and Montelukast.

S.no	Condition	%RSD of Bilastine	%RSD of Montelukast
1	Flow rate (-) 0.9ml/min	0.3	0.2
2	Flow rate (+) 1.1ml/min	0.2	0.3
3	Mobile phase (-) 65B:35A	0.2	0.5
4	Mobile phase (+) 75B:25A	0.9	0.5
5	Temperature (-) 27°C	0.3	0.7
6	Temperature (+) 33°C	0.2	0.5

Assay of Bilastine & Montelukast

	Bilastine			Montelukast		
S.no	Std Area	Sample area	% Assay	Std Area	Sample area	% Assay
1	1651717	1646588	99.51	546353	543324	99.04
2	1649748	1654192	99.97	548458	546648	99.65
3	1650174	1649693	99.69	544158	548763	100.03
4	1655838	1646533	99.50	548523	546348	99.59
5	1650423	1650946	99.77	548347	543283	99.04
6	1650761	1656357	100.10	549023	542007	98.80
Avg	1651444	1650718	99.76	547477	545062	99.36
Stdev	2253.0	3988.5	0.24	1869.9	2584.0	0.47
%RSD	0.1	0.2	0.2	0.3	0.5	0.47

Chromatogram of Working Standard

Chromatogram of working Sample

Degradation Studies

Type of degradation	Bilastine			montelukast		
Type of degradation	Area	% Rccovered	% Degraded	Area	% Recovered	% Degraded
Peroxide	1548291	93.66	6.34	530555	96.81	3.19
Thermal	1626339	98.38	1.62	538262	98.22	1.78
Uv	1627309	98.44	1.56	542870	99.06	0.94
Water	1640524	99.24	0.76	550450	99.71	0.29

Summary

Parameters		Bilastine	Montelukast
Linearity Range (µg/ml)		15-30µg/ml	2.5-15µg/ml
R ²		0.999	0.999
(m)		80029	54895
(c)		24896	363.57
(Y=mx+c)		y = 80029x + 24896	y = 54895x + 363.57
Assay (% mean assay)		99.76%	99.36%
Specificity		Specific	Specific
SP %RSD		0.1	0.3
MP		0.2	0.5
%RSD		0.2	0.0
%recovery		100.07%	99.81%
LO-D		0.08	0.01
LO-Q		0.24	0.04
	0.3	0.2	1.6

Robustness	0.2	0.3	0.2
	0.2	0.5	0.8
	0.9	0.5	0.3
	0.3	0.7	0.2
	0.2	0.5	0.2

Conclusion:

Bilastine and Montelukast had 2.231 and 2.865-min retention times. Bilastine and Montelukast had 0.1 and 0.3. RSD, respectively. % Recovery was 100.07% with Bilastine and 99.36% for Montelukast. Bilastine and Montelukast regression models yielded LOD, LOQ values of 0.08, 0.24 and 0.01, 0.04. Bilastine regression equation is y = 80029x + 24896 and Montelukast y = 54895x + 363.57 1. In this method retention and run times were reduced.

References

- 1. B.k Sharma, Instrumental methods of chemical analysis, Introduction to analytical chemistry, 23rd Edition Goel publication, Meerut, (2007)
- Lindholm.J, Development and Validation of HPLC Method for Analytical and Preparative purpose. Acta Universitatis Upsaliensis, pg. 13-14, (2004).
- Rashmin, An introduction to analytical Method Development for Pharmaceutical formulations. Indoglobal Journal of Pharmaceutical Sciences , Vol.2, Issue 2, Pg 191-196 (2012).
- 4. Malvia R, Bansal V, Pal O.P and Sharma P.K. A Review of High Performance Liquid Chromatography. Journal of Global Pharma technology (2010)
- 5. Douglas A Skoog, F. James Holler, Timothy A. Niemen, Principles of Instrumental Analysis Pg 725-760.
- 6. Dr.S. Ravi Shankar, Text book of Pharmaceutical analysis, Fourth edition, Pg 13.1-13.2
- David G.Watson. Pharmaceutical Analysis, A text book for Pharmacy students and Pharmaceutical Chemists. Harcourt Publishers Limited; 2nd Ed., Pg 221-232.
- 8. Remingtonn's The Sciences and Practise of Pharmacy, 20th Edition (2000)
- 9. Connors Ka. A Textbook of Pharmaceutical Analysis, Wiley intersciences Inc; Delhi, 3rd Ed, Pg 373-421, (1994)