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ABSTRACT— 

This article introduces an enhanced meta-heuristic optimization algorithm inspired by natural processes. In a wireless sensor network, a mobile sink (MS) is utilized 

to gather data from individual sensors and transmit it to a base station. To minimize delays in accessing all sensor nodes, the MS can be restricted to specific 

locations, known as rendezvous points. Many existing techniques rely on static sinks, which can lead to data loss and premature sensor node failure, creating energy-

hole problems and diminishing data collection efficiency. To address these challenges, we propose an improved clustering strategy that incorporates multiple mobile 

sinks and an advanced ant colony optimization (ACO) algorithm for more effective data collection. The performance of the proposed method is evaluated and 

compared to that of existing algorithms. The approach employs multiple mobile sinks, where the first MS visits a group of cluster heads (CHs), followed by the 

second MS visiting any remaining unvisited CHs. Consequently, all CHs are visited by a set of MSs. Simulation results indicate that the proposed method 

significantly enhances network longevity and reduces data loss. 

Keywords: Wireless sensor network, Ant colony optimization, Multiple mobile sinks, Clustering, Mobile sink. 

1. Introduction 

In a transmission scheme, network sensor nodes transmit their data to a base station, while a mobile sink has been proposed as a mechanism for information 

gathering in wireless sensor networks (WSNs) to manage energy consumption across the sensors geographically. [1]WSN sensor nodes are battery-

powered devices that collect data from their environment and relay this information to a sink for analysis. 

WSNs play a crucial role in wireless networking, as they gather atmospheric data and send it to a sink node. Many applications of the Internet of Things 

(IoT) that rely on WSNs are real-time programs that are sensitive to delays, making effective data management essential. Various data collection 

techniques have been employed in WSNs, including mobile sensors, mobility-based systems, and static sinks. Utilizing these techniques can help reduce 

data management challenges, power consumption, and data transmission latency. 

In wireless sensor networks, multiple sensing devices are interconnected to perform collaborative functions, typically through a multi-hop network. WSNs 

are utilized in diverse applications, such as environmental monitoring, medical health tracking, industrial monitoring, and many others. 

In WSNs, data from sensor nodes are usually transmitted to the sink through multi-hop communication to minimize energy consumption at the nodes. [2] 

While this data transmission method enhances the overall lifespan of the network, it can also lead to energy issues and the premature failure of sensor 

nodes. The next objective is to identify the optimal route for the mobile sink, following the selection of the best routing protocols for the network. 

Recently, artificial intelligence techniques have been applied to tackle complex computational problems, with organically-inspired swarm intelligence 

algorithms representing a class of these techniques designed to solve optimization challenges. These solutions are determined stochastically by utilizing 

a set of parameters based on a pheromone model aligned with their variables. 

By incorporating a load parameter, rendezvous points (RPs) with higher loads are prioritized during data collection, addressing buffer overflow issues 

and reducing energy expenditure related to data retention in node buffers. This approach improves the longevity of the WSN. The mobile sink follows a 

defined data collection path, visiting each RP exactly once before returning to its starting point. 

WiFi Sensor Networks (WSNs) can be defined as self-configured and infrastructure networks that monitor physical or environmental conditions, such as 

temperature, sound, vibration, pressure, motion, or pollutants. The data collected can be collaboratively transmitted through the network to the main site 

or sink, where it can be analyzed and evaluated. 
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A wireless sensor network (WSN) consists of numerous small, low-cost sensor nodes equipped with various electronic devices that can sense or control 

physical parameters in their surroundings. These sensor nodes must work together for specific applications, as a single node is typically insufficient on 

its own, and they communicate wirelessly with one another. 

 

 

Fig 1.1. Network Topology of WSN 

In wireless sensor networks (WSNs), the information gathered from sensor nodes is typically transmitted to the sink via multi-hop connectivity to reduce 

the energy consumption of the nodes. Although this data transmission method enhances the overall lifespan of the network, it can also lead to energy 

issues and the premature failure of sensor nodes. Nodes situated near the sink not only forward their own data but also relay information from nearby 

nodes. [3]Consequently, these proximal nodes tend to deplete their energy more quickly and ultimately fail. This situation complicates the transfer of 

data from other nodes to the base station, resulting in network distribution challenges, degraded service quality, and reduced system capacity. 

Due to various constraints in WSN applications, many existing algorithms aimed at balancing energy consumption among sensors are often difficult to 

implement. These limitations significantly affect the effectiveness of existing algorithms in practical scenarios. This paper considers a sensor network 

with multiple mobile sinks deployed to monitor a dynamic region, where the mobile sinks have a locally connected route map. The challenge lies in 

programming these mobile sinks to gather as much information as possible from sensor devices to extend the network's lifespan. This paper presents the 

energy efficiency of multiple mobile sinks for sensor networks as a novel constrained optimization problem. We propose an effective solution called the 

Mobile Sink Movement Algorithm using Artificial Bee Colony optimization, which not only balances the workload among the mobile sinks but also 

optimizes energy consumption among the sensor nodes. 

This study introduces the MWSN data collection strategy, centered around the artificial bee colony algorithm as a reliable and efficient data gathering 

mechanism. [4]The main contributions of this paper can be summarized as follows: (1) Compilation of mobile sink data, cluster selection optimization, 

and enhancement of mobile sink paths; (2) Formulation of mobile sink path efficiency as a shortest path problem, utilizing the bee colony technique to 

optimize solution features and minimize the distance traveled by the mobile sinks, thereby improving data collection efficiency. Honey bees exhibit 

complex behaviors, including mating, breeding, and foraging, which have inspired various optimization techniques based on their behavior. Given this 

complexity, we selected bee colony optimization for path optimization in this study. The structure of this paper is organized as follows: Section 1 presents 

the introduction, Section 2 reviews relevant literature, Section 3 discusses the proposed work, and Sections 4 and 5 present numerical results and 

conclusions, respectively. 

2 Related work 

In this article, we review several studies published in recent years regarding various mobile sink (MS) processes, focusing on literature related to mobile 

sink applications in wireless sensor networks (WSNs). 

In previous years, many authors have explored various techniques for data gathering in WSNs, utilizing either static sinks or mobile sinks. The non-

uniform energy depletion associated with static sink data collection can lead to reduced efficiency and a shorter network lifespan. Due to the limitations 

of static sink-based methods, mobility-based approaches have been developed to leverage mobile sinks, achieving better energy balance and reliability.  

[5] In a direct strategy for mobile sink data collection, the MS visits each node to gather sensed data. However, this method can be time-consuming, 

resulting in significant delays in the data collection process, which is unsuitable for time-sensitive applications. Some authors have proposed a hybrid 

system for deploying and repositioning an optimal number of sinks in WSNs. 

Researchers have suggested data collection methods for large-scale gathering in delay-sensitive environments, employing mobile sinks that travel in a 

predefined direction. One author reported a travel planning algorithm aimed at mobile data collection with minimal coverage. Additionally, the authors 

introduced the Weighted Rendezvous Planning (WRP) method, which selects the most effective rendezvous points (RPs) in a WSN to enhance network 

lifetime and mitigate energy gaps. They addressed the energy optimization challenge associated with rendezvous nodes and mobile sinks by adopting an 

ant colony optimization (ACO)-based inter-cluster data aggregation system. In their algorithm, they utilized a traveling salesman problem approach to 
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determine the optimal trajectory among the RPs. In the WRP method, sensor nodes located near the RPs expend significant energy during multi-hop data 

transmission. The authors also reported an algorithm for selecting groups of RPs in a sensor network while minimizing the travel distance. 

The mobile sink is restricted to collecting data from cluster heads (CHs), and the authors employed a k-dimensional cluster-based approach. [6] Due to 

the forwarding load, nodes close to CHs tend to consume more energy during this process. Consequently, the authors proposed a TCBDGA algorithm 

aimed at data collection and enhancing network lifetime. This algorithm constructs a tree using a clustering mechanism, with the root of the tree serving 

as a rendezvous point. As the height of the tree increases, the forwarding load on sensor nodes near the RPs also rises, leading to potential hot-spot 

problems. To address this issue, sub-RPs were introduced to help balance the tree height [7]. 

Mottaghi and Zahabi proposed a minimal LEACH clustering algorithm for mobile sinks and rendezvous sensor nodes. This algorithm integrates LEACH, 

rendezvous points, and mobile sinks to enhance the cluster head selection process while retaining the advantages of LEACH. Compared to traditional 

LEACH, this algorithm utilizes fewer network resources. 

3. Proposed Work 

In this, firstly we have a discussion on route formation in which we will have some discussion on the work of  MS and Cluster head selection and 

Secondly, we will use EMMS (Enhanced Multiple mobile sinks) path formation algorithm and MMSBACO (Multiple mobile sinks based Ant colony 

optimization )  to achieve energy-efficient data collection [8]. 

3.1 Clustering head selection 

 

Figure 3.1: Network model for multiple mobile sinks 

In the proposed clustering strategy, the modified LEACH algorithm is applied. Sensors are installed in the tracked area and then partitioned into a series 

of clusters using the steps below. The network's cumulative residual capacity, 𝐾𝑡, is measured as 

  𝐾𝑡 =  ∑ 𝐾𝑟𝑠
𝑚
𝑟=1 (r)   ,    

where 𝐾𝑟𝑠(𝑟) states the node r's residual capacity. The total residual energy of the sensors is then calculated to find a threshold value : 

𝐸ℎ = {
𝑃𝑟𝑐

1− 𝑃𝑟𝑐( 𝑟𝑜𝑛  𝑚𝑜𝑑 1/ 𝑃𝑟𝑐)
 .  

𝐾𝑡

𝐾𝑟

0
       if h ∈ S,  otherwise,…..(2) 

As 𝑃𝑟𝑐 is the percentage of cluster heads, S is the set of all nodes that are not chosen as a cluster head in the most recent 1/ 𝑃𝑟𝑐 rounds, 𝑘𝑟 is the total 

initial energy of all the nodes in S, and 𝑟𝑜𝑛   is the current rounds numbers. 

In each round, each sensor creates a random number between 0 and 1. [9] The created number of all sensor is compared with the already defined threshold 

𝐸ℎ. As the generated value of the sensor, Sr is less that 𝐸ℎ, Sr is going to be selected as a CH. So then when more than one sensor gives the same value, 

the node with the maximum residual energy is carried as CH for that specific cluster. Once CH is selected, then they send a message to each sensor node. 

Finally, to prevent data clashes in the network, the cluster heads transmit time-division multiple access (TDMA) signal messages to their participants 

with schedule information for data transmission. 

3.2 Path Formation  

Currently, multiple mobile sink (MMS) methods are garnering significant interest among researchers in wireless sensor networks (WSNs) due to their 

potential to enhance network lifespan and improve data gathering efficiency. In a WSN environment, we consider an MMS network with KKK cluster 

heads and NNN mobile sinks. Each mobile sink is assigned to a subset of cluster heads, starting from an initial point. In each round, at least one mobile 
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sink must visit all cluster heads, and each mobile sink should visit at least one cluster head. [10]A primary objective of the proposed solution is to 

minimize the tour distance for the mobile sinks without compromising data collection. 

The challenge of data gathering with mobile sinks is akin to the traveling salesman problem (TSP), which is classified as NP-hard. However, a heuristic 

algorithm can be employed to find near-optimal solutions. 

The proposed routing method consists of the following steps: (i) Each mobile sink is assigned a disjoint subset of cluster heads, and (ii) the order of visits 

for each mobile sink is determined. An average number of cluster heads is allocated to each mobile sink to optimize energy consumption and achieve a 

minimal path for every mobile sink. 

Kch  (MS) = e (CH) /e (MS)    ………..(3) 

 where Kch is the number of CH as- signed to an MS, e ( CH ) defines the number of CHs, and e ( MS ) introduced is the number of MSs.  

For all MS, the MS member (CH) is issued based on a path matrix, where entries have distance between the CHs and MSs in the network. The distance 

matrix is introduced as:- 

 d (MS, CH)   =     

l11     l12  … l1p

l21     l22 … . l2p

 lm1       lm2  … .  lmp

         …… (4) 

where the row indicates the MS number and the column indicates the CH number. All MS is assigned by CH which is calculated by the minimum value 

in the concordant column of the above matrix. The below is a more comprehensive explanation. 

The member of rth MS where MSr can be given as a subset of K, That is Kr ⊂ K                 ……. (5) 

In this r is the index of MS and r = 1, 2, 3, .., m. Based on the conditions below, a subset of CHs ( Kr) is generated and given to MSr . The gap between 

the CH and MSs d (MSr, CHc)  in the sensor network is compared. CHc is assigned to the subset of MSr, if d ( MSr, CHc ) value is minimal in r = 1, 2, 3, 

···, m. For example, if the gap between MS2 and the CH1 is less than other MSs, CH1 will be assigned to MS2. So then, all the CH are reported to their 

corresponding MSs. If a CH has the optimal gap with MMS, then the CH is assigned to any one of the MS.  

min
r=1,..m

d(  MSr, CH1) ,…. min
r=1,..m

d(  MSr, CHp) --------(6) 

For every MSs, MSr a finite number of disjoint subsets of cluster heads CHc is formed using (6). So K is partitioned into several disjoint subsets Kr r = 

1,.., m, in which Kr={Kr1,… 𝐾𝑟𝑙𝑟
} 

The nth path of the rth MS MSr is given as  

S r,n = { Posini (MSr ) , Pos (Pr ) , Posini (MSr) }  ………(7) 

 In this  Posini ( MSr ) indicates the first position of MSr and Pos( Pr ) represents the CH positions in Pr.  

To evaluate the total path gap pG traveled by MSr, we compute the following: 

pG(S r,n) = d(MSr, Pr1 ) + ∑ 𝑑(𝐾𝑟𝑐 , 𝐾𝑟,𝑐+1)
𝑙𝑟−1
𝑐=1  + d(𝐾𝑟𝑙𝑟

, MSr )  ……..(8) 

Whereas, d ( .., ..) indicates the gap between CHs and between a CH and  MS. The MS MSr initiate from the first point, Returns to the starting point after 

visiting all CHs in Pr in increasing order of indices. 

The better sequencing of Krc in Kr is one with less travel length pG(S r,n). Therefore, to find the sequence of Krc in Kr for every n, now we have given below 

optimization problem: 

 min
𝑆𝑟,𝑛 

pG (𝑆𝑟,𝑛 )  ………………(9) 

So this is a Travelling salesman problem, that is NP-hard. To overcome this problem, we adopt MMSBACO, and which is explained in Section 3.3. and 

[11] the algorithm below describes the multiple MS path formation. 

Algorithm:  EMMS Path Formation. 

Given: MS coordinate, CH coordinate 

Output:  Travelling route for MMSs 

1: Percentage evaluate average number of CHs assign to MS: 

2: Kch  (MS) = e (CH) /e (MS)     

3: Formation of distance matrix dMatr(.., ..) for MSs and CHs by  (9)  

4: Percentage assignment of CH to the nearby MS 

5: using loop c:= 1 to m 
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6: A= armindMatr(:, c) 

7: end loop  

8: If |A| == 1 it is then 

9: Allocate CHc to MSA 

10: else  

11: Assign CHc to MSr, r ∈ I  

12: end if  

13: Call MMSBACO  for routing 

 14: Preparing data gathering 

15: Repeat the procedure until the MSs path is established,  

3.3 Ant Colony Optimization (ACO) 

In the early 1990s, the Ant Colony Optimization (ACO) algorithm [12] emerged as a metaheuristic approach for optimization problems, inspired by the 

behavior of real ants. Initially developed to address the Traveling Salesman Problem (TSP), which involves determining the shortest route among a set 

of cities, ACO has since garnered significant attention due to its successful applications in various fields, including network communication, screensavers, 

cardinality trees, Bayesian networks, serial ordering, and ranking guidelines. 

The ACO algorithm generates solutions iteratively, with multiple artificial ants constructing solutions at each step. In the context of the TSP, each ant 

builds a route by visiting one city at a time until all cities have been visited. As an ant constructs its solution, it selects the next city to visit based on the 

pheromone concentration associated with each option. This pheromone value plays a crucial role in enhancing the efficiency of the solution. The best 

solution generated by the ants is informed by the pheromone levels at the end of the iteration and is compared to the optimal solution from the previous 

iteration, guiding subsequent searches. 

ACO often outperforms other algorithms, making it suitable for applying the Mobile Sink Based Ant Colony Optimization (MMSBACO) method to find 

an optimized path from cluster heads (CHs) while ensuring energy-efficient data gathering. [13]This method was designed to address issues such as hot 

spots and data loss, ultimately extending the lifespan of wireless sensor networks (WSNs). In this framework, the base station identifies the locations of 

the CHs and utilizes ACO to determine the paths for the mobile sinks. According to the MMSBACO approach, the first mobile sink travels to a group of 

CHs, followed by the second mobile sink visiting the next group of unvisited CHs. This process ensures that all CHs are covered by the mobile sinks. 

 

Fig 3.2. WSN Data Collection using ACO 

The number of mobile sinks varies from 1 to mmm to evaluate their performance. [14] The primary objective of MMS is to optimize the routing path, 

contributing to an increase in the network's lifespan. Through this approach, an effective solution is generated, utilizing nnn artificial ants to produce nnn 

potential solutions. 

3.4. Path optimization  

In this, for ant colony-based path minimization, every ant finds the new CH appropriately. The given below formula is used for the probability Pro(𝑡)𝑟𝑐
𝑛  

of the nth ant moving from the CH r to the CH c: 

Pro(𝑡)𝑟𝑐
𝑛  =  {

[𝜌𝑟𝑐 (𝑡)]𝛽[𝜏𝑟𝑐]𝛾

∑[𝜌𝑟𝑙]
𝛽  
  . [𝜏𝑟𝑙]𝛾

  

0

  ,  c ∈ allowedn 
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So that ρrc (t) is the pheromone stored on the route from the rth CH to cth CH., which is expressed from the strength of the pheromone in between the 

rth CH and cth CH. τrc can be calculated by the 1/drc, in which drc is gap between the CH r to CH c. and the allowedn indicates the CH that unvisited by 

ant n. Then β and γ  are the constant parameters, and this parameter also suggests the ants in decision making.  

So to achieve good output, the pheromone values of the ants are updated in every step. Which helps ant performance and gives a better solution.[15]  The 

trail updating method has local and global updation. The local update can be carried out by given below equation : 

𝜌𝑟𝑐 (𝑡 + 1) = (1- η). 𝜌𝑟𝑐 (𝑡) + ∆𝜌𝑟𝑐  

In which η indicates the rate of pheromone evaporation, which can manage the speed of evaporation, t tells the number of steps counter, η∈[0,1] is a 

value that controls the degradation of 𝜌𝑟𝑐 and it is the pheromone count in the present step, that is distributed on the edges. and ∆𝜌𝑟𝑐 can be calculated as: 

∆𝜌𝑟𝑐  = ∑ ∆𝜌𝑟𝑐
𝑛𝑀

𝑛=1  

In this each ant n left behind the rth CH and reached the cth CH leaves a certain amount of pheromone behind is evaluated by 

∆𝜌𝑟𝑐
𝑛 = 

𝑉

𝐿𝑟𝑐
  , 

In the above equation V is constant and 𝐿𝑟𝑐 is the distance in which ant n moves from the CHr to the CHc. 

This upgrade mechanism allows it to find a shorter path and improves the chances of finding the best optimal path. This method is replicated before the 

predetermined amount of iterations has been completed or a suitable answer has been discovered. [16]The final output can be thought of as the best way 

for an MS to travel. 

4. Conclusion 

To enhance data gathering performance and extend the lifespan of wireless sensor networks (WSNs), we propose a novel solution based on multiple 

mobile sinks (MMS). This approach employs a modified LEACH-based clustering technique to organize sensor nodes and select cluster heads. In this 

context, the mobile sink operates like a robotic agent, collecting data from the cluster heads throughout the network. 

The ACO-based mobile sink solution makes routing more effective and adaptable to changes in the WSN topology. By utilizing this method, the time 

required to collect data from clusters is reduced, leading to increased network longevity and minimizing data loss. Simulation results indicate that the 

new routing scheme significantly decreases overall travel distance compared to existing algorithms. Furthermore, unlike traditional systems that rely 

solely on a static sink, this approach has the potential to greatly enhance the network's lifespan. Future work could involve integrating the mobile sink 

with other bio-inspired algorithms to assess their effectiveness, taking into account the mobility of sensor nodes 

Table 4.1: Comparison Table 

No. of CH Alg. M=1 M=2 M=3 

 LEACH 695.3201 696.7107 712.5994 

10 GA 

PSO 

640.1803 

567.2219 

645.7826 

565.7812 

652.6086 

598.1218 

 Prop. 540.4212 540.4212 544.1588 

 LEACH 976.1456 970.8788 970.8788 

20 GA 

PSO 

924.1587 

892.3862 

924.1587 

891.2813 

912.4044 

891.1049 

 Prop. 840.2244 846.1592 853.8613 

 LEACH 1133.7891 1137.1888 1119.8383 

30 GA 

PSO 

1070.1621 

1010.3861 

1088.4103 

1013.9038 

1096.5366 

1017.4618 

 Prop. 0988.7075 0996.1931 0997.9895 
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