

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Observation on the Non-Homogeneous Binary Quadratic Equation $3x^2 - 2y^2 = 4$

T. Mahalakshmi¹, P. Pavadharani²

¹Assistant professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-600 002, Tamil Nadu, India. Email: aakashmahalakshmi06@gmail.com

²M.Sc Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-600 002, Tamil Nadu, India. Email: periyasamyp0123@gmail.com

ABSTRACT:

The non-homogenous binary quadratic equation with two unknowns represented by the Pell-like equation $3x^2 - 2y^2 = 4$ is studied for finding its distinct integer solutions. A few interesting properties between the above solutions are presented.

KEYWORDS: Binary quadratic, Hyperbola, Parabola, Pell equation, Integer solutions.

INTRODUCTION:

The non-homongenous binary quadratic equations of the form $ax^2 - by^2 = N$, $(a, b, N \ne 0)$ are rich in variety and have been analyzed by many mathematicians for their respective integer solutions for particular values of a,b and N. In this context, one may refer [1-13]. This communication concerns with the problem of obtaining non-zero distinct interger solutions to the binary quadratic equation given by $3x^2 - 2y^2 = 4$ representing hyperbola. A few interesting relations among its solutions are presented. Knowning an integral solutions of the given hyperbola, integer solution for other choices of hyperbolas and parabolas are presented.

METHOD OF ANALYSIS:

The non-homogenous binary quadratic equation under consideration is

$$3x^2 - 2y^2 = 4$$

It is to be noted that (1) represents a hyberbola

Taking
$$x=X+2T, y=X+3T$$
 (2)

in (1), it reduced to the equation

$$X^2 = 6T^2 + 4 (3)$$

The smallest positive integer solution (T_0, X_0) of (3) is

$$T_0 = 4, X_0 = 10$$

To obtain the other solutions of (3), consider the pellian equations

$$X^2 = 6T^2 + 1 (4)$$

whose smallest positive integer solutions is

$$\widetilde{T}_0 = 2$$
, $\widetilde{X}_0 = 5$

The general solution $(\widetilde{T}_n,\widetilde{X}_n)$ of (4) is given by

$$\widetilde{X}_n + \sqrt{6}\widetilde{T}_n = (5 + 2\sqrt{6})^{n+1}, n = 0,1,2...$$
 (5)

Since irrational roots occur in pairs, we have

$$\widetilde{X}_{n} - \sqrt{6}\widetilde{T}_{n} = (5 - 2\sqrt{6})^{n+1}, n = 0,1,2...$$
(6)

From (5) and (6), solving for $\widetilde{X}_n,\widetilde{T}_n,$ we have

$$\widetilde{X}_n = \frac{1}{2}[(5+2\sqrt{6})^{n+1} + (5-2\sqrt{6})^{n+1}] = \frac{1}{2}f_n$$

$$\widetilde{T}_n = \frac{1}{2\sqrt{6}} [(5 + 2\sqrt{6})^{n+1} - (5 - 2\sqrt{6})^{n+1}] = \frac{1}{2\sqrt{6}} g_n$$

 $\text{Applying Brahmagupta lemma between the solutions} \ (T_0, X_0) \ \text{and} \ (\widetilde{T}_n, \widetilde{X}_n) \ \text{, the general solution} \ (\widetilde{T}_{n+1}, \widetilde{X}_{n+1}) \ \text{of (3) is found to be }$

$$T_{n+1} = X_0 \tilde{T}_n + T_0 \tilde{X}_n = \frac{5}{\sqrt{6}} g_n + 2f_n$$
(7)

$$X_{n+1} = X_0 \widetilde{X}_n + T_0 \widetilde{T}_n = 2f_n + \frac{2}{\sqrt{6}} g_n$$
(8)

Using (7) and (8) in (2) we have,

$$3x_{n+1} = 27f_n + 11\sqrt{6}g_n$$

$$2y_{n+1} = 22f_n + 9\sqrt{6}g_n$$

Thus (9) and (10) represent the integer of the hyperbola (1).

A few numerical values are given in the following Table: 1

Table: 1 Numerical Examples

n	\mathcal{X}_{n+1}	\mathcal{Y}_{n+1}
-1	18	22
0	178	218
1	1762	2158
2	17442	21362

Recurrence relations for x and y are:

$$x_{n+3} - 10x_{n+2} + x_{n+1} = 0, n = -1,0,1....$$

$$y_{n+3} - 10y_{n+2} + y_{n+1} = 0, n = -1,0,1...$$

A. A few interesting relations among the solutions are given be

$$x_{n+1} - 10x_{n+2} + x_{n+3} = 0$$

$$5x_{n+1} - x_{n+2} + 4y_{n+1} = 0$$

$$x_{n+1} - 5x_{n+2} + 4y_{n+2} = 0$$

$$5x_{n+1} - 49x_{n+2} + 4y_{n+3} = 0$$

$$49x_{n+1} - x_{n+3} + 40y_{n+1} = 0$$

$$x_{n+1} - x_{n+3} + 8y_{n+2} = 0$$

$$x_{n+1} - 49x_{n+3} + 40y_{n+3} = 0$$

$$\int 6x_{n+1} + 5y_{n+1} - y_{n+2} = 0$$

$$60x_{n+1} + 49y_{n+1} - y_{n+3} = 0$$

$$6x_{n+1} + 49y_{n+2} - 5y_{n+3} = 0$$

$$4y_{n+1} + 49x_{n+2} - 5x_{n+3} = 0$$

$$4y_{n+2} + 5x_{n+2} - x_{n+3} = 0$$

$$4y_{n+3} + x_{n+2} - 5x_{n+3} = 0$$

$$y_{n+1} + 6x_{n+2} - 5y_{n+2} = 0$$

$$y_{n+1} + 12x_{n+2} - y_{n+3} = 0$$

$$5y_{n+2} + 6x_{n+2} - y_{n+3} = 0$$

$$49y_{n+2} - 5y_{n+1} - 6x_{n+3} = 0$$

$$49y_{n+3} - y_{n+1} - 60x_{n+3} = 0$$

$$5y_{n+3} - y_{n+2} - 6x_{n+3} = 0$$

$$y_{n+3} - 10y_{n+2} + y_{n+1} = 0$$

B. Each of following expressions represents a cubic integer

$$\frac{1}{2}(109x_{3n+3} - 11x_{3n+4}) + 3(109x_{n+1} - 11x_{n+2})$$

$$\frac{1}{20}(1079x_{3n+3} - 11x_{3n+5}) + 3(1079x_{n+1} - 11x_{n+3})$$

$$_{3}$$
 $27x_{3n+3} - 22y_{3n+3} + 3(27x_{n+1} - 22y_{n+1})$

$$\int_{4}^{2} \frac{1}{5} (267x_{3n+3} - 22y_{3n+4}) + 3(267x_{n+1} - 22y_{n+2})$$

$$\frac{1}{49}(2643x_{3n+3} - 22y_{3n+5}) + 3(2643x_{n+1} - 22y_{n+3})$$

$$\frac{1}{2}(1079x_{3n+4} - 109x_{3n+5}) + 3(1079x_{n+2} - 109x_{n+3})$$

$$\frac{1}{5}(27x_{3n+4} - 218y_{3n+3}) + 3(27x_{n+2} - 218y_{n+1})$$
7.
$$267x_{3n+4} - 218y_{3n+4} + 3(267x_{n+2} - 218y_{n+2})$$
8.
$$\frac{1}{5}(2643x_{3n+4} - 218y_{3n+5}) + 3(2643x_{n+2} - 218y_{n+3})$$
9.
$$\frac{1}{49}(27x_{3n+5} - 2158y_{3n+3}) + 3(27x_{n+3} - 2158y_{n+1})$$
10.
$$\frac{1}{5}(267_{3n+5} - 2158y_{3n+4}) + 3(267x_{n+3} - 2158y_{n+2})$$
11.
$$\frac{1}{5}(267_{3n+5} - 2158y_{3n+4}) + 3(267x_{n+3} - 2158y_{n+2})$$

$$2643x_{3n+5} - 2158y_{3n+5} + 3(2643_{n+3} - 2158y_{n+3})$$

$$\frac{1}{4}(18y_{3n+4} - 178y_{3n+3}) + 3(18y_{n+2} - 178y_{n+1})$$

$$\frac{1}{40}(18y_{3n+5} - 1762y_{3n+3}) + 3(18y_{n+3} - 1762y_{n+1})$$

$$\frac{1}{4}(178y_{3n+5} - 1762y_{3n+4}) + 3(178y_{n+3} - 1762y_{n+2})$$
5.

C. Each of following expressions represents a Bi-Quatratic integers

$$\frac{1}{2} \left[109x_{4n+4} - 11x_{4n+5} + 4 \left(109x_{2n+2} - 11x_{2n+3} \right) \right] + 6$$

$$\frac{1}{20} \left[1079 x_{4n+4} - 11 x_{4n+6} + 4 \left(1079 x_{2n+2} - 11 x_{2n+4} \right) \right] + 6$$

$$[27x_{4n+4} - 22x_{4n+4} + 4(27x_{2n+2} - 22x_{2n+2})] + 6$$

$$\frac{1}{5} \left[267x_{4n+4} - 22x_{4n+5} + 4(267x_{2n+2} - 22x_{2n+3}) \right] + 6$$

$$\frac{1}{49} \left[2643x_{4n+4} - 22x_{4n+6} + 4(2643x_{2n+2} - 22x_{2n+4}) \right] + 6$$

$$\frac{1}{2} \left[1079 x_{4n+5} - 109 x_{4n+6} + 4 \left(1079 x_{2n+3} - 109 x_{2n+4} \right) \right] + 6$$

$$\left[27x_{4n+5} - 218y_{4n+4} + 4(27x_{2n+2} - 11x_{2n+3})\right] + 6$$

$$\left[267x_{4n+5} - 218y_{4n+5} + 4\left(267x_{2n+3} - 218y_{2n+2}\right)\right] + 6$$

$$\left[2643x_{4n+5} - 218y_{4n+6} + 4\left(2643x_{2n+3} - 218y_{2n+4}\right)\right] + 6$$

$$\left[27x_{4n+6} - 2158x_{4n+4} + 4\left(27x_{2n+4} - 2158y_{2n+2}\right)\right] + 6$$

$$\left[267x_{4n+6} - 2158y_{4n+5} + 4\left(267x_{2n+4} - 2158y_{2n+3}\right)\right] + 6$$

$$\left[2643x_{4n+6} - 2158y_{4n+6} + 4\left(2643x_{2n+4} - 2158y_{2n+4}\right)\right] + 6$$

[
$$18y_{4n+5} - 178y_{4n+4} + 4(18y_{2n+3} - 178y_{2n+2})] + 6$$

[$18y_{4n+6} - 1762y_{4n+4} + 4(18y_{2n+4} - 1762y_{2n+2})] + 6$
[$178y_{4n+6} - 1762y_{4n+5} + 4(178y_{2n+4} - 1762y_{2n+3})] + 6$

D. Each of following expressions represents a Quintic Integer
$$\frac{1}{2}[(109x_{5n+5}-11x_{5n+6}+5[(109x_{3n+3}-11x_{3n+4})+10(109x_{n+1}-11x_{n+2})]]$$

$$\frac{1}{20}[(1079x_{5n+5}-11x_{5n+7}+5[(1079x_{3n+3}-11x_{3n+5})+10(1079x_{n+1}-11x_{n+3})]]$$

$$\cdot [(27x_{5n+5}-22y_{5n+5}+5[(27x_{3n+3}-22y_{3n+3})+10(27x_{n+1}-22y_{n+1})]]$$

$$\frac{1}{5}[(267x_{5n+5}-22y_{5n+6}+5[(267x_{3n+3}-22y_{3n+4})+10(267x_{n+1}-22y_{n+2})]]$$

$$\cdot \frac{1}{49}[(2643x_{5n+5}-22y_{5n+7}+5[(2643x_{3n+3}-22y_{3n+5})+10(2643x_{n+1}-22y_{n+2})]]$$

$$\cdot \frac{1}{2}[(1079x_{5n+6}-109x_{5n+7}+5[(1079x_{3n+4}-109x_{3n+5})+10(1079x_{n+2}-109x_{n+3})]]$$

$$\cdot [(267x_{5n+6}-218y_{5n+6}+5[(267x_{3n+4}-218y_{3n+4})+10(267x_{n+2}-218y_{n+2})]]$$

$$\cdot \frac{1}{5}[(2643x_{5n+6}-218y_{5n+7}+5[(2643x_{3n+4}-218y_{3n+5})+10(2643x_{n+2}-218y_{n+2})]]$$

$$\cdot \frac{1}{5}[(267x_{5n+7}-2158y_{5n+5}+5[(267x_{3n+5}-2158y_{3n+5})+10(267x_{n+3}-2158y_{n+1})]]]$$

$$\cdot \frac{1}{5}[(267x_{5n+7}-2158y_{5n+6}+5[(267x_{3n+5}-2158y_{3n+5})+10(267x_{n+3}-2158y_{n+1})]]]$$

$$\cdot [(2643x_{5n+7}-2158y_{5n+6}+5[(267x_{3n+5}-2158y_{3n+5})+10(2643x_{n+3}-2158y_{n+2})]]]$$

$$\cdot [(2643x_{5n+7}-2158y_{5n+5}+5[(2643x_{3n+5}-2158y_{3n+5})+10(2643x_{n+3}-2158y_{n+1})]]]$$

$$\cdot [(2643x_{5n+7}-2158y_{5n+5}+5[(2643x_{3n+5}-2158y_{3n+5})+10(2643x_{n+3}-2158y_{n+1})]]]$$

$$\cdot [(2643x_{5n+7}-2158y_{5n+5}+5[(2643x_{3n+5}-2158y_{3n+5})+10(2643x_{n+3}-2158y_{n+1})]]]$$

$$\cdot [(2643x_{5n+7}-2158y_{5n+5}+5[(18y_{3n+5}-1762y_{3n+3})+10(18y_{n+2}-178y_{n+1})]]]$$

$$\cdot \frac{1}{4}[(18y_{5n+6}-178y_{5n+5}+5[(18y_{3n+5}-1762y_{3n+3})+10(18y_{n+2}-178y_{n+1})]]$$

$$\cdot \frac{1}{4}[(178y_{5n+7}-1762y_{5n+5}+5[(18y_{3n+5}-1762y_{3n+3})+10(18y_{n+2}-178y_{n+1})]]$$

$$\cdot \frac{1}{4}[(178y_{5n+7}-1762y_{5n+5}+5[(178y_{3n+5}-1762y_{3n+3})+10(178y_{n+3}-17621y_{n+2})]]$$

$$\cdot \frac{1}{4}[(178y_{5n+7}-1762y_{5n+5}+5[(178y_{3n+5}-1762y_{3n+3})+10(178y_{n+3}-17621y_{n+2})]]$$

$$\cdot \frac{1}{4}[(178y_{5n+7}-1762y_{5n+5}+5[(178y_{3n+5}-1762y_{3n+3})+10(178y_{n+3}-17621y_{n+2})]]$$

III. REMARKABLE OBSERVATIONS:

C. Employing linear combinations among the solutions of (1), one may generate integers solutions for other choices of hyperbolos which are presented in table: 2 below.

Table: 2 Hyperbolas

S.No	Hyperbolas	(P,Q)
1.	$6P^2 - Q^2 = 96$	$[(109x_{n+1} - 11x_{n+2}), (27x_{n+2} - 267x_{n+1})]$
2.	$6P^2 - Q^2 = 9600$	$[(1079x_{n+1} - 11x_{n+3}), 3(9x_{n+3} - 881x_{n+1})]$
3.	$6P^2 - 2Q^2 = 24$	$[(27x_{n+1} - 22y_{n+1}), (54y_{n+1} - 66x_{n+1})]$
4.	$6P^2 - Q^2 = 600$	$[(267x_{n+1} - 22y_{n+2}), (54y_{n+2} - 654x_{n+1})]$
5.	$6P^2 - Q^2 = 57624$	$[(2643x_{n+1} - 22y_{n+3}), (54y_{n+3} - 6474x_{n+1})]$
6.	$6P^2 - Q^2 = 96$	$[(1079x_{n+2} - 109x_{n+3}), (267x_{n+3} - 2643x_{n+2})]$
7.	$6P^2 - Q^2 = 600$	$[(27x_{n+2} - 218y_{n+1}), (534y_{n+1} - 66x_{n+2})]$
8.	$6P^2 - Q^2 = 24$	$[(267x_{n+2} - 218y_{n+2}), (534y_{n+2} - 654x_{n+2})]$
9.	$6P^2 - Q^2 = 600$	$[(2643x_{n+2} - 218y_{n+3}), (534y_{n+3} - 6474x_{n+2})]$
10.	$6P^2 - Q^2 = 57624$	$[(27x_{n+3} - 2158y_{n+1}), (5286y_{n+1} - 66x_{n+3})]$
11.	$6P^2 - Q^2 = 600$	$[(267x_{n+3} - 2158y_{n+2}), (5286y_{n+2} - 654x_{n+3})]$
12.	$6P^2 - Q^2 = 24$	$[(2643x_{n+3} - 2158y_{n+3}), (5286y_{n+3} - 6474x_{n+3})]$
13.	$6P^2 - Q^2 = 384$	$[(18y_{n+2} - 178y_{n+1}), (436y_{n+1} - 44y_{n+2})]$
14.	$6P^2 - Q^2 = 6400$	$[(18y_{n+3} - 1762y_{n+1}), (4316y_{n+1} - 44y_{n+3})]$
15.	$6P^2 - Q^2 = 384$	$[(178y_{n+3} - 1762y_{n+2}), (4316y_{n+2} - 436y_{n+3})]$

D. Employing linear combination among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in Table: 3 below:

Table: 3 Parabolas

S. No	Parabolas	(R,Q)
1.	$24R + 2Q^2 = 192$	$[(109x_{2n+2} - 11x_{2n+3} + 4), (27x_{n+2} - 267x_{n+1})]$
2.	$120R + Q^2 = 9600$	$[(1079x_{2n+2} - 11x_{2n+4} + 40), (3(9x_{n+3} - 881x_{n+1})]$
3.	$6R + Q^2 = 24$	$[(27x_{2n+2} - 22y_{2n+2} + 2), (54y_{n+1} - 66x_{n+1})]$

4.	$30R + Q^2 = 600$	$[(267x_{2n+2} - 22y_{2n+3} + 10), (54y_{n+1} - 654x_{n+1})]$
5.	$294R + Q^2 = 57624$	$[(2643x_{2n+2} - 22y_{2n+4} + 98), (54y_{n+3} - 6474x_{n+1})]$
6.	$12R + Q^2 = 96$	$[(1079x_{2n+3} - 109x_{2n+4} + 4), (267x_{n+3} - 2643x_{n+2})]$
7.	$30R + Q^2 = 600$	$[(27x_{2n+3} - 218y_{2n+2} + 10), (534y_{n+1} - 66x_{n+2})]$
8.	$6R + Q^2 = 24$	$[(267x_{2n+3} - 218y_{2n+3} + 2), (534y_{n+2} - 654x_{n+2})]$
9.	$30R + Q^2 = 600$	$[(2643x_{2n+3} - 218y_{2n+4} + 10), (534y_{n+3} - 6474x_{n+2})]$
10.	$294R + Q^2 = 57624$	$[(27x_{2n+4} - 2158y_{2n+2} + 98), (5286y_{n+1} - 66x_{n+3})]$
11.	$30R + Q^2 = 600$	$[(267x_{2n+4} - 2158y_{2n+3} + 10), (5286y_{n+2} - 654x_{n+3})]$
12.	$6R + Q^2 = 24$	$\left[(2643x_{2n+4} - 2158y_{2n+4} + 2), (5286y_{n+3} - 6474x_{n+3}) \right]$
13.	$24R + Q^2 = 384$	$[(18y_{2n+3} - 178y_{2n+2} + 8), (436y_{n+1} - 44y_{n+2})]$
14.	$240R + Q^2 = 38400$	$[(18y_{2n+4} - 1762y_{2n+2} + 80), (4316y_{n+1} - 44y_{n+3})]$
15.	$24R + Q^2 = 384$	$[(178y_{2n+4} - 1762y_{2n+3} + 8), (4316y_{n+2} - 436y_{n+3})]$

CONCLUSION:

In this Paper, we have presented infinitely many integer solutions for the Non-homogeneous equations represented by hyperbola given by $5x^2 - 3y^2 = 18$. Non-homogeneous binary quadratic equations are rich in variety, one may search for the choices of equations and determine their integer solutions along with suitable properties.

REFERENCES:

- 1) David M. Burton, Elementary Number Theory, Tata MC Graw Hill publishing, Company, limited New Delhi-2000.
- 2) Mordel, L. J., Diophantine equations. New York: Academic Press.
- 3) Telang S. J., Number Theory, Tata Mc Graw Hill Publishing, Company limited New Delhi-2000.
- 4) Dr. J. Shanthi, Dr. M. A. Gopalan, "A Study on the Positive Pell Equation $y^2 = 42x^2 + 7$ ", International Research Journal of Education and Technology, ISSN: Volume 01, Issue 05, Page No:107-118, January 2021.
- 5) Dr.J. Shanthi, M. A. Gopalan, P. Dhanassree, "Observation on the integral solutions of the Ternary quadratic equation $x^2 + y^2 = z^2 + 10$,", International Research Journal of Education and Technology, Volume 04, Issue 07, Page No:220-231, Issue No:2581-7795, July 2022.
- 6) Dr.T.Mahalakshmi, P. Sowmiya, "A Search on Integer solutions to the Homogeneous quadratic equation with three unknowns $x^2 + 14y^2 = 23z^2$,", International Journal of Research publication and reviews, Volume 04, Issue 01, Page No:714-720, Issue No:2582-7421, January 2023.
- 7) Dr. J. Shanthi, B.Indhumuki, "Observation on the Hyperbola $x^2 = 20y^2 4$,", International Journal of Research publication and reviews, Volume 04, Issue 01, Page No:678-682, Issue No:2582-7421, January 2023.

- 8) Dr. J. Shanthi, M.Parkavi, "On finding Integer solutions to the Homogeneous Ternary quadratic Diophantine equation $2(x^2+y^2)-3xy=32z^2$,", International Journal of Research publication and reviews, Volume 04, Issue 01, Page No:700-708, Issue No:2582-7421, January 2023.
- 9) Dr. J. Shanthi, M.Parkavi, "On finding integer solutions to the Non-Homogeneous Ternary qunitic Diophantine equation $x^2 + y^2 xy = 28z^2$,", International Research Journal of Education and Technology, Volume 05, Issue 03, Page No:463-471, Issue No:2581-7795, March 2023.
- S.Vidhyalakshmi, J. Shanthi, M.Devi, M. A. Gopalan, "A Study on the Hyperbola $y^2 = 87x^2 + 1$ ", International Research Journal of Education and Technology, Volume 05, Issue 03, Page No:18-32, Issue No:2581-7795, March 2023.
- Dr. J. Shanthi, M. Parkavi, "Observation on the Hyperbola $x^2 = 20y^2 + 45$,", International Journal of Research publication and reviews, Volume 04, Issue 05, Page No:570-583, Issue No:2582-7421, May 2023.
- 12) Dr. T. Mahalakshmi, E. Shalini, "On finding integer solutions to the Homogeneous Ternary quadratic Diophantine equation $3(x^2 + y^2) 5xy = 15z^2$,", International Journal of Research publication and reviews, Volume 04, Issue 05, Page No:452-462, Issue No:2582-7421, May 2023.
- 13) Dr. T. Mahalaksmi, J. Shanthi, K.Keerthiga, "On the Positive Pell Equation $y^2 = 80x^2 + 41$ ", International Journal of Research publication and reviews, Volume 04, Issue 10, Page No:2278-2285, Issue No:2582-7421, October 2023.