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ABSTRACT 

Steganalysis involves identifying and examining covert data concealed through steganography in digital content. Nevertheless, current activation functions like 

ELU, ReLU, and Leaky ReLU have drawbacks, including dead neurons and high computational demands. A novel hybrid activation function that integrates a 

convolutional neural network (CNN) to streamline the feature extraction and classification processes has been suggested to solve the weakness associated with 

negative values. According to the regression results, the proposed approach surpasses the existing activation functions, with a mean square error of 6%. 

1.0 Introduction 

Steganalysis is a technique to uncover hidden messages in digital media like images, sounds, videos, and plain-text documents(Guo et al., 2014; Sahu & 

Sahu, 2020). This involves hiding messages within a "Transporter/Cover media" to establish secret communication(Fatnassi et al., 2016; Ranjan & 

Forensics, 2016). Steganography uses different algorithms such as specific, target, blind, or universal and hiding techniques like Steghide, OpenStack, 

COVER, TEST, JUNIWARD, and UERD to hide messages in images(Yan et al., 2021; Yola et al., 2023). In image steganalysis, machine learning and 

deep learning techniques such as CNN, RNN, and DNN are used to overcome embedding algorithms(Beke & Kumbasar, 2019; Sabeena & Abraham, 

2021). The proposed approach uses CNN as the modelling process with hybridized activation functions to demonstrate an advancement over existing 

works. The system simplifies feature extraction and classification procedures while potentially improving their effectiveness by combining them into a 

cohesive end-to-end framework(Yu et al., 2020; Zoph & Le, 2018). However, distinguishing image content with different texture intricacies can be 

challenging due to the variances produced by steganographic indicators(D. Hu et al., 2021; J. Hu et al., 2019; Li et al., 2014). To address this, the 

evaluation highlights feature-based steganalysis approaches that select and absorb relevant information from cover images(Gustavo et al., 2019; Rathika 

et al., 2017). The study also offers insights into advanced image steganography and its five types: spatial, transform, spread spectrum, statistical, and 

distortion(Atta & Ghanbari, 2021; Eid et al., 2022; Z. Wang et al., 2020). Thus, the research shows how the regression result is presented using training 

and evaluation datasets.  

However, the review notes that the performance of current CNN-established approaches is still not as robust as eccentric handcrafted feature-based 

approaches(Yedroudj et al., 2018). To improve detection accuracy, the study proposes different methods. Firstly,handcrafted feature-based steganalysis 

and CNN-based techniques enhance detection accuracy. Finally, the review offers a model that utilizes three hybridized activation functions to improve 

the performance of the GNCNN architecture(Hussain et al., 2020). Overall, the research provides an insightful analysis of steganalysis, steganography 

delving into the different types and approaches used to uncover hidden image messages. 

2.0 Literature Review 

Neural Network The domain of neural networks is an attractive realm to explore. These intricate systems are crafted to imitate biological networks, 

acquiring the ability to execute tasks using an introduction to diverse datasets and patterns, avoiding the dependence on task-specific rules. They are 

predicated on models of computational threshold logic, deriving inspiration from either cerebral investigations or the application of neural networks to 

the realm of artificial intelligence(X. Hu et al., 2021; Montavon et al., 2018; X. Wang et al., 2022; Z. Wang et al., 2020). Moreover, neural networks have 

contributed to the advancement of the finite automata concept(Gupta et al., 2021; Scardapane et al., 2019; Q. Wu & Wu, 2022). A classical neural network 

encompasses neurons, connections, weights, biases, propagation functions, and a learning rule(Zhang et al., 2019). The process of learning in neural 

networks entails the adjustment of free parameters, such as weights and biases, which can modify the network's responsiveness to its 

surroundings(Bellaby, 2021; Gital et al., 2022; X. Hu et al., 2021). Similarly, the study highlights also the evolution of deep learning. 

Deep learning mirrors the evolution of neural networks(F. Hu et al., 2021). Starting in the 1950s, advancements in computer hardware technology paved 

the way for the transformation of neural networks from single-layer models to multi-layered structures, ultimately giving rise to the contemporary deep 

neural networks we are familiar with today(Bach et al., 2015).  Neural networks, according to Hecht Nielsen, an American neural network scientist, a 
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neural network is a computing system made up of several simple, highly interconnected processing elements, which process information by their dynamic 

state response to external inputs(Hecht-Nielsen, 1992). Moreso, neural networks are made up of an input layer, one or more hidden layers, and an output 

layer. Each neuron connection has a weight that is modified during training to improve the network's performance(Kato et al., 2020). 

In addition, deep learning techniques have grown in recent years as a result of increased processing power and data generation(D. Hu et al., 2021). 

Therefore, deep learning helps to produce robust AI systems thatsimply could not be possible some years ago(Erickson et al., 2017). Thus, Large-scale 

data interpretation and information generation are made quicker and simpler using deep learning(L. Wang et al., 2022; Zeng et al., 2019). It is used in a 

wide range of fields, including automatic driving, medical equipment and image processing(Cao, 2022) that focuses on how deep learning providesa 

solution to embedding mystery information on images using deep learning techniques(Okajima & Sadamasa, 2019). The biggest advantage of using deep 

learning in research is the ability to increase layers andtrain the model to execute feature engineering by itself(Aggarwal, 2018; Tabares-Soto et al., 2019) 

2.1 Analysis of Existing Algorithms  

This study aimed to analyze the algorithms employed in digital image Steganalysis from 2014 to 2021. The review examined these algorithms' advantages, 

limitations, and incentives. Rectified linear activation (ReLU) emerged as a popular motivational function, while quantization was the least utilized 

activation function(Chhikara et al., 2018). For further details on the algorithms employed in digital images by scholars during this period, please refer to 

Table 1 below. Furthermore, this study delved into the benefits and drawbacks of the Steganalysis Algorithm in the digital image domain, with a specific 

focus on jpeg and spatial domains. 

Table 1: ReLU activation function 

 

Reference and Year Algorithm Activation Function 

Rectified Linear Units are used as an activation function. 

Fatnassi, A., Gharsellaoui, H., &Bouamama, S. (2016). A New Hybrid 

Steganalysis Based Approach for Embedding Image in Audio and Image Cover 

Media.  

Pitfalls-Net2016 ReLU 

G. (2017). Deep convolutional neural network to detect J-UNIWARD.  Xu-Net V3 2018 ReLU 

Yang, J., Shi, Y.-Q., Wong, E. K., & Kang, X. (2017). JPEG Steganalysis Based 

on DenseNet. 

Yang-Net 2018 

 

ReLU 

Boroumand, M., Chen, M., & Fridrich, J. (2019). Deep residual network for 

steganalysis of digital images. 

SR-Net 2018 

 

ReLU 

Yedroudj, M., Comby, F., & Chaumont, M. (2018). Yedroudj-net: An efficient 

CNN for spatial steganalysis. 

Yedroudj-Net2018 

 

ReLU 

Zhong, S., & Chen, K. (2018). A novel steganalysis method with deep learning 

for different texture complexity images. 

Zhong-Net 2019 

 

ReLU 

Zeng, J., Tan, S., Liu, G., Li, B., & Huang, J. (2019). WISERNet: Wider Separate-

Then-Reunion Network for Steganalysis of Color Images. 

 WISER-Net2019 ReLU 

 

Table 1:Thereview shows how Pitfalls-Net 2016, Xu-Net version 3, 2018, Yang-Net 2018, and SR-Net 2018 used ReLU. Similarly, Yedroudj-Net 2018, 

Zhong-Net 2019, and WISER-Net 2019 all use the ReLU activation function. The Pitfall-Net shows how experiments are carried out in the clairvoyant 

scenario. Then, using the fully connected neural network (FNN) allows the learning process to run through a single global optimization. In Xu-Net V3, 

the model uses a single channel of information in the selective statistic,thereby showing the importance of Data Augmentation in image 

steganalysis.Furthermore, Yang-Net uses CNN architecture and prediction in the Jpeg domain for their experiment. Also, SR-Net usedminimized and 

visible force elements that showed excellent performance. Each of these mentioned models uses both spatial and Jpeg domains. The drawback of Yang-

Net is that the execution is more profound and slower.SR-Net has the weakness of the condensed nature of connections, and performance was not 

satisfactory. 

Moreover, Yedroudj-Net 2018, Zhong-Net 2019, and WISER-Net 2019 all approach factor ReLU as an activation function. The model of Yedroudj-Net 

uses pre-processing with the 30-filter bank. The model uses truncation activation and batch normalization with a linked scale layer. Yedrouj-Net 

performed better than Ye-Net and Xu-Net. The shortcoming ofYedroudj-Net's model is its complexity, leading to a time increase. Classical Zhong-Net 

trained in image texture feature and grey level co-occurrence matrix. The datasets appear divided as subsets with many intricacies. Training took place 

in the most effective region (MER). The disadvantage of this method seems to be a weakness of the adaptive algorithm in network generalization. More 

so, the Wiser-Net 2019 model revealed steganalysis structure in JPEG color images. The model introduces Channel-wise convolution that makes the 
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network performance superior. The model's limitation isits complexity, with several mismatches in the process. The chart below, Figure1, shows a 

diagrammatical representation of the activation function ReLU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graph Showing ReLU activation function used by different Algorithm 

Table 2: Two activation functions 

Reference and Year Algorithm Activation Function 

Rectified Linear Units are used as an activation function. 

Y.Qian, J. Dong, W. Wang, (2015). Deep learning for steganalysis via 

convolutional neural networks. 

Qian-Net 2015 ReLU & TanH 

G. Xu, H.-Z. Wu, (2016). Structural design of convolutional neural 

networks for steganalysis. 

Xu-Net v1 2016 ReLU &TanH 

J. Ye, J. Ni, & Y. Yi (2017). Deep learning hierarchical representations 

for image steganalysis. 

Ye-Net 2017 ReLU & TLU 

M. Chen, V. Sedighi, M. Boroumand, & J. Fridrich (2017). Jpeg-phase- 

aware convolutional neural network for steganalysis of jpeg images. 

Chen-Net 2017 ReLU and TanH 

You, W., Zhang, H., & Zhao, X. (2021). A Siamese CNN for Image 

Steganalysis. 

You-Net 2020 ReLU & TLU 

 

Table2, the review shows how Algorithms such as Qian-Net 2015, Xu-Net Version 1 2016, Ye-Net 2017, Chan-Net 2017, and You-Net 2020were 

discussed with their benefit and shortcomings. The Qian-Net model was unified into a single architecture called Gaussian-Neuron CNN (GNCNN). 

Likewise, the Xu-Net was found to be connected with enhanced noise residual, low-cut filter, and high pass filter layer network. Then, the Yet-Net and 

Chan-Net show benefits in data argumentation and information through a single-channel modification of the CNN architecture that improves detection 

accuracy. The shortcoming of the Qian-Net model is the non-convergence of network nodes. The model's performanceis less superior to the Spatial Rich 

Model (SRM), making it expensive to run on high resolution. The limitations of Xu-Net are low performance at the early stage and lack of proper 

application of CNN. Since data sets are Auto-encoder enabled in Xu-Net. Also, limitations of Yet-Net are slow speed andensemble methods are not 

generic. The Chan-net limitation is a time of training in polynomial neural networks that appears longer and more complex. Similarly, You-Net 

(SiaStegNet)shows CNN-based architecture consisting of two symmetrical subnets with shared parameters in three phases: pre-processing, feature 

extraction, and classification. The main benefit of the You-Net is in the unification of the network layer and the heterogeneous nature of the data sets. 

The shortcoming of the You-Net Model is that the model has yet to solve arbitrary-size image steganalysis. There are also many mismatches in the 

statistical distribution caused by the resizing of images. Figure2, below,representsthe activation function ReLU with TLU or TanH in a chart. 
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Figure2: Graph Showing Activation Function ReLU used with either TLU or TanH 

Table 3: Two Different Activation Functions 

 

Similarly, from Table 3, the review shows ReSt-Net 2018, Qi-Net 2018, and Zeng-Net version II 2018 factor the use of non-linear filters in some instances. 

Then, diverse activation modules and parallel subnets-based CNN for spatial image steganalysisperformbetter than Xu-Net and Ye-Net without Spatial 

and Channel-wise Attention (SCA). The limitation of the approach was the slowness of the model, and the structure was vast. The qi-Net model allows 

subjective size or resolution for the input. Meanwhile, the system consists of several convolutional layers that are fully connected. The Structureshows a 

design based on a Multi-column Convolutional Neural Network (MCNN). The methoduses an activation step and a pooling step. The performance of Qi-

Net is better than that of Ensemble Classifier with SRM features, as reported. The disadvantage of the model is having a small set of steganography 

algorithms; likewise, there is information loss due to downsampling. The Zeng-Net version II model adopted densely connected convolutional networks 

known as Dense-Net. Zeng-Net achieves complete detection through JPEG compression involving thoroughly combined and pooling layers. Likewise, 

dense block, single-compression, and image density are experienced in the model. The limitation of Zeng-Net is in training the datasets using dropout 

techniques. 

More so, Wu-Net 2018 and Calpa-Net 2020 hinted at the development of image steganalysis. For instance, Wu-Net simplifies a Deep Residual Learning 

Network (DRN). The model indicated the value network layer in many digital image samples. DRN preserves the stego signal important to the Insight of 

the cover and stego image in the process. The Wu-Net Model performs better than the classical rich model method. The Wu-Net is expensive in 

computational resources and thus lacks efficiency. Likewise, the detection error rate increases, which helps in overfitting occurrences in the approach. 

Furthermore, Calpa-Net reveals a hybrid criterion making use of three stages. The target is that it does protect datasets. Meanwhile, Calpa-Net used three 

steps: training, pruning, and fine-tuning. The stages ensure the protection of sets of inherited learned essential weights. The model improved the manner 

of adaptiveness, transferability, and scalability while the convolutional layer appeared in a data-driven way. Likewise, the limitation of the model includes 

Reference and Year Algorithm Activation Function 

Rectified Linear Units and Other activation functions 

Li, B., Wei, W., Ferreira, A., & Tan, S. (2018). ReST-Net: Diverse 

Activation Modules and Parallel Subnets-Based CNN for Spatial Image 

Steganalysis 

ReSt-Net  

2018 

 

ReLU and Logistic function 

(Sigmoid) 

Qian, Y., Dong, J., Wang, W., & Tan, T. (2017).Feature learning for 

steganalysis using convolutional neural networks. 

Qian-Net 2017 Logistic Regression (Sigmoid) 

Zeng, J., Tan, S., Liu, G., Li, B., & Huang, J. (2019). WISERNet: Wider 

Separate-Then-Reunion Network for Steganalysis of Color Images. 

Zeng-Net 2018 Quantization and Truncation 

Zeng, X., Feng, G., & Zhang, X. (2019). Detection of double JPEG 

compression using a modified DenseNet model. 

Zeng-Net V2 2018 BN and ReLU 

Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual learning for image 

steganalysis. 

Wu-Net2018 

 

Gaussian Activation and ReLU 

Tan, S., Wu, W., Shao, Z., Li, Q., Li, B., & Huang, J. (2021). CALPA-

NET: Channel-Pruning-Assisted Deep Residual Network for 

Steganalysis of Digital Images. 

Calpa-Net 2020 Truncated Linear Unit (TLU) 
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performancethat is slightly worse than the original SR-Net. When tested with a Jpeg stego image. Meanwhile, the resulting redundancy parameters make 

the model slower. Figure4 shows the diagrammatical representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Graph Showing Activation Functions with Other Functions in different years 

The review results indicate that several techniques require improving deep learning concepts in image steganalysis. The results also suggest that the 

Truncated Linear Model (TLU) significantly decreases in effect, leading to a loss in performance. However, the Gaussian process in convolution reduces 

the error in learning the model. The depth in the 152 layer has an error rate of 3.57% on the test set. Meanwhile, the Residual Network had a single-model 

error of 4.49% when tested on 152 layers. The complexity result shows a lower error percentage of 3.57% when experimented. However, the model 

shows fewer filters with significant baseline FLOPS. Furthermore, most of the model uses CNN in structuring Digital image steganalysis, with the Spatial-

rich model experiment showing a fair result. Most of the datasets contain 10,000 units of grayscale cover images. However, errors were detected after 

training at 0.48, 0.43, and 0.31 using an auto-encoder-based blind step analyzer. Meanwhile, SPAM and SRM stood at 0.42 and 0.14, respectively, using 

the deep learning toolbox for the experiment. Likewise, the handcrafted steganalysis feature and deep learning show improvement and effectiveness based 

on some perspectives. The optimal simulator is for data embedding. The simulator's accuracy stood at 73.21% at 0.4 bpnz, in which 10,000 grayscale 

images with 512x512 sizes are considered from BossBase. The optimal simulator is for data embedding. In addition, a Deep Residual learning-based 

Network (DRN) encompasses many network layers used to capture the digital images' compound statistics, but overfitting occurrence becomes truthful 

and expensive(S. Wu et al., 2018). Also, the result of the Most Effective Region (MER) approach used in training shows effectiveness with different 

texture complexities, showing 90% improvement compared to other models like HUGO. More so, detection accuracies of exercise show that the algorithm 

models on additional texture complexity images are 82.1% and 92.6% in WOW and 81.4% and 90.0% in S-UNIWARD. In most cases, the resultant 

models highlighted the need to improve the speed of the simulations. For instance, the rate of the training model shows that ordinary texture images are 

faster than complex texture images. The training takes 40 to 50 epochs of iteration to unite the network for regular texture. Forharshsurfaces, training 

takes about 70 to 80 generations of iteration. Furthermore, authors like Zhong-Net show that results are built on the idea of MER. Several datasets are 

distributed into subsets with distinctive intricacy based on the index steganalysis, and the network is trained using the same pattern and inception ideas. 

This highlights the need for further improvement in the components like complexity, time, and accuracy in image steganalysis. In a similar development, 

some approaches look asymptotic; for instance, the Gaussian distribution allows for drawing a closed-form expression of control for the robust detectors 

in the selection.  While the Neyman–Pearson optimality criterion is used for a given false alarm probability, I have reviewed the text you provided and 

corrected any spelling and grammar errors. Please find the revised text below: 

The review results indicate that several techniques require improving deep learning concepts in image steganalysis. The results also suggest that the 

Truncated Linear Model (TLU) significantly decreases in effect, leading to a loss in performance. However, the Gaussian process in convolution reduces 

the error in learning the model. The depth in the 152 layer has an error rate of 3.57% on the test set. Meanwhile, the Residual Network had a single-model 

error of 4.49% when tested on 152 layers. The complexity result shows a lower error percentage of 3.57% when experimented. However, the model 

shows fewer filters with significant baseline FLOPS. Furthermore, most of the model uses CNN in structuring Digital image steganalysis, with the Spatial-

rich model experiment showing a fair result. Most of the datasets contain 10,000 units of grayscale cover images. However, errors were detected after 
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training at 0.48, 0.43, and 0.31 using an auto-encoder-based blind step analyzer. Meanwhile, SPAM and SRM stood at 0.42 and 0.14, respectively, using 

the deep learning toolbox for the experiment. Likewise, the handcrafted steganalysis feature and deep learning show improvement and effectiveness based 

on some perspectives. The optimal simulator is for data embedding. The simulator's accuracy stood at 73.21% at 0.4 bpnz, in which 10,000 grayscale 

images with 512x512 sizes are considered from BossBase. The optimal simulator is for data embedding. In addition, a Deep Residual learning-based 

Network (DRN) encompasses many network layers used to capture the digital images' compound statistics, but overfitting occurrence becomes truthful 

and expensive. Also, the result of the Most Effective Region (MER) approach used in training shows effectiveness with different texture complexities, 

showing 90% improvement compared to other models like HUGO. More so, detection accuracies of training show that the algorithm models on different 

texture complexity images are 82.1% and 92.6% in WOW and 81.4% and 90.0% in S-UNIWARD. In most cases, the resultant models highlighted the 

need to improve the speed of the simulations. For instance, the speed of the training model shows that ordinary texture images are faster than complex 

texture images. The training takes 40 to 50 epochs of iteration to unite the network for ordinary texture. Meanwhile, for complex textures, training takes 

about 70 to 80 epochs of iteration. Furthermore, authors like Zhong-Net show that results are built on the idea of MER. Several datasets are distributed 

into subsets with distinctive intricacy based on the index steganalysis, and the network is trained using the same pattern and inception ideas. This highlights 

the need for further improvement in the components like complexity, time, and accuracy in image steganalysis. of α0 = P (α (x) = H1|H0) in arriving at 

the findings. Warden (2018) introduced how the detection affected utilization when Warden did not exploit the knowledge of the selection channel. The 

result shows the cover image in an 8-bit grayscale with pixel value Z= (Z1…, ZN) Zn ϵ (0…, 255).   The percentage of accuracy is above normal standards 

when compared to other algorithms like HUGO that are shown in the experiments that are carried out on BOSS base on 1.01 containing 10,000 grayscales 

512×512 images that are achieved with FLD ensemble permit instead of binary outputs.   In most of the models, activation functions such as Rectified 

Linear Activation (ReLU) and Hyperbolic Tangent (TanH), while in some instances, Logistic function (Sigmoid) and Logistic Regression. The best 

performance of the size filter in the spatial domain is seven instead of 3, which shows a significant improvement by at least 1.10%.  Therefore, the spatial 

and JPEG domain results show 2% and 3% achievement, and a slight reduction of 0.24% in security performance was experienced. The analysis also 

shows that the segment of all of the wrap/stego images is categorized into sizes in a small circumspect model.  The B×B (B=8b, b=2, 3…, min (M, N/8) 

where each chunk is divided B2/ 64 DCT block of size, the larger the size of testing, the more precise the output.  Although the computational is high, in 

a situation where the sample is randomly selected in the testing from Sample K, the selection. The classification is based on the grey level at 8×8 size and 

64 grey level values and derived steganalysis characteristics. The maximum performance of the Gaussian distribution method over the penny method is 

almost close to 15% with an embedding rate at 0.2bpd, and in using overlapping in training 400 images, the percentage increases from 71.82% to 80.96%, 

81.72%, 82.06%, and 82.39% respectively. Therefore, the above findings answered the research question on the current trends of steganalysis 

algorithms,motivation function, benefits, and challenges within the investigation period, i.e., 2014-2021. The algorithms and motivational functions are 

used as the correlation characteristics utilized in the reviewed papers to stimulate quick learning in the field of image steganalysis, and that answers the 

second research question. Moreover, the review also discovered that most of the reviewed research papers focused on hidden layers using activation 

functions such as ReLu, which also answered research question three in this study. 

3.0 Proposed Framework 

A problem must exist before designing a model, and the dataset used is crucial for improving complexity(Gliner et al., 2021). The algorithm is for 

classification and regression but cannot be directly functional or extended to deep models(Zhong & Chen, 2018). Likewise, the architecture of the deep 

learning process is at the bottom, the unifying and automated approach is shown as a single-step approach in Figure5: 

 

 

 

 

 

 

 

 

 

 

Figure5: The Proposed Framework. 

Figure 5 shows the proposed improved complexity of image steganalysis; theoffered techniques/ approaches to use deep learning-based feature extraction 

are Convolutional Neural Networks (CNNs) - CNNs are a popular choice for image classification and regression tasks(You et al., 2021). For the 

steganalysis aspect, it is proposed that CNNs are trained on a stego and cover images dataset to extract relevant features for distinguishing between the 

two(Ke et al., 2019). In steganalysis, transfer learning can be used to fine-tune a pre-trained CNN on a dataset of stego and cover images(Shorten & 
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Khoshgoftaar, 2019). In the research work, the acquired knowledge is implemented on the dataset and used in a collaborator environment to run the pre-

training test. How the model concept works in the hidden layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure6: Flowchart of the proposed model. 

3.1 Expended Model Hidden Layer 

The figure 6 displayed in the expanded model concept shows the cycle of the hybridized activation function, which provides a promising value of the 

digital image after running a test. Initially, all alfa values in the table are set to default, while the filters keep changing or increasing from 64 to 128 from 

layer 1 to layer 5 in the hidden layer. In deep learning, a filter refers to the weights or parameters of a convolutional layer in a neural network. It is used 

to process input data and create a feature map displayinginput features, such as edges, shapes, colors, or patterns in a digital image. The filter size is the 

size of the filter, such as 3x3 or 5x5, and the effectiveness and efficiency of a convolutional layer are influenced by size and testbusing the Adam optimizer, 

which rates model parameters in real-time using adaptive learningrates and moment estimation to improve the accuracy and speed of CNNs. Thus, have 

some similarities and differences, such as     

𝑬𝑳𝑼(𝒙) = {
    𝒊𝒇  𝑥 ≥ 0

∝ (𝒆𝒙 − 𝟏) 𝒊𝒇 𝑥 < 0
------------------- (1) 

ELU activation Function 

where α is a hyperparameter regulating the value, ELU approaches negative inputs. 

The proposed stimulation function arranged average activations arereduced bias sand grade. curve enhances learning speed accuracy, it crucial for digital 

imagecomplexity,defineas  

𝑹𝒆𝑳(𝒙) = 𝐦𝐚 𝐱(𝟎, 𝒙)-----on is definedas bold as bas 

𝑳𝒆𝒂𝒌𝒚 𝑹𝒆𝑳𝑼(𝒙) = {
𝑥 𝑖𝑓  𝑥 ≥ 𝟎

𝒂𝑥  𝑖𝑓 𝑥 < 0
------------------------(3) 

LeakyReLU function with α=0.1:    
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Equation 3 is a leaky ReLU function showing how leaky ReLU is defined; the  

Adding an activation function to ReLU can be slower due to the exponential operation and can cause neurons to become inactive if inputs are negative. 

The Explicit Linear Unit (ELU) is hybridized with the two activation functions, addressing negative inputs to improve outcomes.  

Traditional learning processes have limitations, and deep learning methodologies have specific hyperparameters that enhance performance and efficiency. 

These hyperparameters include learning rate, epoch, dropout rate, max pooling, filters, and hidden layers. These improvements reduce manual effort, 

improve fitting capacity, prevent overfitting, and enhance the model's robustness. An additional epoch, rising to 30 to 50 generations, is considered to 

optimize our model better. The proposed kernel increase in CNNs aims to improve training and validation by balancing accuracy and efficiency. A larger 

kernel size increases the number of parameters and receptive field but also increases computational cost and overfitting risk(Yuan et al., 2019). The kernel 

moves on input data with a stride value, downsampling the input to reduce overfitting (Lin et al., 2020). Batch normalization is introduced to make 

information more consistent, speeding up the training process and reducing overfitting. This technique is used before activation functions. Another 

improvement to the hybridized model is in max pooling, a type of pooling technique that involves taking the supreme value within each rectangular area 

of the feature map. Furthermore, in the model training, max pooling was used after the convolutional layer in CNNs (3,3). The highest value in each pixel 

window is shrinking, making the features suitable and lowering the computational cost. In addition, the pooling was specified, giving transparency over 

the input, while the window moved the stride each time. As a result, a max pooling layer's output has fewer stimulations than the input and highlights the 

most significant feature within each region.  The impression exploited the efficiency and the ability to decrease the spatial dimensionality of the feature 

maps. Thus, making the CNN architecture more resistant to small disparities in the input digital image. This study uses dropout to reduce overfitting in 

neural networks (NN) by ignoring some nodes or units in a layer during training. The dropout rate p represents the chance of a neuron being dropped out 

in each training step. Con2D convolution operation applies kernel size and shape to the input data using a fully connected layer.   

3.2 Dataset 

The datasets in the research are divided into (2), which include the training and the validation or testing. Meanwhile, the proposed research uses 80% of 

a dataset for training, with 20% for testing. The model uses splitting, scaling, and normalization to ensure better performance. The data is divided into 

training and testing to prevent overfitting and optimize the model(Yedroudj et al., 2018). Normalization is applied for proper optimization. The model's 

performance is tested using various activation functions, and features are transformed to a similar scale to prevent data leakage. The research uses 

accuracy, precision, F1 score, and Racall to measure the model's effectiveness. The TensorFlow library, an open-source software for building and 

deploying ML and deep learning models, is used to compute data flow graphs. 

 

 

 

 

 

 

 

Figure 7: Typical Example of a data flow 

An example of data flow is shown in Figure7: Data flow is essential in the hidden layer of the activation function because it determines how the 

information from the input layer is transformed and propagated to the output layer. Thus, the distribution and handling of different operations or nodes 

in a neural network is called data flow(Zhou et al., 2020).  The node in the DFD is a data store, an external entity, or a process. Data flows that enter or 

exit a node have labels X and Y(Yang et al., 2017). For example, X is the input data name for the process node, and Y is the output data name for the 

same node. X and Y can also be variables that represent the data values that are manipulated or stored by the nodes. Keras is a favored wrapper for 

TF(Ravi & Alazab, 2021). The choice of environment is the Google Collaboratory  

3.3 Hybridized Algorithm 

The main reason for the hybridization of the model is the activation function; below is the table of other algorithms, benefits, shortcomings, and motivation 

functions. They show different algorithm methodologies for achieving the model goal.   
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Table 4: 

Algorithms 

and Year 

Benefits Shortcomings Motivation 

Function 

 

 

Yedroudj-Net 

2018 

The model uses pre-processing about 30-filter 

bank, truncation activation, and five 

convolutional layers with Batch 

Normalization linked using a Scale Layer. 

The model is better than Ye-Net and Xu-Net. 

 

Complexity of the mode, 

convergence time increases  

ReLU 

Zhong-Net 

2019 

The model uses the Image texture feature, a 

gray-level co-occurrence matrix.  

Several data sets are divided into subsets of 

different intricacy based on the index 

steganalysis, developed and trained in the 

MER-Most Effective Region and initial ideas. 

Network generalization capability on 

the adaptive algorithm is weak 

ReLU 

WISER-Net 

2019 

Steganalysis structure for JPEG color images. 

Channel-wise convolution was introduced to 

the network, which makes performance 

superior. 

The model is very complex, with 

mismatching  

ReLU 

You-Net 

(SiaStegNet) 

2020 

Siamese, CNN-based architecture, which 

consists of two symmetrical subnets with 

shared parameters, 

and contains three phases: preprocessing, 

feature extraction, 

and fusion/classification. 

Unfixed network layers. 

Datasets are heterogeneous 

Methodology yet to solve arbitrary-size 

image steganalysis, 

Mismatch in the statistical distribution 

caused by resizing of images.  

ReLU and TanH 

 

CALPA-NET 

2020 

The hybrid criterion usesthree stages: 

training, pruning, and fine-tuning to protect a 

set of inherited learned necessary weights. 

The convolutional layer is in a data-driven 

manner.  

The model shows adaptivity, transferability, 

and scalability. 

CALPA- SRNet is slightly worse than 

the original SRNet when JPEG stego 

images are with Q F 95. This indicates 

that when used to detect 0.4 bpp, 

Redundant parameters make it slower.  

Truncated Linear 

Unit (TLU) 

 

Table 1shows different models from 2018 and 2020. Showing some activation functions ReLU and TLU, ReLU and Tanh, and ReLU only. Therefore, 

this research study presents a precise, distinct method of hybridizing different activation functions. Where the hybridized algorithm gives the step-by-

step of the newly proposed model.  Thus, the CNN architecture for the model was designed by hybridizing different activation functions with varying 

parameters, kernel values, max-pooling layers, and dropout layers. 

The research work shows the hybridized algorithm model has shown promising results.  

The hybridized model is shown as follows: 

Function HybridizeLUActivationFunctionInCNNForSteganalysis 

Input:  

         Let M be the model. 

         Let W be the input-weighted vectors in the model. 

         Let A {ELU, LeakyReLU, ReLU} be the set of activation functions. 

Output:  

       A modified model M’  

Algorithm:  

        Let L be the set of layers of M. 

        For i = 1 to 5  

                    For each l in L  

                           If l is an activation layer, Then 

                                                      If W < 0 Then  

                                                   Select l’ from A {ELU}  

                                        Else, If W > 0, Then  

                                                   Select l’ from A {ReLU}  
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                                        End If 

                                 End If  

                                 If l’ is still <= 0 Then  

                                           Select l’ from A {LeakyReLU}  

                                  End If  

                       End For each  

                      Replace l with l’ in L. 

              End For  

  Create a new, improved model M’ from L. 

 End  

 

4.0 RESULTS  

4.1 In this section, the research presents results and analysis showing the three algorithms used to improve complexity in image steganalysis. The result 

improves the problem of vanishing gradient and dying neurons. The following parameters are used in our training and testing:They are  

The parameters setting during the training phase and testing phase of the proposed approach  

Table 5: 

Hyper-parameter  values   

Learning rate   0.0001  

Maximum Epoch  50  

Dropout rate   0.2  

Batch- size  32 

Validation sample 0.20  

Training sample  0.80 

Kernel size (5,5) 

Max pooling  Five by 5  

 

4.4 REGRESSION ANALYSIS OF DIFFERENT MODELS 

4.4.1 Mean Square Error Graph of the ELU activation function 

 

Figure 8: The ELU activation function error over epoch 

The graph in Figure 8 demonstrates a notable reduction in the mean square error rate across the epoch. This reduction can be attributed to utilizing the 

ELU activation function, which can compute negative values. Specifically, the value of 0.08 indicates a superior performance in handling training datasets 

with lower error rates. 
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4.4.2 Mean Square Error Graph of the ReLU Activation Function 

 

Figure 9: Mean Square Error Graph of the ReLU activation function 

The graph displayed in Figure 9 represents the ReLU activation function. It shows the error rate at the 30 iterations and the value loss. Although the 

performance is relatively good, there is some concern about dying or inactive neurons that ReLU cannot handle, which produced a value of 0.125. 

4.4.3 Mean Square Error Graph of the LeakyReLU Activation Function 

 

Figure 10: The LeakyReLU activation Function MSE over epoch 

Figure 10shows that the LeakyReLU activation function performed better than ReLU because of its effectiveness in handling small negative slopes; 

thisindicates that the performance is better when compared to  
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4.4.4 Mean Square Error Graph of the CNN +HAF model. 

 

Figure 11: Mean Square Error Graph of the hybridized CNN +HAF model.  

In Figure 11, the graph shows almost 0.6 after just 30 epochs in the training; a period is a single pass of the training dataset, allowing the model to learn 

and improve its performance. In addition, MSE and ages are crucial in training CNN. MSE measures the difference between predicted and actual values 

and is used to minimize loss. Monitor changes in MSE between epochs to balance underfitting and overfitting. Therefore, the hybridized activation 

function shows better improvement when compared to existing models.   

4.5 REGRESSIONAL ANALYSIS OF THE PROPOSED MODEL AGAINST THE EXISTING MODELS 

In deep learning regression, performance evaluation is vital. The analysis resulted from finding a more robust way of improving the existing metrics 

based on Mean Squared Error (MSE), which calculates the average squared difference between predicted and actual values.  

Table 6: Values of MSE for the Activation Functions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Mean Square Error Chat 

Activation Function  Mean Square Error 

ELU 0.0800 

ReLU 0.1250 

Leaky ReLU 0.0508 

Hybridised (ELU+ReLU+Leaky Relu) 0.060 
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In Table 6, the value of the hybridized activation function in CNN is lower, showing 0.06, as opposed to ELU and ReLU, whose values are 0.08 and 

0.125, respectively.  Therefore, the mean square error of the hybrid activation function shows improvement compared to the existing models. LeakyReLU 

mitigates the "dying ReLU" problem, resulting in better training performance. 

Figure 12 displays a graphical representation of the model's performance, where CNN+HAF demonstrates better results with less error in both the training 

and evaluation datasets. This indicates that the hybridized activation function performs better than the existing models. 
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