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A B S T R A C T 

Growth of trees is found dependent on the adjacent trees size and distancing with each other. Moving across a field if trees are grown randomly, then this can be 

studied for random analysis pertaining to tree health and size. Thickness of tree trunks, cross-sectional area of tree trunks and distancing between trees in an 

agricultural field are studied using different analytical models. Generating heatmaps and interpolation techniques can be used to find meaningful results. 

Geographical Information Systems software has been used to evaluate various parameters and to derive randomized tree plantations conclusive results. Both vectors 

and raster layers are used for processing in multiple dimensions. Raw data from a field of Moringa Oleifera trees with randomized plantation of trees is a new 

approach to analysis. Most of the time the analysis is based on well planned agricultural fields but there we may not get to evaluate the advantages and disadvantages 

of randomized planted trees. Cost effectiveness can be attained by identifying the sparse tree areas where they can be converted to areas with cluster of trees keeping 

in view the optimum tree health and ease of irrigation for Moringa Oleifera tree plantations. 

Keywords: Geographical Information Systems · Randomized tree plantation · Tree clusters · Tree sparsity · Tree growth · Points vector layer · Lines 

vector layer 

1. Introduction 

The direction of cultivation is many a times a result of experience of farmers (Oksanen & Visala, 2009) and so is the randomized plantation of trees and 

has been passed from one generation to the next. Satellite imagery was used by Wang et al. (2016) to identify the sowing direction which was visually 

inspected by them and manually mapped as lines in a geographical information system (GIS). To generate analytical view of our randomized tree 

plantation and to make valid agrotechnological decision GIS is used by us for handling the data. 

Investigations on the appropriateness of land for a particular crop and land conservation strategies and land use development were conducted separately 

(Nyeko, 2012; Schwilch et al., 2011). Factors such as environmental and social costs must be considered of a piece of land in conjunction with intrinsic 

features (Duc, 2006; Bandyopadhyay et al., 2009). For identifying changes in land use and land cover mapping the modern techniques are remote sensing 

and GIS (Kumar, 2022). For optimized farming advanced GIS field mapping and precision crop planning has been emphasized (Kotam et al., 2024). 

Integrating trees into agricultural landscapes through agroforestry enhances biodiversity and improves soil fertility (Ali et al., 2024). 

Distribution of parks was assessed using GIS by Kyushik Oh and Seunghyun Jeong (2007). The soil erosion is estimated using remote sensing techniques 

and GIS by Machiwal et al. (2015). In analysing and measuring land use land cover changes, remote sensing and GIS have shown high efficiency (Ragini 

et al., 2023). GIS and remotely sensed data offer great potential for enhancing land suitability as shown by several researches ( Akinci et al., 2013; Pereira 

& Duckstein, 1993; Kalogirou, 2002; El Baroudy, 2016). 

Non-productive machinery movement can be reduced by efficient in-field operations (Filip et al., 2020). Simple field structures were used by dividing 

complex field polygons into subfields and calculating the optimal path within these subfields (Hofstee et al., 2009; Bochtis & Oksanen, 2009; Jin & Tang, 

2010). Spatial modelling of crop/weed images was done by Jones et al. (2009).  
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Precision agriculture may be site-specific to optimize environmental benefits, yield and sustainability (Bongiovanni & Lowenberg-Deboer, 2004; Oliver 

et al., 2013). Precision agriculture principles application is more pronounced when farm profitability and optimization in conservation practices are 

desired (McConnell & Burger, 2011; Capmourteres et al., 2018). Effects of application of conservation practices at field-scale has been reported (Her et 

al., 2016). 

Oyoshi et al. (2016) developed an algorithm to measure the growth status of crops with data from GIS, remote sensing and SAR imagery. Hamano et al. 

(2022) developed a method to measure the sloped areas with GIS software. Rizzo et al. (2022) carried out an analysis to increase the productivity of 

crops, to quantify different factors and agronomic management holds an overall contribution of 38% for the total yield gains. A study was conducted in 

nine corn fields located near Reisel, Texas by Adhikari et al. (2023) for farm-level economic benefits.  

Crookston (2006) identified Precision Agriculture will play a vital role in agricultural modernization. Identification of groundwater potential is important 

for the preparation of management plan of groundwater resource was given by Nigam et al. (2020). Water use efficiency can be a factor to be considered 

in random plantation of trees. 

This study is aimed at small field area randomised tree plantation of Moringa Oleifera trees. The aim is to identify clusters of trees and sparse area of 

trees on a small size field and effect of this on the health of planted trees in that area. To determine whether this affects our produce positively. Marking 

of trees is done in QGIS (QGIS, 2023) geographic information system software. Tree trunk width is determined in to see the growth patterns. Analysing 

through mathematical models in QGIS software to determine where to plant more trees has been done keeping in view the ease of irrigation, cost 

effectiveness and overall health of all trees in the field  

used in analysis. Heatmap and line density interpolation mathematical models have been used. From relative diameter of tree trunks to cross-sectional 

area of all tree trunks in a cluster of trees has been determined to reach at results. 

2. Methodology 

2.1 Study site and images 

Data of the field used is collected from agricultural farms of Dairy Campus, Dayalbagh Educational Institute, Dayalbagh, Agra, India. Moringa Oleifera 

trees are planted in this field of study. Images are taken by a high resolution mobile camera. High resolution near image covering a large field area and 

large number of trees is selected with 27 trees and the trunks of these trees clearly visible for using advanced mathematical models (Fig. 1). 

2.2 Data flow and software 

The main steps for image data processing are provided in figure 2. Vector layers of points and lines are created. Kernel density estimation heatmap is 

applied to vector layer of points. Line density interpolation map is generated for vector layer of lines. Data storage, image analysis and mathematical 

models applied are done using geographical information systems software. 

2.3 Vector layer model for determination of tree density 

Total 27 trees have been marked in points vector layer created in GIS software as shown in figure 3. The figure represents a vector layer of points placed 

over a raster layer. Moringa Oleifera trees are shown planted in randomized manner in the field depicted by raster layer. 

 

 

 

 

 

 

 

Fig.1  Study area of agricultural field Dairy Campus, Dayalbagh Educational Institute, Dayalbagh, Agra, India 
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Fig.2  Flow chart of image data processing. In the first step, image is selected to continue our analysis. In the next step, vector points layer and 

vector lines layer files are created. Then, mathematics is used for vector points and vector lines. For optimal tree health determination distancing 

between the trees and tree trunk cross-sectional area are used. Final evaluation is a probable decision based on the analysis to justify effectiveness 

of the plantation, to increase productivity by planting more trees and better resource management for irrigation 

 

 

 

 

 

 

 

 

Fig.3  Shows a vector layer of points placed over a raster layer of agricultural field. Moringa Oleifera trees are shown in this field. Various tree 

groups are shown in different coloured points and numbered which has been depicted clearly in figure 4 
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Fig. 4  A points vector layer with trees shown as points. Trees in sparsely grown area have been identified in red colour. Trees with average 

distancing are shown in black colour. Rest are trees in clusters 

 

  

 

 

 

 

 

Fig. 5  Kernel density estimation heatmap. Sparse spots are visible not touching other spots. Clusters can be seen with dark brown nucleus. The 

average spacing spots are either touching or overlapping each other 

Table 1  Unique tree id is given to each tree. The table shows the tree with the tree group to which it belongs 

Tree ID Tree Group Tree ID Tree Group Tree ID Tree Group 

1 Sparse 10 Cluster 2 19 Sparse 

2 Sparse 11 Cluster 2 20 Cluster 4 

3 Sparse 12 Cluster 2 21 Cluster 4 

4 Cluster 1 13 Avg Spacing 22 Cluster 4 

5 Cluster 1 14 Avg Spacing 23 Cluster 4 

6 Cluster 1 15 Sparse 24 Cluster 4 

7 Cluster 1 16 Cluster 3 25 Sparse 

8 Avg Spacing 17 Cluster 3 26 Cluster 5 

9 Avg Spacing 18 Sparse 27 Cluster 5 

Trees have been numbered 1 to 27 from left to right as shown in figure 4 which is a single vector layer of points representing trees. Three tree groups 

have been formed. One is sparse tree group, second is average spacing tree group and third is cluster tree group with trees in clusters. Five clusters have 

been identified named as cluster 1 to cluster 5 with each cluster given a unique colour (Fig. 4). Table 1 shows the three categories of tree groups. Points 

numbered in figure 3 are the unique tree id numbers in table 1 and can be correlated with three tree groups. 

2.4 Heatmap 

The heatmap (Fig. 5) is a density raster of an input points vector layer (Fig. 4) using Kernel density estimation. Heatmap has allowed easy identification 

of sparse spots, average spacing points and clustering of points. The density is calculated based on the number of points in a location with sparse spots 
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resulting in smaller values and larger amount of cluster points resulting in larger values. Kernel shape is taken as quartic and output value scaling is taken 

as raw. 

Kernal Function, 𝑲(𝒖) with Kernel shape quartic (biweight) (Altman, 1992) :- 

𝐾(𝑢) =
15

16
(1 − 𝑢2)2 

                                                 Support: |𝑢| ≤ 1  

has been used to create Kernel density estimation heatmap. 

2.5 Vector layer model of tree trunk diameter 

We have created a lines vector layer where each line indicates the diameter of tree trunk over which it is drawn (Fig. 6). With the help of vector lines data 

relative tree trunk diameter is determined and thereby calculating the relative tree trunk cross-sectional area. For trees having more than one trunk 

originating from ground, the trunks cross-sectional area for a particular tree id have been added up to determine tree trunks sum area and thereby the 

relative tree (cross-sectional) area as given in table 2. Relative tree area has been used to determine the width type. 

Figure 7 shows a line vector layer with lines indicating the diameter of individual tree trunks. Colours of the lines have been categorized on the basis of 

width type in table 2. 

The trees have been categorized in table 3 based on relative tree area range. The ranges have been decided based on visual inspection of Moringa Oleifera 

field and correlated with line density interpolation map created later. 

2.6 Line density interpolation map 

The line density interpolation takes the lines vector layer (Fig. 7) indicating the diameter of tree trunks as input applied and calculates a density measure 

of linear features which is obtained in a circular neighbourhood within each raster cell. Lines weight factor is optional and has not been applied by us. If 

applied, then the length of segment of each line that is intersected by circular neighbourhood is multiplied with the lines weight factor as first step. In 

next step, all the values of line lengths are summed and divided by the area of the circular neighbourhood. This process is repeated for all raster cells. 

Figure 8 illustrates line density interpolation map with tree growth categorized with colours. Table 4 combines table 1 and table 2 with tree growth shown 

for all the tree groups. 

Relative tree area range (Table 3) has been assessed by visual inspection of the Moringa Oleifera field which determines the tree growth for all the 

individual trees as shown in table 4. This tree growth has been correlated with the tree growth shown in line density interpolation map. 

 

 

 

 

 

 

 

 

Fig.6  Shows a vector layer of lines placed over a raster layer of agricultural field study area. Lines have been drawn on individual tree trunks 

indicating their diameter. In figure 7 only vector layer of lines have been depicted clearly after categorizing the single coloured lines shown above 

into different colourss 

Table 2  ‘Tree ID’ is unique tree number with single or multiple tree trunks given by ‘Trunk No.’. Each tree has 1 to 3 tree trunks originating 

from ground. ‘Rel. Trunk Dia.’ column is relative diameter used in calculating ‘Rel. Trunk Area’. ‘Rel. Tree Area’ is the relative cross-sectional 

sum area of all the tree trunks of a single tree of Moringa Oleifera. ‘Width Type’ has been categorized according to data given in table 3 and 

‘Labels’ have been given for each width type 
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Tree ID Trunk No. 
Rel. Trunk 

Dia. 

Rel. Trunk 

Area 

Tree Trunks 

Sum Area 
Rel. Tree Area Width Type Labels 

1 1 4.691 22.005 26.005 17.583 Broad B 

1 2 2 4 26.005 17.583 Broad B 

2 1 3.65 13.323 18.426 12.458 Broad B 

2 2 2.259 5.103 18.426 12.458 Broad B 

3 1 7.558 57.123 86.651 58.588 Very Broad VB 

3 2 4.64 21.53 86.651 58.588 Very Broad VB 

3 3 2.828 7.998 86.651 58.588 Very Broad VB 

4 1 2.868 8.225 9.319 6.301 Medium M 

4 2 1.046 1.094 9.319 6.301 Medium M 

5 1 3.171 10.055 10.055 6.799 Medium M 

6 1 1.569 2.462 3.462 2.341 Small S 

6 2 1 1 3.462 2.341 Small S 

7 1 2.563 6.569 16.241 10.981 Broad B 

7 2 2.304 5.308 16.241 10.981 Broad B 

7 3 2.089 4.364 16.241 10.981 Broad B 

8 1 3.302 10.903 20.687 13.987 Broad B 

8 2 3.128 9.784 20.687 13.987 Broad B 

9 1 3.997 15.976 25.34 17.133 Broad B 

9 2 3.06 9.364 25.34 17.133 Broad B 

10 1 3.388 11.479 11.479 7.761 Medium M 

11 1 3.046 9.278 13.625 9.212 Medium M 

11 2 2.085 4.347 13.625 9.212 Medium M 

12 1 3.838 14.73 14.73 9.959 Medium M 

13 1 2.479 6.145 8.591 5.809 Medium M 

13 2 1.564 2.446 8.591 5.809 Medium M 

14 1 6.169 38.057 43.589 29.472 Very Broad VB 

14 2 2.352 5.532 43.589 29.472 Very Broad VB 

15 1 3.306 10.93 10.93 7.39 Medium M 

16 1 5.628 31.674 33.372 22.564 Broad B 

16 2 1.303 1.698 33.372 22.564 Broad B 

17 1 3.042 9.254 12.914 8.732 Medium M 

17 2 1.913 3.66 12.914 8.732 Medium M 

18 1 3.562 12.688 12.688 8.579 Medium M 

19 1 1.216 1.479 1.479 1 Very Small Z 

20 1 7.349 54.008 54.008 36.517 Very Broad VB 

21 1 3.216 10.343 11.822 7.993 Medium M 

21 2 1.216 1.479 11.822 7.993 Medium M 
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22 1 1.631 2.66 2.66 1.799 Small S 

23 1 4.483 20.097 36.899 24.949 Broad B 

23 2 4.099 16.802 36.899 24.949 Broad B 

Tree ID Trunk No. 
Rel. Trunk 

Dia. 

Rel. Trunk 

Area 

Tree Trunks 

Sum Area 
Rel. Tree Area Width Type Labels 

24 1 4.423 19.563 19.563 13.227 Broad B 

25 1 4.531 20.53 35.306 23.872 Broad B 

25 2 3.844 14.776 35.306 23.872 Broad B 

26 1 3.114 9.697 10.823 7.318 Medium M 

26 2 1.061 1.126 10.823 7.318 Medium M 

27 1 2.902 8.422 9.708 6.564 Medium M 

27 2 1.134 1.286 9.708 6.564 Medium M 

 

Table 3  Categorizing the trees on the basis of relative tree cross-sectional area range. Determining tree growth as directly proportional to width 

type category 

Rel. Tree Area Range Width Type Tree Growth 

 25+ Very Broad Very Good 

10+ to 25 Broad Good 

5+ to 10 Medium Average 

1.5+ to 5 Small Poor 

1 to 1.5 Very Small Very Poor 

 

 

 

 

 

 

 

 

Fig.7  Line vector layer. Lines have been categorized into 5 colours based on 5 width types. Width type has been selected on the basis of relative 

tree area range as shown in table 3 

Table 4  Tree growth analysed for tree id with tree group to which the tree belongs and relative tree area 

Tree ID 

Rel. Tree 

Area 

Tree Group Tree Growth Tree ID 

Rel. Tree 

Area 

Tree Group Tree Growth 

1 17.583 Sparse Good 15 7.39 Sparse Average 

2 12.458 Sparse Good 16 22.564 Cluster 3 Good 
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3 58.588 Sparse Very Good 17 8.732 Cluster 3 Average 

4 6.301 Cluster 1 Average 18 8.579 Sparse Average 

5 6.799 Cluster 1 Average 19 1 Sparse Very Poor 

6 2.341 Cluster 1 Poor 20 36.517 Cluster 4 Very Good 

7 10.981 Cluster 1 Good 21 7.993 Cluster 4 Average 

8 13.987 Avg Spacing Good 22 1.799 Cluster 4 Poor 

9 17.133 Avg Spacing Good 23 24.949 Cluster 4 Good 

10 7.761 Cluster 2 Average 24 13.227 Cluster 4 Good 

11 9.212 Cluster 2 Average 25 23.872 Sparse Good 

12 9.959 Cluster 2 Average 26 7.318 Cluster 5 Average 

13 5.809 Avg Spacing Average 27 6.564 Cluster 5 Average 

14 29.472 Avg Spacing Very Good 

 

 

 

 

Fig.8  Line density interpolation map of line vector layer (Fig. 7). Tree growth very good is shown in colour blue, good in green or greenish 

yellow, average in mostly yellow, poor in orange and very poor in vermillion 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9  Enlarged view of figure 8 with labels applied to coloured spots. Labels can be correlated with colour of the spots showing tree trunk cross-

sectional area range. A Left half section of figure 8 is shown here. B Right half section of figure 8 is shown here 

Labels have been applied on the line density interpolation map which can be seen on the coloured spots in the map (Fig. 9). Except for some of the spots 

which are partially visible being behind the other spots all the labels are visible. Figure 9 also gives an enlarged view of figure 8 into two sections. 
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3. Results and Discussions 

3.1 Above average growth percentage  

In figure 10 there are 3 trees showing very good growth with one growing in sparse growth area, one growing with average spacing and one growing in 

a cluster signifying that trees with very good health can grow irrespective of the group. 

Out of 9 trees having good health 2 are growing in sparse growth area, 2 are growing with average spacing and 5 are growing in clusters. Out of 16 trees 

in clusters 37.5% are showing above average growth. 50% of trees with average spacing and 42.9% in sparsely grown area show above average growth 

result. Here average spacing are giving best result but since the trees in clusters are closely packed in terms of space used by them, then taken all the trees 

in a cluster together and then comparing will be a better idea. 

3.2 Below average growth percentage 

In Figure 11 total trees growing in sparse growth area with below average growth is 1 out of 7 sparse trees. This is 14.3% below average result. For 

average spacing this result is 0% and for clusters this result is 12.5%. Highest percentage of below average growth is shown by sparse group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10  Number of trees versus tree growth for three types of tree groups 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11  Depicts the ratio of below average growth trees to the total trees in each of the three tree groups 
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3.3 Analysis of tree growth percentage taken all the trees in a cluster together as one 

Relative cross-sectional area of cluster 1 by adding up for all the trees in that cluster is 26.422 (>25). Similarly very good growth (>25) is shown in figure 

12 for clusters 2, 3 and 4. Cluster 5 is showing good growth (>10). 80% of clusters are showing very good growth and rest 20% good growth. This result 

is in itself appealing, seeing that the space occupied by a cluster in line density interpolation map is comparable to or less than that of sparse trees. About 

sparse trees 1 out of 7 shows very good growth that is 14.3% and 42.9% show good growth. Now result for clusters from figure 12 give 100% as above 

average cluster growth as compared to 57.2% for spare trees. The result is growing in clusters is a clear advantage over growing trees sparsely. 

Out of 4 trees with average spacing, 2 lie in good growth range and 1 in very good range which is 75% above average growth and lower as compared to 

100% for clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Tree id/s with their group on x-axis and relative cross-sectional tree area/cluster area on y-axis. Relative cross-sectional area of all trees 

in a cluster was added to determine the cluster area  

 3.4 Identifying the field area to plant more trees 

By visualizing the line density interpolation map of figure 8 and data from figure 12 the field areas with sparse trees can be selected for planting more 

trees. 

Keeping maximum 5 trees in a cluster, as our analysis supports that, sparse tree id 25 can be converted into a cluster of 5 trees by planting 4 more trees 

to the left and in front. Sparse tree id 19 can also be converted into a cluster of 5 trees by planting 4 more trees around it. Sparse tree id 18 can be converted 

into a cluster of 4 trees by planting 3 more trees to the right and in front of it. Not converting sparse tree id 15 into a cluster as next to tree id 14 with very 

good growth and tree id 16 with good growth. Sparse tree id 3 need not be converted into a cluster as already showing very good and highest growth. Not 

converting sparse tree id 2 into a cluster as next to sparse tree id 3. Sparse tree id 1 can be converted into a cluster of 4. 

Above discussion leads to introduction of 4 new clusters by planting 14 more trees. Increase in efficiency of farm produce by planting more trees can be 

attained.  

3.5 Increase in produce by planting more trees 

𝑥 = Percentage increase in number of trees 

𝑦 = Extra trees to be planted 

𝑧 = Total number of trees already planted 
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𝑥 = [ 
𝑦

𝑧
 ] × 100 

Percentage increase in number of trees was evaluated as 51.85%. Since tree growth is assumed to be proportional to cross-sectional area of trees the 

increase in growth of farm is proportional to increase in relative cross-sectional area by adding up for all trees to be planted in the farm. 

RCS area = Relative cross-sectional area 

Total RCS area of all trees in the farm is 378.888 by adding up the RCS area of 27 trees present, where tree ID 19 area being the minimum area has been 

taken as 1 for relative area calculations. 

𝑎 = total RCS area of all trees in the farm 

𝑝 = total RCS area of all trees in clusters 

𝑞 = total number of trees in clusters 

𝑟 = average RCS area per tree among total trees in clusters  

𝑠 = total number of trees in new clusters to be formed containing the existing sparse trees and new trees to be planted 

𝑡 = predicted total RCS area of new clusters to be formed 

𝑡 = [ 
𝑝

𝑞
 ] × 𝑠 = 𝑟 × 𝑠 

The predicted total RCS area of 4 new clusters to be formed including the RCS area of 4 existing sparse trees was evaluated as 205.894. 

𝑢 = sum of sparse trees RCS area which are to be converted into new clusters 

𝑣 = predicted increase in RCS area of farm with new trees to be planted 

𝑣 = ([ 
𝑝

𝑞
 ] × 𝑠) − 𝑢 

The predicted increase in RCS area of farm with 14 new trees to be planted in 4 new clusters to be formed was evaluated as 154.86. 

𝑤 = predicted percentage increase in RCS area of farm 

𝑤 = [ 
([ 

𝑝
𝑞

 ] × 𝑠) − 𝑢

𝑎
 ] × 100 

The above formula, which has been derived solely by first author of this paper, can be used in context of randomized tree plantations as “Prashant’s 

equation on precision farming”, is given on the name of first author.  

𝑤 = [ 
𝑣

𝑎
 ] × 100 

The predicted percentage increase in RCS area of farm was evaluated as 40.87%.Foregoing analysis resluted in predicted growth of Moringa Oleifera 

farms to be 140.87% by using randomized tree plantation field. 

Ease of irrigation is achieved by keeping space between clusters. Clusters can be connected with mud canal and mud bed prepared for each cluster. This 

way water can be given easily at one point with minimal maintenance cost. Thus saving upon water as well.  

4. Conclusion 

It can be concluded for Moringa Oleifera tree plantation that distancing between the trees is not a significant factor that is affecting the tree health but 

there is an advantage of growing trees in clusters with spacing between clusters to grow more trees in same area and enhancing the produce of farms 

thereby using the space economically. Distancing between the clusters allows for precision farming of areas where clusters are grown. Sparse trees with 

very good health need not be converted into clusters and that can only be decided once they grow up. 

Initially randomized plantation of Moringa Oleifera benefits that later it can be decided better using tools of precision farming where to plant more trees. 

The predicted growth of Moringa Oleifera farms by the model created in this study should be examined for it’s variations with photographs from different 

farms with randomized tree plantations using high resolution mobile cameras. 

This study can be applied to similar agricultural field areas with different species of plants or fields with Moringa Oleifera plantations. Tree plantation 

spicies can be identified which are showing good growth in clusters and our study can be very useful in such cases. Potential savings in form of agricultural 

produce and irrigation can be achieved.   
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