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ABSTRACT 

This study employs a fractional Oldroyd-B fluid model to describe blood as a non-Newtonian fluid, aiming to investigate how a magnetic field affects dynamic 

blood flow in a narrow artery exposed to pulsatile pressure gradients. The research also explores the flow's behavior in terms of heat transfer, considering factors 

like electromagnetic coupling, viscous dissipation, and radiative heat flux. Numerical solutions for the coupled, nonlinear equations governing velocity and 

temperature were obtained using a finite difference approach. Extensive analyses were conducted to validate the numerical algorithm's stability and convergence, 

which were confirmed to be satisfactory. The study highlights significant differences between predictions made by Newtonian fluid dynamics and the fractional 

Oldroyd-B fluid model. Notably, the fractional Oldroyd-B model predicts higher blood velocities and temperatures compared to the Newtonian model. Furthermore, 

the research reveals that increasing thermal radiation or applying a magnetic field has opposing effects on blood flow parameters. Specifically, a magnetic field 

reduces flow rate, while higher thermal radiation increases it. These findings offer insights into the intricate interplay of fluid dynamics, heat transfer, and external 

influences in blood flow within small arteries. 

1.0 Introduction 

The study of blood flow dynamics has been a subject of extensive research in understanding cardiovascular diseases and developing effective treatment 

strategies. Traditional models for blood flow have typically assumed a Newtonian behavior, which assumes constant viscosity and homogeneity. 

However, it is increasingly recognized that blood exhibits non-Newtonian behavior due to its composition of various cellular and plasma components. 

Research has indicated that blood can be better represented as an Oldroyd-B fluid, which incorporates both elastic and viscous components. The Oldroyd-

B model has been widely used to describe the non-Newtonian behavior of blood flow. For example, Yannopoulos et al. (2014) employed the Oldroyd-B 

model to simulate blood flow in stenosis arteries, revealing the importance of non-Newtonian behavior in determining the flow patterns and wall shear 

stress distributions. Additionally, blood flow in the circulatory system is inherently pulsatile due to the contraction of the heart. Pulsatile flow exhibits 

periodic variations in velocity, pressure, and wall interactions within the blood vessels. These pulsations induce heat transfer and chemical reactions, 

which affect the overall physiological processes in the human body. 

According to Chakravarty et al. (2019), blood is a suspension of various cellular and plasma components, making it a non-Newtonian fluid. The presence 

of suspended red blood cells, white blood cells, platelets, and plasma proteins leads to the development of shear-thinning or shear-thickening behavior, 

where the viscosity of blood changes with the shear rate. This behavior significantly affects the flow dynamics and can impact the transport processes 

occurring within the blood vessels. Numerous studies have explored the impact of non-Newtonian rheology on blood flow. For instance, Fung (2013) 

demonstrated that the deformation and motion of red blood cells significantly affect the viscosity and flow behavior of blood. Similarly, Kulkarni et al. 

(2015) investigated the influence of non-Newtonian behavior on the hemodynamics of blood flow, highlighting the importance of accurate modeling. 

Furthermore, mathematical modeling approaches using fractional calculus have gained attention as a tool to capture memory effects, time-varying 

behavior, and long-range correlations in complex systems. Fractional calculus has been successfully applied in various biomedical applications, including 

blood flow modeling. Despite significant advancements in blood flow modeling, there remains a critical gap in developing comprehensive mathematical 

models that integrate the Oldroyd-B fluid model, fractional calculus, pulsatile flow, heat transfer, and chemical reactions in blood vessels. The existing 

models either oversimplify the rheology of blood or do not adequately account for the effects of fractional calculus and pulsatile flow on heat transfer 

and chemical reactions. This limitation hinders our ability to accurately understand and predict the behavior of pulsatile non-Newtonian blood flow, heat 

transfer, and chemical reactions within blood vessels, particularly when incorporating the Oldroyd-B fluid model. Without an accurate mathematical 

model, it is challenging to develop reliable diagnostic tools, treatment strategies, and medical devices to effectively address cardiovascular diseases. 

Thus, the problem at hand is to develop a comprehensive mathematical model that integrates the Oldroyd-B fluid model, fractional calculus, pulsatile 

flow, heat transfer, and chemical reactions to provide an accurate representation of the dynamics within blood vessels. Such a model would enable a 
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deeper understanding of the physiological processes involved in cardiovascular diseases and facilitate the development of advanced diagnostic techniques 

and targeted therapeutic interventions.The specific objectives of this study include: Conducting a comprehensive review of the literature on blood flow 

modeling, non-Newtonian rheology, heat transfer, chemical reactions, the Oldroyd-B fluid model, and fractional calculus to establish a foundation for 

the model development, Formulating a mathematical model that integrates the Oldroyd-B fluid model, fractional calculus, pulsatile flow, heat transfer, 

and chemical reactions within blood vessels, Implementing numerical techniques to simulate the mathematical model and validate its predictions against 

experimental data and existing theoretical models, analyzing the model outputs to gain insights into the interplay between pulsatile non-Newtonian blood 

flow, heat transfer, and chemical reactions within blood vessels and assessing the capability of the model in predicting the dynamics of blood flow and 

its potential in clinical applications for cardiovascular disease diagnosis and treatment. 

By addressing these research objectives, this study aims to contribute to the development of an advanced mathematical model that accurately represents 

the interplay of fractional non-Newtonian blood flow, heat transfer, and chemical reactions in blood vessels using the Oldroyd-B fluid model. This will 

enhance our understanding of cardiovascular diseases and potentially lead to advancements in personalized medicine in this field. 

2.0 The mathematical modeled of the problem 

Assuming blood behaves as a conductive non-Newtonian fluid under the influence of a consistent magnetic field (MF), it results in the generation of an 

electrical current and the creation of an electromagnetic force. The motion of the blood is induced by both the electromagnetic force and a pulsatile 

pressure gradient. To describe this phenomenon, we utilize cylindrical coordinates (r, θ, z), where 'r' represents the radial direction, 'θ' represents the 

circumferential direction, and 'z' represents the flow direction. 
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where u and T are fluid velocity and temperature, which are the functions of cylindrical coordinate r and time t, ∂p/∂z is the pulsatile pressure gradient ρ, 

g, β, and 𝑇0 are constants representing the fluid density, gravity acceleration, thermal coefficient, and initial temperature of blood, respectively. 𝑆𝑟𝑧denotes 

the tangential stress of fractional Oldroid-B fluid, expressed by C. Friedrich, (1991), W.C. Tan, W.X. Pan, M.Y. Xu (2003),  
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Here, 𝜆1, 𝜆2and express the relaxation time, retardation time and viscosity constant. 𝐷𝑡
𝛼is Caputo's time-fractional derivative defined as; 
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Note that the classical Maxwell fluid model can be recovered when 𝜆2 = 0 and 𝛼 = 1.The pulsatile pressure gradient given by, shah, N.A.D.Vieru, 

C.fetecau,(2016), 
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where 𝐴0 and𝐴1 represent the constant and pulsatile pressure gradient amplitudes, respectively, and ω is the pulsatile frequency. 
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Introducing equation (8) to equations (2), (3), (7), (9) and dropping the bars we have: 
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Initial along with boundary conditions considered for the presented problem are 

are proposed to denote the Schmitt number, Chemical reaction parameter, Reynolds number, Hartmann number, Grashof thermal number, Grashof mass 

number radiation parameter, Prandtl number, Brinkman number, and Peclet number, respectively 
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By employing the initial and boundary conditions of equation (13), the solutions of equations (10) -(12) was obtained with the aid of finite difference 

algorithm and L1 approximation, and the result is presented as follows: 

3.0 Results and Discussion 

Velocity profile of the flow 

The velocity profile of fractional blood flow refers to the distribution of blood velocities at different points within a blood vessel when considering non-

integer (fractional) derivatives in the mathematical model of blood flow. Fractional calculus is used to describe complex behaviors in blood flow that 

may not be adequately captured by traditional integer-order derivatives. A typical velocity profile for fractional blood flow might exhibit characteristics 

that deviate from the standard parabolic profile seen in Newtonian fluids. Instead, it could vary based on the specific fractional order used in the 

mathematical model, vessel geometry, blood viscosity, and other factors. Here's a general description of what a fractional blood flow velocity profile 

might entail. In figure 1 below, an increasing Hartman number Ha, tends to flatten the blood flow velocity profile, particularly near the center of the 

vessel. This is because the magnetic field interacts with the conductive blood, leading to a more uniform distribution of velocities across the vessel cross-

section. The presence of a magnetic field, as quantified by the Hartman number (Ha), has significantly decreases the blood flow velocity profiles in blood 

vessels. These changes have broad implications for heat transfer, chemical reactions, and various physiological processes. Understanding these effects is 

essential for both fundamental research and the development of medical interventions that involve the application of magnetic fields in the vascular 

system. In figure2, an increase in Reynolds number altered velocity profile which physically affect the rates of chemical reactions occurring in the 

bloodstream. This revealed that Chemical species are transported differently in the presence of a magnetic field, potentially leading to variations in 

reaction kinetics. In a medical context, this could be crucial for drug delivery systems that rely on chemical reactions in the bloodstream. The rate at 

which drugs are delivered to specific tissues or cells may be influenced by the presence of the magnetic field. Figure 3, shows that an increases in Grashof 

number Grm, signifies a greater influence of buoyancy forces due to temperature variations. This can alter the blood flow pattern in the vessel. A low 

Grm (e.g., 0.5) may indicate that buoyancy forces are relatively weak compared to viscous forces, resulting in a flow pattern dominated by viscosity. As 

Grm increases, buoyancy forces become more significant, potentially leading to a transition from natural convection to forced convection. In Figure 4, it 

was revealed that as the fractional parameter (α) increases from 0.1 to 0.7, it signifies a higher degree of non-integer differentiation applied to the blood 

flow model. This can lead to deviations from traditional velocity profiles. Transition from Integer to Fractional Behavior: Lower α values (e.g., 0.1 and 

0.3) might result in velocity profiles that are more similar to those described by traditional integer-order derivatives (Newtonian behavior), while higher 

α values (e.g., 0.5 and 0.7) could exhibit more pronounced fractional effects. From figure, as α increases from 0.1 to 0.7, it signifies a higher degree of 

non-integer differentiation applied to the blood flow model. This can lead to deviations from traditional velocity profiles. Transient Behavior: At t=0.5 

seconds, the system exhibited a transient behavior as it reaches a steady state or approaches a quasi-steady state. The impact of α on transient behavior is 

essential to understand, as it can influence the time it takes for the system to stabilize. Influence on Steady-State Behavior: Different α values may lead 

to variations in the steady-state velocity profile. The steady-state profile represents the long-term behavior of blood flow after transient effects have 

subsided.  
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Fig 1: Variation of velocity with different Hartman number Ha 

 

 

 

 

 

 

 

 

 

 

 

 

                             

Fig 2: Variation of velocity with different Hartman number Ha 

 

                

      

 

 

 

 

 

 

 

                                         Fig 3: Variation of velocity with different Reynolds Number Re 
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Fig 4: Variation of velocity with different fractional parameter 

 

                 

 

 

 

 

 

 

 

 

Fig 5: Variation of velocity with different Grashop Number Re 

In conclusion, the presence of a magnetic field, as quantified by the Hartman number (Ha), can significantly alter blood flow velocity profiles in blood 

vessels. These changes have broad implications for heat transfer, chemical reactions, and various physiological processes. Understanding these effects is 

essential for both fundamental research and the development of medical interventions that involve the application of magnetic fields in the vascular 

system. Tshe Grashof number for mass transfer (Grm) plays a significant role in shaping the blood flow velocity profile within blood vessels. Analyzing 

the variations in velocity profiles for different Grm values is important for understanding the fluid dynamics and heat transfer in the circulatory system. 

These findings may have implications for various physiological processes and medical applications, warranting further investigation and experimentation. 

The fractional parameter (α) significantly influences the blood flow velocity profile within blood vessels when fractional calculus is applied. Analyzing 

the variations in velocity profiles for different α values at a specific time (t=0.5 seconds) provides insights into the complexity of blood flow dynamics 

and its implications for heat transfer and chemical reactions. These findings contribute to a better understanding of non-Newtonian blood flow and the 

impact of fractional calculus on modeling physiological processes. 
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