International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Delineation of Integer Solutions to Non-Homogeneous Quinary Quintic Diophantine Equation $\left(x^{3}-y^{3}\right)-\left(x^{2}+y^{2}\right)+\left(z^{3}-w^{3}\right)=2+87 T^{5}$

J. Shanthi ${ }^{1}$, M.A. Gopalan ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email: shanthivishvaa@gmail.com
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India. Email:mayilgopalan@gmail.com

ABSTRACT

This paper aims at determining varieties of non-zero distinct integer solutions to non-homogeneous quinary quintic diophantine equation
$\left(x^{3}-y^{3}\right)-\left(x^{2}+y^{2}\right)+\left(z^{3}-w^{3}\right)=2+87 T^{5}$
Keywords: quinary quintic, non-homogeneous quintic, integer solutions

Introduction

It is well-known that the Diophantine equations, homogeneous or non-homogeneous, have aroused the interest of many mathematicians. In particular, one may refer [1-18] for quintic equations with three, four and five unknowns.

While collecting problems on fifth degree Diophantine equations ,the problem of getting integer solutions to the non-homogeneous quinary quintic diophantine equation given by $\left(x^{3}-y^{3}\right)-\left(x^{2}+y^{2}\right)+z^{3}-w^{3}=2+87 T^{5}$ [19] has been noticed. The authors of [19] have presented two sets of integer solutions to the quintic equation considered in [19]. The main thrust of this paper is to exhibit other sets of integer solutions to quinary nonhomogeneous quintic equation given by $x^{3}-y^{3}-\left(x^{2}+y^{2}\right)+z^{3}-w^{3}=2+87 T^{5}$ in [19] by using elementary algebraic methods. The outstanding results in this study of diophantine equation will be useful for all readers.

Method of analysis

The non-homogeneous quinary quintic diophantine equation to be solved is given by

$$
\begin{equation*}
\left(x^{3}-y^{3}\right)-\left(x^{2}+y^{2}\right)+\left(z^{3}-w^{3}\right)=2+87 T^{5} \tag{1}
\end{equation*}
$$

The process of obtaining different sets of integer solutions to (1) is illustrated below :

Illustration 1

Introduction of the linear transformations

$$
\begin{equation*}
x=k v+1, y=k v-1, z=v+1, w=v-1 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
\left(4 k^{2}+6\right) v^{2}=87 T^{5} \tag{3}
\end{equation*}
$$

which is satisfied by

$$
\begin{equation*}
v=87^{3}\left(4 k^{2}+6\right)^{2} s^{5} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
T=87\left(4 k^{2}+6\right) s^{2} \tag{5}
\end{equation*}
$$

Using (4) in (2), we get
$x=87^{3} k\left(4 k^{2}+6\right)^{2} s^{5}+1, y=87^{3} k\left(4 k^{2}+6\right)^{2} s^{5}-1$,
$z=87^{3}\left(4 k^{2}+6\right)^{2} s^{5}+1, w=87^{3}\left(4 k^{2}+6\right)^{2} s^{5}-1$
Thus, (5) \& (6) represent the integer solutions to (1).

Illustration 2

Introduction of the linear transformations

$$
\begin{equation*}
x=u+1, y=u-1, z=k u+1, w=k u-1 \tag{7}
\end{equation*}
$$

in (1) leads to

$$
\left(6 k^{2}+4\right) u^{2}=87 T^{5}
$$

which is satisfied by

$$
\begin{equation*}
u=87^{3}\left(6 k^{2}+4\right)^{2} s^{5} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
T=87\left(6 k^{2}+4\right) s^{2} \tag{9}
\end{equation*}
$$

Using (8) in (7), we get
$x=87^{3}\left(6 k^{2}+4\right)^{2} s^{5}+1, y=87^{3}\left(6 k^{2}+4\right)^{2} s^{5}-1, z=87^{3} k\left(6 k^{2}+4\right)^{2} s^{5}+1, w=87^{3} k\left(6 k^{2}+4\right)^{2} s^{5}-1$
Thus , (9) \& (10) represent the integer solutions to (1).

Illustration 3

Taking

$$
\begin{equation*}
x=u+1, y=u-1, z=32 k s^{2}+1, w=32 k s^{2}-1, T=4 s \tag{11}
\end{equation*}
$$

in (1) , it is written as

$$
\begin{equation*}
u^{2}=256 s^{4}\left(87 s-6 k^{2}\right) \tag{12}
\end{equation*}
$$

It is possible to choose the values of s so that the R.H.S. of (12) is a perfect square and hence the corresponding values of u are obtained.
Substituting these values of s, u in (11), the respective integer solutions to (1) are found. The above process is exhibited below:
Let

$$
\begin{equation*}
\alpha^{2}=87 s-6 k^{2} \tag{13}
\end{equation*}
$$

which is satisfied by

$$
s_{0}=k^{2}, \alpha_{0}=9 k
$$

Assume

$$
\begin{equation*}
\alpha_{1}=h-\alpha_{0}, s_{1}=h+s_{0} \tag{14}
\end{equation*}
$$

to be the second solution to (13). Substituting (14) in (13) and simplifying,
we have

$$
h=2 \alpha_{0}+87
$$

In view of (14), one has

$$
\alpha_{1}=\alpha_{0}+87, s_{1}=2 \alpha_{0}+87+s_{0}
$$

The repetition of the above process leads to the general solution to (13) as
$\alpha_{n}=\alpha_{0}+87 n=9 k+87 n$,
$s_{n}=2 n \alpha_{0}+87 n^{2}+s_{0}=18 k n+87 n^{2}+k^{2}$
From (12), it is seen that

$$
u_{n}=16(87 n+9 k)\left(87 n^{2}+18 k n+k^{2}\right)^{2}
$$

In view of (11) ,the integer solutions to (1) are given by
$\mathrm{x}_{\mathrm{n}}=16(87 \mathrm{n}+9 \mathrm{k})\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}+1$,
$\mathrm{y}_{\mathrm{n}}=16(87 \mathrm{n}+9 \mathrm{k})\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}-1$,

$$
\mathrm{w}_{\mathrm{n}}=32 \mathrm{k}\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}-1,
$$

$$
\mathrm{T}_{\mathrm{n}}=4\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right) .
$$

Illustration 4

Taking

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{n}}=36(87 \mathrm{n}+9 \mathrm{k})\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}+1,
\end{aligned}
$$

$$
z=v+1, w=v-1, x=108 k s^{2}+1, y=108 k s^{2}-1, T=6 s
$$

$$
\mathrm{W}_{\mathrm{n}}=36(87 \mathrm{n}+9 \mathrm{k})\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}-1
$$

in (1), it is whitten as

$$
\left.\mathrm{x}_{v^{2}}=108 \mathrm{c}_{(36)^{4} \mathrm{~s}^{4}\left(87 \mathrm{~s}^{2}-6 \mathrm{k}^{2}\right)} 18 \mathrm{kn}+\mathrm{k}^{2}\right)^{2}+1,
$$

$$
\mathrm{T}_{\mathrm{n}}=6\left(87 \mathrm{n}^{2}+18 \mathrm{kn}+\mathrm{k}^{2}\right)
$$

Conclusion:

In this paper, we have made an attempt to find infinitely many non-zero distinct integer solutions to the non- homogeneous quintic equation with five unknowns given by $x^{3}-y^{3}-\left(x^{2}+y^{2}\right)+z^{3}-w^{3}=2+87 T^{5}$. To conclude, one may search for other choices of solutions to the considered quintic equation with five unknowns and higher degree diophantine equations with multiple variables.

References:

1. M.A.Gopalan and Sangeetha.G ,Integral solutions of ternary quintic Diophantine equation $x^{2}+y^{2}=\left(k^{2}+1\right) z^{5}$, Bulletin of pure and applied sciences. Vol. 29 No:1,23-28,(2010).
2. M.A.Gopalan ,A.Vijayasankar,An Interesting Diophantine Problem $x^{3}-y^{3}=2 z^{5}$ Advances in Mathematics,Scientific Developments and Engineering Applications,Narosa Publishing House, 1-6,2010
3. M.A.Gopalan, A.Vijayasankar ,Integral solutions of ternary quintic Diophantine equation $x^{2}+(2 k+1) y^{2}=z^{5}$, International journal of Mathematical sciences.,Vol.19(1-2), 165-169, (2010).
4. S.Vidhyalakshmi., K.Lakshmi., M.A.Gopalan, , Integral solutions of non-homogeneous ternary quintic Diophantine equation $a x^{2}+b y^{2}=$ $(a+b) z^{5}, a>b>0$, Archimedes journal of Mathematics ., vol.3, No:2, 197-204 (2013).
5. M.A.Gopalan, S.Vidhyalakshmi, E. Premalatha.M. Manjula, and N.Thiruniraiselvi, On the non-homogeneous ternary quintic equation $2\left(x^{2}+y^{2}\right)-3 x y=7^{2 n} z^{5}$, Bessel J.Math., Vol.3(3), Pp.249-254, 2013
6. M.A.Gopalan,G.Sumathi and S.Vidhyalakshmi,Integral Solutions of the Non- Homogeneous Ternary Quintic Equation Interms of Pell Sequence $\quad x^{3}+y^{3}+x y(x+y)=2 z^{5}$, JAMS ,6(1), 56-62, 2013
7. M.A.Gopalan,G.Sumathi and S.Vidhyalakshmi,Integral Solutions of Non- Homogeneous Quintic Equation with Three Unknowns $x^{2}+$ $y^{2}-x y+x+y+1=\left(k^{2}+3\right)^{n} z^{5}$, IJIRSET ,2(4) ,920-925, 2013
8. S. Vidhyalakshmi,K. Lakshmi and M.A.Gopalan, Integral solutions of the non- homogeneous ternary quintic equation $a x^{2}-b y^{2}=(a-$ b) z^{5}, International Journal of Computational Engineering Research, 3(4), 45-50, 2013.
9. M.A.Gopalan, N.Thiruniraiselvi, R.Presenna, Quintic with three unknowns $3\left(x^{2}+y^{2}\right)-2 x y+2(x+y)+1=33 z^{5}$, International Journal of Multidisciplinary Research and Modern Engineering, Vol.1(1),Pp.171-173, 2015
10. J. Shanthi and M. Parkavi, "On finding Integer solutions to the Non- Homogeneous ternary Quintic Diophantine equation $x^{2}+y^{2}-x y=$ $28 z^{5} "$, International Research Journal of Education and Technology, Volume: 05 Issue: 03, 463-471,2023
11. T. Mahalakshmi , P.Sowmiya, "A Search on Integer solutions to the Non- Homogeneous Ternary Quintic Equation with three unknowns $2\left(x^{2}+y^{2}\right)-3 x y=8 z^{5} "$, International Research Journal of Education and Technology, Volume: 05 Issue: $03 \mid$, pp 453-4 62 ,March2023.
12. J.Shanthi ,M.A.Gopalan, On the Ternary Non-homogeneous Quintic Equation $x^{2}+3 y^{2}=7 z^{5}$ IRJEdT,Volume 05, Issue 08 , 19-25, August 2023.
13. J.Shanthi ,M.A.Gopalan, On the Ternary Non-homogeneous Quintic Equation $x^{2}+5 y^{2}=2 z^{5}$ IJRPR ,Volume 04,Issue 08 , 329-332, August 2023.
14. M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, Observations on the quintic equation with four unknowns $\left(x^{3}+y^{3}\right)\left(x^{2}+x y+y^{2}\right)+$ $(x+y)\left(x^{2}+y^{2}\right) w^{2}=z\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right), \quad$ Impact J.Sci. Tech, Vol.7, No. 2, 15-19 (2013).
15. M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, On the quintic equation with fourunknowns $x^{4}-y^{4}=2\left(k^{2}+l^{2}\right) z^{4} w$, Bessel J.Math., 3(2), 187-193, 2013.
16. M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, On the quintic equation with five unknowns $2(x-y)\left(x^{3}+y^{3}\right)=19\left[z^{2}-w^{2}\right] p^{3}$, International Journal of Engineering Research Online, Vol.1.,Iss.2, 279-282, 2013.
17. .M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, and E.Premalatha, On the quintic equation with five unknowns $x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}$, International Journal of current Research, Vol.5, Iss.6, 1437-1440, June 2013.
18. J.Shanthi ,M.A.Gopalan, On the Non-homogeneous Quinary Quintic Equation $x^{4}+y^{4}-(x+y) w^{3}=14 z^{2} T^{3}$ IRJEdT, Volume 05, Issue 08, 238-245,August 2023.
19. S.Muthuvel ,R.Venkatraman ,Integral solutions of the quintic equationwith five unknowns $x^{3}-y^{3}-\left(x^{2}+y^{2}\right)+z^{3}-w^{3}=2+87 T^{5}$, AIP Conference Proceedings ,2852,020002-1-020002-4,2023
