Delineation of Integer Solutions to Non-Homogeneous Quinary Quintic Diophantine Equation \((x^3 - y^3) - (x^2 + y^2) + (z^3 - w^3) = 2 + 87T^5\)

J. Shanthi\(^1\), M.A. Gopalan\(^2\)

\(^1\)Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email: shanthivishvaa@gmail.com

\(^2\)Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email: mayilgopalan@gmail.com

ABSTRACT

This paper aims at determining varieties of non-zero distinct integer solutions to non-homogeneous quinary quintic diophantine equation

\[(x^3 - y^3) - (x^2 + y^2) + (z^3 - w^3) = 2 + 87T^5\]

Keywords: quinary quintic, non-homogeneous quintic, integer solutions

Introduction

It is well-known that the Diophantine equations, homogeneous or non-homogeneous, have aroused the interest of many mathematicians. In particular, one may refer [1-18] for quintic equations with three, four and five unknowns.

While collecting problems on fifth degree Diophantine equations, the problem of getting integer solutions to the non-homogeneous quinary quintic diophantine equation given by \((x^3 - y^3) - (x^2 + y^2) + z^3 - w^3 = 2 + 87T^5\) [19] has been noticed. The authors of [19] have presented two sets of integer solutions to the quintic equation considered in [19]. The main thrust of this paper is to exhibit other sets of integer solutions to quintic non-homogeneous quinary equation given by \(x^3 - y^3 - (x^2 + y^2) + z^3 - w^3 = 2 + 87T^5\) in [19] by using elementary algebraic methods. The outstanding results in this study of diophantine equation will be useful for all readers.

Method of analysis

The non-homogeneous quinary quintic diophantine equation to be solved is given by

\[(x^3 - y^3) - (x^2 + y^2) + (z^3 - w^3) = 2 + 87T^5\] \(1\)

The process of obtaining different sets of integer solutions to (1) is illustrated below:

Illustration 1

Introduction of the linear transformations

\[x = kv + 1, y = kv - 1, z = v + 1, w = v - 1\] \(2\)

in (1) leads to

\[(4k^2 + 6)v^2 = 87T^5\] \(3\)

which is satisfied by

\[v = 87(4k^2 + 6)s^5\] \(4\)

and

\[T = 87(4k^2 + 6)s^2\] \(5\)

Using (4) in (2), we get
\[x = 87^3k(4k^2 + 6)^2z^5 + 1, y = 87^3k(4k^2 + 6)^2z^5 - 1, \]
\[z = 87^3(4k^2 + 6)^2z^5 + 1, w = 87^3(4k^2 + 6)^2z^5 - 1 \] \hspace{1cm} (6)

Thus, (5) & (6) represent the integer solutions to (1).

Illustration 2

Introduction of the linear transformations

\[x = u + 1, y = u - 1, z = ku + 1, w = ku - 1 \] \hspace{1cm} (7)

in (1) leads to

\[(6k^2 + 4)u^2 = 87T^5 \]

which is satisfied by

\[u = 87^3(6k^2 + 4)^2z^5 \] \hspace{1cm} (8)

and

\[T = 87(6k^2 + 4)s^2 \] \hspace{1cm} (9)

Using (8) in (7), we get

\[x = 87^3(6k^2 + 4)^2z^5 + 1, y = 87^3(6k^2 + 4)^2z^5 - 1, z = 87^3k(6k^2 + 4)^2z^5 + 1, w = 87^3k(6k^2 + 4)^2z^5 - 1 \] \hspace{1cm} (10)

Thus, (9) & (10) represent the integer solutions to (1).

Illustration 3

Taking

\[x = u + 1, y = u - 1, z = 32ks^2 + 1, w = 32ks^2 - 1, T = 4s \] \hspace{1cm} (11)

in (1), it is written as

\[u^2 = 256s^4(87s - 6k^2) \] \hspace{1cm} (12)

It is possible to choose the values of \(s \) so that the R.H.S. of (12) is a perfect square and hence the corresponding values of \(u \) are obtained.

Substituting these values of \(s, u \) in (11), the respective integer solutions to (1) are found. The above process is exhibited below:

Let

\[a^2 = 87s - 6k^2 \] \hspace{1cm} (13)

which is satisfied by

\[s_0 = k^2, a_0 = 9k \]

Assume

\[a_1 = h - a_0, s_1 = h + s_0 \] \hspace{1cm} (14)

to be the second solution to (13). Substituting (14) in (13) and simplifying, we have

\[h = 2a_0 + 87 \]

In view of (14), one has

\[a_1 = a_0 + 87, s_1 = 2a_0 + 87 + s_0 \]

The repetition of the above process leads to the general solution to (13) as

\[a_n = a_0 + 87n = 9k + 87n, \]
\[s_n = 2na_0 + 87n^2 + s_0 = 18kn + 87n^2 + k^2 \]

From (12), it is seen that

\[u_n = 16(87n + 9k)(87n^2 + 18kn + k^2)^2 \]

In view of (11), the integer solutions to (1) are given by
\[x_n = 16(8n + 9k)(87n^2 + 18kn + k^2)^2 + 1, \]
\[y_n = 16(8n + 9k)(87n^2 + 18kn + k^2)^2 - 1, \]
\[z_n = 32k(87n^2 + 18kn + k^2)' - 1, \]
\[w_n = 32k(87n^2 + 18kn + k^2)' - 1, \]
\[T_n = 4(87n^2 + 18kn + k^2). \]

Illustration 4

Taking
\[z_n = 36(87n^2 + 9k)(87n^2 + 18kn + k^2)^2 + 1, \]
\[w_n = 36(87n^2 + 9k)(87n^2 + 18kn + k^2)^2 - 1, \]
in (1), it is written as
\[x_n = 108k(87n^2 + 18kn + k^2)^2 + 1, \]
\[y_n = 108k(87n^2 + 18kn + k^2)^2 - 1, \]

Following the analysis as in Illustration 3, the corresponding integer solutions to (1) are given by
\[T_n = 6(87n^2 + 18kn + k^2). \]

Conclusion:

In this paper, we have made an attempt to find infinitely many non-zero distinct integer solutions to the non-homogeneous quintic equation with five unknowns given by \(x^3 - y^3 = (x^2 + y^2 + z^2 - w^2 = 2 + 877^5). \) To conclude, one may search for other choices of solutions to the considered quintic equation with five unknowns and higher degree diophantine equations with multiple variables.

References:

2. M.A.Gopalan .A.Vijayakumar,An Interesting Diophantine Problem \(x^3 - y^3 = 2z^3 \) Advances in Mathematics,Scientific Developments and Engineering Applications,Narosa Publishing House,1-6,2010
4. S.Vidyakulakshmi.,K.Lakshmi.,M.A.Gopalan, , Integral solutions of non-homogeneous ternary quintic Diophantine equation \(ax^2 + by^2 = \) \(\) \((a + b)x^2, \) \(a > b > 0, \) Archimedes journal of Mathematics .,vol.3, No.2, 197-204 (2013).
6. M.A.Gopalan,G.Sumathi and S.Vidyakulakshmi,Integral solutions of the Non-Homogeneous Ternary Quintic Equation Interns of Pell Sequence \(x^3 + y^3 + xy(x + y) = 2x^2, \) JAMS ,6(1) 56-62,2013
7. M.A.Gopalan,G.Sumathi and S.Vidyakulakshmi,Integral solutions of Non-Homogeneous Quintic Equation with Three Unknowns \(x^2 + y^2 + z^2 + xy + x + y + 1 = (k^2 + 3)a^2, \) IJRSET ,2(4) 920-925 ,2013
13. J. Shanthi, M.A.Gopalan, On the Ternary Non-homogeneous Quintic Equation \(x^2 + 5y^2 = 2z^5 \) IRPR, Volume 04,Issue 08,329-332, August 2023.

17. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha, and E. Premalatha, On the quintic equation with five unknowns \(x^3 - y^3 = z^3 - w^3 + 6t^5\), International Journal of Current Research, Vol.5, Iss.6, 1437-1440, June 2013.

18. J. Shanthi, M.A. Gopalan, On the Non-homogeneous Quinary Quintic Equation \(x^4 + y^4 - (x + y)w^2 = 14z^2T^3\), IRJEIT, Volume 05, Issue 08, 238-245, August 2023.

19. S. Muthuvel, R. Venkatraman, Integral solutions of the quintic equation with five unknowns \(x^3 - y^3 - (x^2 + y^2) + z^3 - w^3 = 2 + 8T^5\), AIP Conference Proceedings, 2852, 020002-1-020002-4, 2023.