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ABSTRACT 

One of the most important potential flow results obtained using conformal mapping are the solutions of the potential flows past a family of airfoil shapes. Solving 

problem of fluid flow around an airfoil is a highly complex task. However, reducing the problem to two-dimensional ideal fluid flow allows one to employ techniques 

of complex variables, in particular utilizing the geometrics properties of conformal mappings. In this study, we analysed two dimensional ideal fluid flow around a 

circular cylinder obtained by the superposition of simple elementary flows, then transform the solution (complex potential) to symmetric NACA 0012 and cambered 

NACA4412 airfoil by means of conformal transformations, and it was found that the lift and drag forces around a circular cylinder in the z plane remained 

unchanged around transformed airfoils in the w plane. MATLAB scripts were used to visualize the streamlines around the circular cylinder and the corresponding  

airfoils. The aerodynamic characteristics of lift and drag were computed at different angles of attack and the results was validated using XFOIL data. Comparatively 

the Karman-Trefftz  airfoil outperformed Joukousky airfoils in respect of efficiency and performance of the airfoils. 

1. Introduction  

In fluid dynamics, an area of significant practical importance is the study of airfoils. Understanding the design of applicable systems such as airplanes 

wings, and wind turbines requires a quantitative method of analyzing fluid flow and lift. Understanding lift at a higher level thus involves the physical 

modelling of the fluid flowing over an airfoil. While this physical modelling is obviously an area of interest to engineers’ , it is also a relevant field for 

students studying advanced Complex analysis. 

            Prior to the development of the computer, obtaining an accurate solution for the flow around an airfoil shape was a challenging task. The 

development of conformal transformations was therefore of great benefit, as it provides an analytic solution for the exact flow solution to select number 

of airfoil shapes. Christoper (2008). 

 Conformal mapping, which makes the computation of fluid flow around airfoil possible defined by 

                                        𝑤 = 𝑓(𝑧)                                                                             (1) 

is a complex function technique in which complicated geometries can be transformed by an appropriate mapping function to simpler ones which still 

preserves both the angles and orientation of  the original geometry. Using this technique, the flow around an airfoil can be analysed as the flow around a 

circular cylinder for which an analytic form of solution is well known (Samuel 2018).Since the functions that describe the fluid flow satisfy the equation 

of Laplace, the conformal mapping method allows for lift calculations on the cylinder to be equated to those on the corresponding airfoil. 

 As is evident in the works of Simakov et tal (2000), Bjom (2006) and Vassberg  & Jameson (2010) . For aerodynamic applications, the 

conformal mapping function commonly used is the Joukowsky transformation defined by 

                                           𝑤 = 𝑓(𝑧) = 𝑧 +
𝜆2

𝑧
                                                                       (2)  

where 𝑤 is the function in the transformed plane and 𝜆 is the parameter of the transformation that determines the resulting shape of the transformed 

function geometry (Maloneka &  De Almeida, 2010). This is because equation (2) has the property of transforming circles in the 𝑧 plane into shapes that 

resemble airfoils in the 𝑤 plane (Benson & Thomas, 1996). 

Nyandwi (2018) modelled two dimensional ideal fluid flow around airfoil using Joukowsky conformal transformation , however, pointed out two 

drawbacks of the Joukowsky airfoils. These drawbacks include a knife-edge cusp at the trailing edge which presents manufacturing and structural integrity 

difficulties and the fact that the profiles of the Joukowsky airfoil have the maximum thickness very close to the leading edge, which results in adverse 

pressure gradient over most of the upper surface leading to earlier boundary layer transition and higher skin friction drag. Therefore, suggested for using 

Karman-Trefftz transformation as an improved transformations to avoid the two drawbacks of the Joukowsky airfoils. 

http://www.ijrpr.com/
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This work is therefore, suggests replacement of the Joukowsky conformal map in the original method of Nyandwi (2018) with the  Karman-Trefftz 

conformal map equation (3) which has a parameter that controls the trailing edge angle which may likely  improve the accuracy of the original method 

of Nyandwi (2018) since the airfoil generated in this case will be more truly the images of the cylinder in construction a physical model used to represent 

the inviscid, incompressible fluid flow around an airplane wing (airfoil).   

                            
𝑤+𝜆𝑐

𝑤−𝜆𝑐
= (

𝑧+ 𝜆

𝑧− 𝜆
)

𝜆

 , (𝜆 = 2 −
𝜏

𝜋
)                                                   (3) 

We equally seek to  compute aerodynamics characteristics of symmetric NACA0012 and cambered NACA 4412 airfoils  in order to determine the 

efficiency and performance of airfoils obtained from the two methods as an extension of the work of Swem (2018).  

 The efficiency and performance of aircraft depend on the aerodynamic characteristics (lift, drag, lift to drag ratio) of the wing which is in form 

of airfoil shape. Mohammed Adel (2019). Lift and drag forces are generated based on the airfoil geometry and the operating conditions. The airfoil 

geometry are the shape of the airfoil, the airfoil span, and the twist angle. Some of the operating conditions are mach number, the ambient pressure, and 

angle of attack (AOA). Basically, an airplane wing generates lift by diverting the motion of fluid flowing over its surface in a downward direction, 

resulting in an upward reaction force by Newton’s third law ( Anderson ,  2001).  Lift force is the perpendicular force to the chord generated due to the 

pressure difference between the lower and upper surface of the airfoil. The other component of the force which is parallel to the chord is called drag force, 

as shown in figure 1. 

 

 

 

 

 

 

 

 

Figure 1: General Section of an airfoil (Stewart & William 2010) 

This work focuses on modelling two-dimensional fluid flow around the airplane wing constructed by superposition of three elementary flows (uniform, 

doublet and vortex flows) around circular  cylinder using  Karman-Trefftz  conformal mapping techniques. The flow around the air plane wings can be 

considered as an ideal fluid flow, that is fluid motions that are steady, inviscid, incompressible, and irrotational (Anderson, 2007).Considering the fluid 

flow around the airfoil as an inviscid and incompressible still allows for an accurate model provided certain conditions are met. One of these conditions 

is that the airplane wing must be moving through the fluid at subsonic speeds; this is very crucial because at speeds approaching the speed of sound, 

shock waves occur in which the fluid flow no longer becomes continuous, and the perfect fluid idealization breaks down. In particular, we will build our 

models for airfoils moving through flows regions where the compressibility effects in the  flow can be negligible (Mach number between 0.0 and 0.4) . 

Another assumption is that the flow around the airplane wing satisfies the Kutta Condition ( figure 2). 

 

 

  

 

 

 

Figure 2: Inviscid flow over an airfoil with the Kutta condition satisfied. The flow meets smoothly at the trailing edge. (Milne-Thomson, 1958). 

The Kutta condition is that the fluid flowing over the upper and lower surfaces of the airfoil meets smoothly at the trailing edge of the airfoil and explains 

how an inviscid fluid can generate lift. Thus, the Kutta condition accounts for the friction at the boundary of an airfoil that is essential for lift to be 

generated under other additional constraints on the flow around an airfoil ( Anderson 2001). With reference to the law of conservation of mass, a fluid 

flow is said to be an incompressible flow if its density 𝜌 is constant, in contrast, it is called compressible when 𝜌 varies. The fluid flow where the density 

is precisely constant does not exist in nature, but, there are many aerodynamic problems which can be modelled as incompressible flows without loss of 

accuracy (Anderson, 2007). 

  In this case the equation of continuity  

                                  
𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0                                                              (4)  



International Journal of Research Publication and Reviews, Vol 4, no 8, pp 2549-2560 August 2023                                     2551

 

 

reduces to 

                                          
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0                                                                                (5) 

In the same way, it can be shown that 

                                              
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 .                                                                         (6)  

  Furthermore, the absence of frictional shear forces acting on elements of an inviscid fluid causes the motion of the fluid to be purely 

translational, allowing the flow over an airfoil to be modelled as irrotational. Again this irrotationality property of the fluid motion results in equation (7) 

                                                 ∇ ×  V = 0                                                                            (7)  

due to the fact that the curl of the velocity vanishes. Since the motion is irrotational, its velocity field 𝑉 can be expressed as the gradient of a scalar 

function  𝜙 in the sense that 𝑉 =  ∇𝜙. We call 𝜙 the velocity potential, and the flows that result from a velocity potential are known as potential flows. 

We saw in (6) that 𝜙 satisfies the Laplace equation 

                                                      ∇2𝜙 = 0.                                                                            (8) 

and solutions to this equation are referred to as harmonic functions. Since Laplace’s equation is a linear homogeneous second order partial differential 

equation, the sum of particular solutions to the differential equation is also a solution (Anderson , 2007). This means that we can study complicated stream 

functions that one built up from simpler ones. 

 Due to the fact that the air plane wings have complicated geometries; it is difficult to directly solve for the fluid flow around them using Laplace equation 

and potential flow theory. To do this in a more efficient way; we define a complex potential function in the 𝑧-plane as  

                                            Θ(𝑧) = 𝜙( 𝑥, 𝑦) + 𝑖𝜓(𝑥. 𝑦),                                                        (9)  

called the complex velocity potential, using the velocity potential 𝜙( 𝑥, 𝑦) and the stream function 𝜓(𝑥. 𝑦). It is an analytic function. Since 𝜙 and 𝜓 are 

continuous functions of their argument 𝑧 = 𝑥 + 𝑖𝑦, so is Θ . 

                                             
𝜕𝜙

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
,    

𝜕𝜓

𝜕𝑥
 = −

𝜕𝜙

𝜕𝑦
                                                              (10) 

That means that Θ satisfies the Cauchy-Riemann equations.  

Note that  𝜙, 𝜓  satisfy Laplace’s equation. This is always true of the real or imaginary part of an analytic function, and such functions are called harmonic.  

Methodology    

From the fact that, when the complex potential function is transformed using conformal mapping techniques, the potential and stream functions remained 

unchanged. In this work we first solve the flow around a cylinder in the z plane, and then transform this solution to an airfoil in the w plane using Karman-

Trefftz conformal transformation. We also computed the aerodynamic characteristics around the Karman-Trefftz airfoils using MATLAB scripts. 

Conformal transformation requires that the velocity potential and stream function of the cylinder be expressed as a complex function, just as the airfoil 

shape must also be defined using complex variables, given by  

                                                   𝑤(𝑧) = 𝜑 + 𝑖ψ                                                               (11)  

If, moreover,  ψ( x , y )  denotes a harmonic conjugate of   𝜑( 𝑥, 𝑦 ) , the velocity vector is tangent to the curve ψ( x , y ) = 𝑐.  That is in the same direction 

with curve (Bear  1972) 

The curve  

                                                ψ( x , y ) = 𝑐                                                                      (12)   

is called the streamline of the flow, and the function ψ is the stream function. In particular, a boundary across which  fluid can not flow is a streamline 

(Brown & Churchill, 2009). 

To compute the complex potential, this method assumes a solution for the complex potential of the flow past the cylinder given as  

                                      w(𝑧) = 𝑉∞ (𝑧 +
𝑅2

𝑧
) + 𝑖

Γ

2𝜋
ln(𝑧)                                                    (13)           

which is obviously the superposition of the uniform, doublet and vortex flows.  

Equation (12) decomposes into real and imaginary components   

                w(𝑧) = 𝑉∞ (𝑟 +
𝑅2

𝑟
) cos 𝜃 −

Γ

2𝜋
𝜃 + 𝑖 [𝑉∞ (𝑟 − 

𝑅2

𝑟
) sin 𝜃 +

Γ

2𝜋
ln(𝑟)]                (14) 

   which yields, the stream function ψ of the combined flow as 



International Journal of Research Publication and Reviews, Vol 4, no 8, pp 2549-2560 August 2023                                     2552

 

 

                                   𝜓 = 𝑉∞𝑟 sin 𝜃 (1 −
𝑅2

𝑟2
) + 

Γ

2𝜋
ln 𝑟                                                      (15)  

Karmann-Trefftz Mapping from Circular Cylinder to Airfoil 

In this approach, the Karman-Trefftz conformal transformation defined as                                   

                                             
𝑤+𝜆𝑐

 𝑤−𝜆𝑐
= (

𝑧+ 𝜆

𝑧− 𝜆
)

𝜆

                                              

Let  𝜏  be the angle between the tangents of the upper and lower airfoil surfaces at the trailing edge, then is related to 𝜆 as  

                                         𝜏 = 2𝜋 − 𝜆𝜋                                                                     (16) 

Such that, 

                                        𝜆 = 2 − 
𝜏

𝜋
                                                                         (17) 

   The constant 𝑐 in equation (3) is estimated as 1 2𝜆⁄   of the distance between the trailing edge and a point mid way between the leading edge 

and the centre of curvature of the nose.  

In order to map the circular cylinder in z-plane into the airfoil in w-plane, the Karman-Treffzt method requires that the circular cylinder center be defined 

by  𝑥𝑐, 𝑦𝑐. and the trailing edge angle, 𝜏, is defined in degrees. Finally, 𝑐, which is the x-intercept, is set equal to unity. Lastly, the circulation is set in 

order to meet the Kutta condition to ensure smooth flow leaving the trailing edge.  

The Kutta condition requires that the trailing edge 𝑇 is a stagnation point where the fluid velocity vanishes identically (Anderson, 1991). 

Determination of the aerodynamic coefficient of the lift and drag for the NACA 0012 and NACA 4412 airfoils using conformal mapping method. 

An airfoil’s aerodynamic performance can be characterized by several factors such as the lift, drag etc. All are functions of the pressure and shear stress 

distribution across the surface of an airfoil. When improving an airfoil’s performance, it is generally desired to increase the lift while maintaining or 

decreasing the drag. To uniformly evaluate the lift and drag forces a variety of airfoils and flows, the forces are non dimensionalized into the corresponding 

coefficient.  

The generalized method for computation of the lift and drag forces on arbitrary airfoils can not be executed manually. Consequently, the method is coded 

in MATLAB for both symmetrical and cambered airfoils of the NACA four digit series family (see appendices I and II for the codes), respectively.  

The lift coefficient is computed using the formula given as (Anderson 1991 and Karamcheti, 1966)    

                                                       𝑐𝑙 =  
𝐿𝐹

1
2⁄ 𝜌∞𝑉∞

2 𝐴
                                                                          (18)  

and drag coefficient defined as 

                                                               𝑐𝑑 =  
𝐷𝐹

1
2⁄ 𝜌∞𝑉∞

2 𝐴
                                                                        (19)  

where 𝐴 is the  area of a given airfoil which is 1.6944𝑚2 and 1.9944𝑚2 for symmetric 0012 ad 4412 for Karman-Trefftz airfoils respectively.   

For  Karman-Trefftz 0012  Airfoil  at 𝛼 = 1, Lift force  is 2456.5 N/M, Drag force 174.67 

𝑐𝑙 =
2456.5

0.5 × 1.225 × 10000 × 1.6944
= 0.2367 

𝑐𝑑 =
174.67

0.5 × 1.225 × 10000 × 1.6944
= 0.01683 

For  Karman-Trefftz  4412  Airfoil at 𝛼 = 0,  Lift force is 5168N/M, Drag force is 73.17N/M 

𝑐𝑙 =
5168

0.5 × 1.225 × 10000 × 1.9944
= 0.4231 

𝑐𝑑 =
73.17

0.5 × 1.225 × 10000 × 1.9944
= 0.00599 

Results  

Conformal Mappings(Joukowsky and Karman-Trefftz transformations) were exploited to simulate the flow around symmetric NACA 0012 and cambered 

NACA 4412 airfoils at various angles of attack ranging from 0° to 10°. The lift coefficient (𝑐𝑙) and drag coefficient  (𝑐𝑑)  computed using (18) and (19) 

from lift  and drag forces generated by MatLab scripts. The lift to drag coefficients ratio (𝑐𝑙/𝑐𝑑) were computed for determine aerodynamic efficiency 

and performance of the airfoils.   

Generating the Streamlines around Joukowsky andKarman-Treffttz Airfoils  

When a conformal transformation is applied to an offset circular cylinder, computational graphing program can be used to visualize the flow and establish 

lift and drag forces for several airfoils. 



International Journal of Research Publication and Reviews, Vol 4, no 8, pp 2549-2560 August 2023                                     2553

 

 

The contour plot of the imaginary component of the complex potential equation (12) gives the flow around the airfoil. The lift force is calculated using  

𝐿′ = 𝑉∞𝜌∞Γ 

where Γ for symmetric airfoil is given by; 

                                    Γ =
2𝑟𝑉∞ sin 𝛼

2𝜋
                                                                      (18) 

and for cambered airfoil is given by 

                                   Γ = 4rπv∞ sin(α +  β)                                                       (19) 

 The streamlines is visualised using MatLab code.  

 

Figure 3: The streamlines around circular cylinder plot computed in the z plane and the corresponding symmetric Joukowsky airfoil. The plot was 

generated with 𝑉∞ = 100𝑚/𝑠, 𝛼 = 5 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. The cylinder parameters used: 𝑥 =  −0.107𝑚,  𝑦 = 0𝑚, 𝑟 = 1.027𝑚. 

 

 

   

 

 

 

 

 

 

 

 

 

Figure 4: The streamlines around circular cylinder plot computed in the z plane and the corresponding cambered Joukowsky airfoil. The plot was 

generated with 𝑉∞ = 100𝑚/𝑠,  𝛼 = 5 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. The cylinder parameters used: 𝑥 =  −0.100𝑚,  𝑦 = 0.6𝑚 
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Figure 5: The streamlines around circular cylinder plot computed in the z plane and the corresponding symmetric Karman-Trefftz airfoil.The plot was 

generated with 𝑉∞ = 100𝑚/𝑠, 𝛼 = 5 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. The cylinder parameters used: 𝑥𝑐 =  −0.107𝑚,  𝑦𝑐 = 0.0𝑚. 

 

 

 

 

 

 

 

 

 

  

Figure 6: The streamlines around circular cylinder plot computed in the z plane and the corresponding cambered Karman-Trefftz airfoil. The plot was 

generated with 𝑉∞ = 100𝑚/𝑠, 𝛼 = 5 , and 𝜌 = 1.225 𝑘𝑔/𝑚3. The cylinder parameters used: 𝑥𝑐 =  −0.100𝑚,  𝑦𝑐 = 0.6𝑚 

Plots of the coefficients of lift and drag  curves for NACA 0012 airfoils using Joukowsky method, Karman-Trefftz method and XFOIL data. 

Table 1: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for  Symmetric Karman-Trefftz  0012 Airfoil  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.000 0.01683 0.00 

1 0.2367 0.01494 15.84 

2 0.3243 0.01296 25.02 

3 0.3987 0.01287 30.96 

4 0.4732 0.01366 34.63 

5 0.5674 0.01581 35.87 

6 0.6237 0.01804 34.56 

7 0.6984 0.02217 31.67 

8 0.7863 0.02723 28.87 

9 0.8774 0.03435 25.54 

10 0.9013 0.04582 20.63 
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Table 2: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for Symmetric Joukowsky 0012 Airfoils  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.000 0.01682 0.00 

1 0.2258 0.01455 15.51 

2 0.3164 0.01271 24.87 

3 0.3852 0.01281 30.07 

4 0.4663 0.01366 34.12 

5 0.5572 0.01581 35.23 

6 0.6102 0.01794 34.00 

7 0.6853 0.02201 31.13 

8 0.7762 0.02738 28.33 

9 0.8654 0.03461 25.00 

10 0.8994 0.04472 20.11 

 

Table 3: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for NACA 0012 Airfoils obtained by XFoil  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.0000 0.01693 0.000 

1 0.2578 0.01574 16.378 

2 0.3737 0.01444 25.879 

3 0.4544 0.01440 31.555 

4 0.5365 0.01520 35.296 

5 0.6141 0.01674 36.684 

6 0.6862 0.01958 35.045 

7 0.7631 0.02348 32.50 

8 0.8471 0.02869 29.525 

9 0.9246 0.03526 26.222 

10 0.9661 0.04582 21.08 

                                http://airfoiltools.com/polar/details?polar=xf-n0012-il 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of the Lift coefficient (𝒄𝒍) Curves for NACA 0012 Airfoil between Joukowsky, Karman Trefftz  Airfoils  and XFoil data. 
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Figure 8: Comparison of the Drag coefficient (𝒄𝒅) Curves for NACA 0012 Airfoil between Joukowsky, Karman Trefftz  Airfoils  and XFoil data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Comparison of the Coefficients of Lift to Drag ratio (𝒄𝒍/𝒄𝒅) Curves for NACA 0012 Airfoil between Joukowsky, Karman Trefftz  

Airfoils  and XFoil data. 

Plots of the coefficients of lift and drag  curves for NACA 4412 airfoils  using Joukowsky method, Karman-Trefftz method and XFOIL data. 

Table 4: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for Cambered  Karman-Ttrefftz 4412 Airfoil  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.4231 0.00599 70.56 

1 0.5087 0.00523 97.11 

2 0.6334 0.00562 112.61 

3 0.7021 0.00573 122.33 

4 0.8563 0.00675 126.78 

5 0.9386 0.00731 127.54 

6 0.9786 0.00771 126.89 

7 1.0536 0.00900 116.97 

8 1.1641 0.01166 99.76 
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9 1.254 0.01425 88.00 

10 1.2981 0.01617 80.23 

Table 5:  Coefficietns of Lift and Drag Data as a Function of Angle of Attack for Cambered  Joukowsky 4412 Airfoil  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.4222 0.00599 70.48 

1 0.5005 0.00515 97.00 

2 0.6122 0.00546 111.97 

3 0.6947 0.00570 121.78 

4 0.7876 0.00624 126.32 

5 0.8582 0.00679 126.32 

6 0.9001 0.00714 126.00 

7 0.9564 0.00826 115.76 

8 1.0241 0.01035 98.89 

9 1.1983 0.01368 87.57 

10 1.2064 0.01513 79.72 

Table 6: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for NACA 0012 Airfoils obtained by XFoil  

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.0000 0.01693 0.000 

1 0.2578 0.01574 16.378 

2 0.3737 0.01444 25.879 

3 0.4544 0.01440 31.555 

4 0.5365 0.01520 35.296 

5 0.6141 0.01674 36.684 

6 0.6862 0.01958 35.045 

7 0.7631 0.02348 32.50 

8 0.8471 0.02869 29.525 

9 0.9246 0.03526 26.222 

10 0.9661 0.04582 21.08 

                                http://airfoiltools.com/polar/details?polar=xf-n0012-il 

Table 7: Coefficietns of Lift and Drag Data as a Function of Angle of Attack for NACA 4412 Airfoils obtained by XFoil 

AOA(α) LIFT 

COEFFICIENT(CL)  

DRAG 

COEFFICIENT(CD) 

      CL/CD  

   COEFFICIENTS 

0 0.4833 0.00678 71.283 

1 0.5842 0.00594 98.350 

2 0.7055          0.0622 113.42 

3 0.8405 0.00681 123.42 

4 0.9210 0.00722 127.562 

5 1.0254 0.00797 128.657 

6 1.1280 0.00884 127.601 

7 1.2208 0.01036 117.837 

8 1.2973 0.01288 100.722 

9 1.3676 0.01527 89.561 
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10 1.4317 0.01746 81.9988 

                               http://airfoiltools.com/polar/details?polar=xf-n4412-il 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Comparison of the Lift coefficient (𝒄𝒍) Curves for NACA 4412 Airfoil between Joukowsky, Karman Trefftz  Airfoils  and XFoil data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Comparison of the Drag coefficient  (𝒄𝒅) Curves for NACA 0012 Airfoil Between Joukowsky, Karman Trefftz  Airfoils  and XFoil 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Comparison of the Coefficients of Lift to Drag ratio (𝒄𝒍/𝒄𝒅) Curves for NACA 4412 Airfoil between Joukowsky, Karman Trefftz  

Airfoils  and XFoil data. 
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Result Discussion 

When a coformal transformation is applied to an offset circular cylinder, one can get  airfoils by the use of instance of Matlab program. The streamlines 

generated by the imaginary component of the complex potential  (12) is the flow solution around cylinder and corresponding  airfoil.  As is evident from 

Joukowsky airfoils  (figure 1 and 2) , Joukowsky map fixes the trailing edge angle permeentely at 0° resulted in cusp trailing egde while Karman-Trefftz 

airfoils (3 and 4) show blunt trailing edge, therefore the draw back experience by Nyandwi (2018) has been resolved. Also figure 8 and 11 indicate that 

the Karman-Trefftz airfoils outperformed Joukowsky airfoils in respect of efficiency and performance (𝑐𝑙/𝑐𝑑) 

Conclusion 

The main goal of our paper was to apply the conformal mapping technique to model the two dimensional fluid flow around an airplane wing. We reviewed 

the mathematical model used to describe the two dimensional ideal fluid flow around a circular cylinder obtained by the superposition of simple 

elementary flows. This model was implemented in MATLAB in order to visualize the streamlines and the equipotential curves for each elementary flow 

needed in the process of modeling the flow around a circular cylinder. 

In this research paper the conformal mapping aspect of the method of Nyadwi (2018) is modified by replacing the Joukowsky map in the method by the 

Karman-Trefftz map to also account for the nonzero angles at the trailing edge of real airfoils. The modified method has given reasonable predictions on 

the effeciency and performance for the NACA 0012 and 4412 airfoils and has outperformed the original version of the method by Nyandwi (2018). 
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