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ABSTRACT 

According to WHO, about 296 million people live with chronic hepatitis B infection and this hepatitis B can lead to death through cirrhosis-induced liver failure. 

In this paper, the stability analysis of both disease-free and endemic equilibrium of the SEACVR model for the transmission of hepatitis B was studied in the sense 

of Lyapunov. The study used the Variable gradient method and the Krascosvii method of constructing the Lyapunov function to construct the Lyapunov function 

of the model. The study performed a numerical simulation to confirm the definiteness of the constructed Lyapunov function. 
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1. Introduction 

Hepatitis B is still one of the biggest challenges faced by humanity in terms of infectious diseases. There are two major phases of HBV infection, the 

acute and chronic phase: The acute infection stays up to six months and the infected individual recovers or becomes a chronic carrier of the HBV. The 

acute infection is identified by the presence of HBcAg, and HBc – IgM antibodies and may last for six months and progress to the Chronic phase when 

the presence of HBsAg persists longer than 6 months (Lok et al. 2004).  

Hepatitis B Virus is very dangerous to humans; this is because it affects the liver, thereby restraining the function of the vital organ. The vaccination for 

HBV infection is made up of two kinds, plasma-derived vaccines and recombinant vaccines. These two show no differences in terms of duration of 

protection and effectiveness. The former is prepared from purified HBsAg obtained from the plasma of persons with chronic HBV infection. Post-

exposure prophylaxis (PEP) can help to treat an infection and prevent the subsequent development of a chronic infection or liver disease for uninfected, 

unvaccinated persons or anyone who does not know their hepatitis B status that is exposed to the hepatitis B virus through contact with infected blood 

(CDC, 2020).  High HBV presence is common in much of mid-Asia; West Africa, East Africa, Central Asia and East Asia have up to 5% - 8% of the 

population living with hepatitis B virus (CDC, 2020). 

Mathematical models have become important tools in analyzing the spread and control of infectious diseases. Understanding the transmission 

characteristics of infectious diseases in communities, regions and countries in a mathematical framework can lead to better approaches to decreasing the 

transmission of these diseases (Anderson and May, 1991). In other words, Mathematical models are tools that help to capture infection or disease 

transmission mechanisms or dynamics in a population in the form of a mathematical framework to predict the behaviour of the disease spread through 

the population.  

Stability is one of the most important properties of a system. Stability is referred to the ability of any object to return to its original position after it has 

been tilted slightly. In terms of a system, it is referred to as the ability of the system to perform adequately or the ability of a system to return to its 

equilibrium point after a slight perturbation. There are different types of stability and the most significant one is the stability of solutions near an 

equilibrium point (Lyapunov A.M, 1992). 

Lyapunov theory is used to establish local and global stability for epidemiological classes. Nayeem et al (2014)  after studying Zou et al.’s model, 

developed a deterministic model 𝑋𝑌𝐿𝐼𝐶𝑅 to understand the underlying dynamics of HBV infection at the population level (𝑋 – susceptible individual, 𝑌 

- vaccinated individuals, 𝐿 − infected but not yet infectious, 𝐼 – acutely infected individuals, 𝐶 − chronic HBV carriers and 𝑅 −acquiring treatment 

recovered individuals). They showed that in the absence of such re-infection, the model has a disease-free equilibrium (DFE) which is globally 

asymptotically stable (GAS), using the Lyapunov function and LaSalle Invariance Principle whenever the associated reproduction threshold is less than 

unity.  
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Aniji et al (2020) studied approximate solutions for HBV infection with stability analysis using Liao’s homotopy analysis method (LHAM). examine the 

basic nonlinear deferential equation by LHAM to get a semi-analytical solution. They determined that their model is the local and global stability disease-

free and endemic equilibrium by using the Lyapunov function 

Akbari et al (2016) presented a five compartments model 𝑆𝐸𝐼𝐶𝑅,  they took into account that there are newly born who is born immune, susceptible get 

vaccinated which wanes after some time and that an individual who is carrier recovers naturally without drug treatment or with drug treatment. they 

analysed the local stability of the disease-free equilibrium which follows from the Routh-Hurwitz criterion that the eigenvalues have negative real parts 

if the basic reproduction number is less than one and hence established that the disease-free equilibrium of the model is local asymptotically stable if the 

basic reproduction number is less than one and unstable if the basic reproduction number is greater s than one. They stated that if 𝑅0  <  1, then the 

disease-free equilibrium is globally stable and the disease always dies out and if 𝑅0  >  1, the disease-free equilibrium is unstable and the disease is 

uniformly persistent. 

2. The Model 

The study presents the SEACVR model by Ogbuagu et al (2023) basic properties of mathematical model of hepatitis b dynamics with vaccination, 

treatment and post exposure prophylaxis. The model incorporates the intervention measures i.e., vaccination, treatment and Post Exposure Prophylaxis 

(PEP) of Hepatitis B. The model consists of Susceptible 𝑆(𝑡) Exposed 𝐸(𝑡), Acute infected 𝐴(𝑡), Chronic carrier infections 𝐶(𝑡),  vaccinated 𝑉(𝑡) and 

Recovered  𝑅(𝑡). 

The total population of 𝑆, 𝐸, 𝐴, 𝐶, 𝑉, 𝑅  at time  𝑡 is  𝑁(𝑡), and   

𝑁(𝑡) = 𝑆(𝑡) +  𝐸(𝑡) +  𝐴(𝑡) +  𝐶(𝑡) +  𝑉(𝑡) +  𝑅(𝑡)                                    (1) 

Individuals are recruited into the population at the constant rat   𝐵. The susceptible population increases by the recruitment of individuals who are not 

vaccinated at the rate 𝐵ω0, where 𝜔0 is the proportion of non-vaccinated recruitment, while the complementary proportion (1 − ω0)𝐵 is protected, that 

is vaccinated and enter the class of vaccinated individuals 𝑉. The susceptibility decreases due to HBV infection at rate 𝜆𝑆, where 𝜆 in the force of infection 

given by        

                                                 𝜆 =
𝛽(𝐴+𝜀𝐶)

𝑁
                                                  (2) 

where 𝛽 is the transmission coefficient of HBV and 0 < 𝜀 < 1 is a modification parameter that takes into account the fact that acute are most infectious 

than chronic HBV. 

 The population of vaccinated individuals increased by the vaccination of the newborn babies at the rate (1 − ω0)𝐵 and vaccination of susceptible 

individuals at a constant rate 𝛾3. Since the vaccination does not confer permanent immunity to all vaccine recipients, vaccinated individuals lose their 

immunity when the vaccine wanes and return to the susceptible class S at a constant rate 𝜑. 

After being exposed to the infection, the individual move to the exposed class. Exposed individuals who are aware of being exposed take the post-

exposure vaccine and move to the vaccinated class at the rate 𝛾2, while those who are not aware become infectious and move from exposure class to 

acutely infected class at a constant rate of 𝜎. 𝛾1 is the rate at which individuals leave the acutely infected class, 𝑞 is the proportion that leaves acute and 

progresses to chronic class and 1 − 𝑞 is the proportion that leaves the acutely infected class and progresses to recovered when treated.  At the rate of 𝛼, 

individuals leave the chronic class to recover when treated or move to the recovered class at the rate of  𝜃 when HBV is naturally cleared without 

treatment. Exit from the population is by natural and HBV- related mortality only at the rate 𝜇0 and 𝜇1 respectively 

 2.2 The Model Equation  

The model consists of the following ordinary differential equations (ODE) 

𝑆′ = 𝐵𝑤0 +  𝜑𝑉 − (𝜆 + 𝛾3 + 𝜇0)𝑆 

𝐸′ =  𝜆𝑆 − (𝛾2 + 𝜇0 +  𝜎)𝐸 

𝐴′ =  𝜎𝐸 − (𝜇0 + 𝛾1)𝐴                                                                                               (3) 

𝐶′ = 𝑞𝛾1A − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝐶 

𝑉′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆 + 𝛾2𝐸 − (𝜇0 +  𝜑)𝑉 

𝑅′ = (1 − 𝑞)𝛾1𝐴 + (𝛼 + 𝜃)𝐶 − 𝜇0𝑅 

3.1 The Disease-Free Equilibrium  

Here the study considered the case of a population at the time of eradicating HBV. The disease-free equilibrium (DFE) for an epidemiological model is 

an equilibrium such that the disease is absent in the community.  
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Thus, 

Let  𝐷0  =  (𝑆0, 𝐸0, 𝐴0, C0,  𝑉0, 𝑅0)  is the DFE of model system (3), 

 then 𝐸0  =  𝐴0  = C0 =  0. As a consequence of model system (3), 𝑅0  =  0 with 𝑆0 and 𝑉0 being solutions of the system:  

𝑆0
′ = 𝐵𝑤0 +  𝜑𝑉0 − (𝛾3 + 𝜇0)𝑆0 = 0 

𝑉0
′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆0 − (𝜇0 +  𝜑)𝑉0 = 0 

This has a unique solution: 

𝑆0 =
𝐵(𝜑+𝜔0𝜇0)

𝜇0(𝜇0+ 𝜑+ 𝛾3)
 ,  𝑉0 =

𝐵(𝜇0( 1−𝜔0)𝛾3)

𝜇0(𝜇0+ 𝜑+ 𝛾3)
   and 𝑁0  =  𝑆0  + 𝑉0  =  

𝐵

𝜇0
.   (4) 

3.2 Endemic Equilibrium 

In this section, we compute the model endemic equilibrium point 𝐺∗. This is done by setting the differential equations of the model system (3) equal to 

zero. The endemic equilibrium is given by 

 𝐺∗ = [𝑆∗, 𝐸∗, 𝐴∗, 𝐶∗, 𝑉∗, 𝑅∗], at steady state 𝑆′, 𝐸′, 𝐴′, 𝐶′, 𝑉′, 𝑎𝑛𝑑 𝑅′ 

That is  

𝑆′ = 𝐵𝑤0 +  𝜑𝑉 − (𝜆 + 𝛾3 + 𝜇0)𝑆 = 0 

𝐸′ =  𝜆𝑆 − (𝛾2 + 𝜇0 +  𝜎)𝐸 = 0 

𝐴′ =  𝜎𝐸 − (𝜇0 + 𝛾1)𝐴    = 0 

𝐶′ = 𝑞𝛾1 − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝐶 = 0 

𝑉′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆 + 𝛾2𝐸 − (𝜇0 +  𝜑)𝑉 = 0 

𝑅′ = (1 − 𝑞)𝛾1𝐴 + (𝛼 + 𝜃)𝐶 − 𝜇0𝑅 = 0 

From the above system of equations (3), we have  

𝑆 =  
𝐵𝑤0+ 𝜑𝑉

(𝜆+𝛾3+𝜇0)
                  

𝐸 =
𝜆𝑆

(𝛾2+ 𝜇0+ 𝜎)
                                                                                                           

𝐴 =
𝜎𝐸

𝜇0+ 𝛾1
                    

𝐶 =
𝑞𝛾1𝐴

(𝜇0+ 𝜇1+ 𝛼+ 𝜃)
                                                 

𝑉 =
𝐵(1−𝑤0)+ 𝛾3𝑆+ 𝛾2𝐸

𝜇0+ 𝜑
                        

𝑅 =
(1−𝑞)𝛾1 𝐴+(𝛼+ 𝜃)𝐶

𝜇0
                 

Substitute 𝐸 =
𝜆𝑆

(𝛾2+ 𝜇0+ 𝜎)
   in  𝑉 =

𝐵(1−𝑤0)+ 𝛾3𝑆+ 𝛾2𝐸

𝜇0+ 𝜑
  ,  we have that 

V = 
𝐵(1−𝑤0)+ 𝛾3𝑆+ 𝛾2(

𝜆𝑆

(𝛾2+ 𝜇0+ 𝜎)
)

𝜇0+ 𝜑
, 

substituting this V in the first equation of the model of the endemic equilibrium, that is  

𝑆∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
                                   (5) 

Substituting 𝑆∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
   in  𝐸∗  below, we have  

𝐸∗ = (
𝜆𝑆∗

(𝛾2+ 𝜇0+ 𝜎)
) =  (

𝜆(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)         (6) 

Substituting 𝑆∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
   in  𝐴∗  below, we have  

𝐴∗ =  (
𝜆𝜎(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)(𝜇0+ 𝛾1)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)                            (7) 

Substituting 𝑆∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
  in  𝐶∗  below, we have that 

𝐶∗ = (
𝑞𝛾1𝜆𝜎𝑆∗

(𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 +  𝜃)
) 
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            =  (
𝑞𝛾1𝜆𝜎(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)(𝜇0+ 𝛾1)(𝜇0+ 𝜇1+ 𝛼+ 𝜃)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)      (8) 

𝑉∗ =
𝐵(1 − 𝑤0) + 𝛾3𝑆

∗ + 𝛾2𝐸
∗ 

𝜇0 +  𝜑
  

Substituting 𝑠∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
     

and   

𝐸∗ = (
𝜆(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)  in  𝑉∗  below, we have  

  𝑉∗ = 
𝐵(1−𝑤0) 

𝜇0+ 𝜑
+ 𝛾3 (

𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
)  +               𝛾2 (

𝜆(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)     

   (9) 

𝑅∗ =
(1 − 𝑞)𝛾1 𝐴

∗ + (𝛼 +  𝜃)𝐶∗

𝜇0

 

Substituting 𝑠∗ =
𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎)

(𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑
     

and  𝐶∗ 𝑎𝑠  

 (
𝑞𝛾1𝜆𝜎(𝐵𝑤0(𝜇0 +  𝜑) + 𝐵(1 − 𝑤0)(𝛾2 + 𝜇0 +  𝜎))

(𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 +  𝜃)((𝜆 + 𝛾3 + 𝜇0)(𝜇0 +  𝜑) − (𝛾3(𝛾2 + 𝜇0 +  𝜎) + 𝛾2𝜆)𝜑)
) 

 

𝑅∗ =  (
(1−𝑞)𝛾1 

𝜇0
) (

𝜆𝜎(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)(𝜇0+ 𝛾1)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
) 

          +(
(𝛼+ 𝜃)

𝜇0
) (

𝑞𝛾1𝜆𝜎(𝐵𝑤0(𝜇0+ 𝜑)+𝐵(1−𝑤0)(𝛾2+ 𝜇0+ 𝜎))

(𝛾2+ 𝜇0+ 𝜎)(𝜇0+ 𝛾1)(𝜇0+ 𝜇1+ 𝛼+ 𝜃)((𝜆+𝛾3+ 𝜇0)(𝜇0+ 𝜑)−(𝛾3(𝛾2+ 𝜇0+ 𝜎)+𝛾2𝜆)𝜑)
)  (10) 

Hence, the above equation shows that the endemic equilibrium exists. 

The study define the basic reproduction number, 𝑅0  as the largest eigenvalue of the next generation matrix FV−1. Thus, 

 R0  = 
𝜎𝑆0𝛽((μ0+ μ1+ α+θ)+ ε𝑞𝛾1)

(𝛾2+𝜇0+ 𝜎)(𝜇0+ 𝛾1)(μ0+ μ1+ α+θ)𝑁0
                                (11)                                                         

Theorem 1 The disease-free equilibrium of the model without delay system 3 is locally asymptotically stable if  𝑅0 < 1 

Proof 

Consider an autonomous system 

𝑥′ = 𝑓(𝑥, 𝑡)                                                                                       (12)                                      

We need to construct a Lyapunov function 𝑉 such that 𝑉(𝑥) is positive definite i.e., 𝑉(𝑥) >  0    

∀ 𝑥and 𝑉′(𝑥)  is negative definite that is 𝑉′(𝑥) ≤ 0 ∀ 𝑥 ∈  Ω. 

Using the variable gradient method and taking into account of the disease-free equilibrium where we have that 

𝑆′ = 𝐵𝑤0 +  𝜑𝑉0 − (𝜇0 + 𝛾3)𝑆0 = 0 

𝑉′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆0 − (𝜇0 +  𝜑)𝑉0 = 0 

Let 𝑆0 = 𝑥1, 𝑉0 = 𝑥2 

we let ∇𝑉 be n undetermined component and 𝑉(𝑥) be the lyapunov function 

then we have that  

𝑉′(𝑥) =
𝑑∇𝑉(𝑥)

𝑑𝑥
=  

𝜕𝑉

𝜕𝑥1

𝜕𝑥1

𝜕𝑡
+  

𝜕𝑉

𝜕𝑥2

𝜕𝑥2

𝜕𝑡
+ 

𝜕𝑉

𝜕𝑥3

𝜕𝑥3

𝜕𝑡
+ ⋯+

𝜕𝑉

𝜕𝑥𝑛

𝜕𝑥𝑛

𝜕𝑡
   

                              = ∇V1
∂x1

𝜕𝑡
+  ∇V2

∂x2

𝜕𝑡
+  ∇V3

∂x3

𝜕𝑡
+ ⋯+  ∇Vn

∂x𝑛

𝜕𝑡
 

 

Therefore, 𝑉′(𝑥)  = (∇V)𝑇𝑥′ 

Where ∇V = 

[
 
 
 
 
 

𝜕𝑉

𝜕𝑥1

𝜕𝑉

𝜕𝑥2

⋮
𝜕𝑉

𝜕𝑥𝑛]
 
 
 
 
 

      =       

[
 
 
 
 
∇V1

∇V2

∇V3

⋮
∇Vn]

 
 
 
 

 

This implies that 𝑉(𝑥) =   ∫ (∇V)𝑇𝑑𝑥
𝑥

0
 

𝑥 can be interpreted into arbitrary points in the phase space that is 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛  

Note that  𝑎𝑖′𝑠 are positive, then from ∇V,  we determine 𝑉′(𝑥)  as (∇V)𝑇𝑥′. 
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𝑉′(𝑥) =  ([
𝑎11𝑥1 +  𝑎12𝑥2

𝑎21𝑥1 +  𝑎22𝑥2
])

𝑇

[
𝐵𝑤0 +  𝜑𝑥2 − (𝛾3 + 𝜇0)𝑥1 

𝐵(1 − 𝑤0) + 𝛾3𝑥1 − (𝜇0 +  𝜑)𝑥2
] 

          = [𝑎11𝑥1 +  𝑎12𝑥2       𝑎21𝑥1 +  𝑎22𝑥2  ] [
𝐵𝑤0 +  𝜑𝑥2 − (𝛾3 + 𝜇0)𝑥1 

𝐵(1 − 𝑤0) + 𝛾3𝑥1 − (𝜇0 +  𝜑)𝑥2
] 

    = ((𝑎12 − 𝑎22)𝑥2
2 + (𝑎11 − 𝑎21)𝑥1𝑥2)𝜑 + (−𝑎22𝑥2

2 + (−𝑎21 −             𝑎12)𝑥1𝑥2 −            𝑎11𝑥1
2)𝜇0 + ((𝑎22 − 𝑎12)𝑥1𝑥2 + (𝑎21 −

             𝑎11)𝑥1
2)𝛾3 + ((𝐵𝑎12 − 𝐵𝑎22)𝑤0 +                  𝐵𝑎22)𝑥2 +            ((𝐵𝑎11 − 𝐵𝑎21)𝑤0 + 𝐵𝑎21)𝑥1                                

𝑉′(𝑥) = −𝑥2
2𝜇0 − 2𝑥1𝑥2𝜇0 − 𝑥1

2𝜇0 + 𝐵𝑥2 + 𝐵𝑥1               (13) 

And in terms of the basic reproduction number, 𝑅0 we have that  

  𝑉′(𝑥) = −(𝑥2
2 + 2𝑥1𝑥2 + 𝑥1

2)𝜇0 +   (((𝑅0 − 1)(𝑥1 + 𝑥2)) + (𝑥1 + 𝑥2)  
𝑧𝜇0

𝑅0
2𝑦

)           

where 𝑧 =    (𝑥1𝛽(𝜇0 + 𝜇1 +  𝛼 + 𝜃 + 𝜀𝑞𝛾1)  

 and 𝑦 =  (𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 + 𝜃) 

For (𝑥) , again from satisfying the curl requirement where we let   𝑎11 = 𝑎12 = 𝑎21 = 𝑎22 = 1,    

𝑉(𝑥) =  ∫ (𝑥1 + 𝑥2) 𝑑𝑥1 
𝑥1,𝑥2=0

0

+  ∫ (𝑥1 + 𝑥2) 𝑑𝑥2 
𝑥2,𝑥1=0

0

  

    = 
𝑥1

2

2
+

𝑥2
2

2
 

    = 
1

2
(𝑥1

2 + 𝑥2
2)                 

And this implies that  

𝑉(𝑥) =
1

2
(𝑆0

2 + 𝑉0
2) > 0           (14) 

And  

𝑉′(𝑥) =  −𝜇0(𝑆0
2 + 𝑉0

2) + [((𝑅0 − 1)(𝑆0 + 𝑉0)] + (𝑆0 + 𝑉0)  
𝑧0

𝑅0𝑦0
 ]   (15) 

where 𝑧0 =   𝑆0𝛽𝜇0(𝜇1 + 𝜇0 + 𝜃 + 𝑞𝛾1𝜀 + 𝛼)𝜎  and 

𝑦0 = (𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 + 𝜃) 

𝑉′(𝑥) is negative definite if 𝑅0 < 1 , 𝑎𝑛𝑑 𝑥1 + 𝑥2 > 0  

Hence the equilibrium state 𝑓(0, 𝑡) is asymptotically stable. 

Theorem 2 The disease-free equilibrium of the model system (3) is globally asymptotically stable if 𝑅0 < 1 

Proof   

Having gotten from theorem that 

𝑉(𝑥) =
1

2
(𝑆0

2 + 𝑉0
2) > 0  

and  

𝑉′(𝑥) =  −𝜇0(𝑆0
2 + 𝑉0

2) + [((𝑅0 − 1)(𝑆0 + 𝑉0)] + 𝑆0 + 𝑉0)  
𝑧𝜇0

𝑅0
2𝑦

 ] 

Where 𝑧 =    𝑆0 𝛽(𝜇0 + 𝜇1 +  𝛼 + 𝜃 + 𝜀𝑞𝛾1)  and 

 𝑦 =  (𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 + 𝜃) 

Recall on disease-free equilibrium we have  

𝑆′ = 𝐵𝑤0 +  𝜑𝑉0 − (𝜇0 + 𝛾3)𝑆0 = 0 

𝑉′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆0 − (𝜇0 +  𝜑)𝑉0 = 0 

If we let 𝑆0 = 𝑥1, 𝑉0 = 𝑥2, we will have that 

 𝑉(𝑥) = 
1

2
(𝑥1 + 𝑥2) and  

𝑉′(𝑥) = 𝐵(𝑥1 + 𝑥2) − 𝜇0(𝑥1
2 + 𝑥2

2)   

           = − 𝜇0(𝑥1
2 + 𝑥2

2) + [((𝑅0 − 1)(𝑥1 + 𝑥2)] + 𝑥1 + 𝑥2)  
𝑧𝜇0

𝑅0
2𝑦

 ] 

Where 𝑧 =    (𝑥1𝛽(𝜇0 + 𝜇1 +  𝛼 + 𝜃 + 𝜀𝑞𝛾1)  and 

 𝑦 =  (𝛾2 + 𝜇0 +  𝜎)(𝜇0 + 𝛾1)(𝜇0 + 𝜇1 +  𝛼 + 𝜃) 

From     𝑉(𝑥) = 
1

2
(𝑥1 + 𝑥2) 

when ‖𝑥1‖ → ∞,   𝑉(𝑥)  → ∞ 
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and when  ‖𝑥2‖ → ∞,   𝑉(𝑥)  → ∞ 

This imply that 𝑉(𝑥) is radially unbounded, therefore since 𝑉(𝑥) is positive definite and radially unbounded and 𝑉′(𝑥) is negative definite if 𝑅0 < 1. 

The model system (3) is globally asymptotically stable if  𝑅0 < 1.  

Theorem 3 If 𝑅0 > 1, the endemic equilibrium point 𝐷∗ = [𝑆∗, 𝐸∗, 𝐴∗, 𝐶∗, 𝑉∗, 𝑅∗]  is locally asymptotically stable and if 𝑅0 < 1, then the endemic 

equilibrium points of the model system (3) are unstable 

Proof 

We need to construct a Lyapunov function 𝑉(𝑥) which will be positive definite and 𝑉′(𝑥) that will be negative definite. Using Krasovskii method of 

constructing Lyapunov function. 

We consider an autonomous system that is nonlinear 

𝑥′ = 𝑓(𝑥) 

Where in our own case 𝑥  is a six-dimensional vector, we assume that the equilibrium is 0 that is 𝑓(0, 𝑡) =  0. Now considering the model system (3), we 

have that  

𝑓 =  

 
 
 
 
 
 
𝑓1

𝑓2

𝑓3

𝑓4
𝑓5

𝑓6 
 
 
 
 
 

 ,    and        𝑥 =  

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6]
 
 
 
 
 

 

Also from the model system 3, we let 𝑆′ = 𝑓1, 𝐸′ = 𝑓2, 𝐴′ = 𝑓3, 𝐶
′ = 𝑓4, 𝑉′ = 𝑓5,  𝑅

′ = 𝑓6 and 𝑆 = 𝑥1, 𝐸 = 𝑥2, 𝐴 = 𝑥3, 𝐶 = 𝑥4, 𝑉 = 𝑥5 𝑎𝑛𝑑 𝑅 = 𝑥6 

This implies that  

𝑓1 =  𝐵𝑤0 +  𝜑𝑥5 − (𝜆 + 𝛾3 + 𝜇0)𝑥1 

𝑓2 =  𝜆𝑥1 − (𝛾2 + 𝜇0 +  𝜎)𝑥2 

𝑓3 =  𝜎𝑥2 − (𝜇0 + 𝛾1)𝑥3                                              (16)                                                       

𝑓4 = 𝑞𝛾1𝑥3 − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝑥4 

𝑓5 = 𝐵(1 − 𝑤0) + 𝛾3𝑥1 + 𝛾2𝑥2 − (𝜇0 +  𝜑)𝑥5  

𝑓6 = (1 − 𝑞)𝛾1𝑥3 + (𝛼 + 𝜃)𝑥4 − 𝜇0𝑥6 

Where 𝜆 =
𝛽(𝐴+𝜀𝐶)

𝑁
 

Then for our model system,  

𝑓(𝑥) =  

(

 
 
 
 

𝐵𝑤0 +  𝜑𝑥5 − (𝜆 + 𝛾3 + 𝜇0)𝑥1

 𝜆𝑥1 − (𝛾2 + 𝜇0 +  𝜎)𝑥2

 𝜎𝑥2 − (𝜇0 + 𝛾1)𝑥3  

𝑞𝛾1𝑥3 − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝑥4

𝐵(1 − 𝑤0) + 𝛾3𝑥1 + 𝛾2𝑥2 − (𝜇0 +  𝜑)𝑥5 

(1 − 𝑞)𝛾1𝑥3 + (𝛼 + 𝜃)𝑥4 − 𝜇0𝑥6 )

 
 
 
 

               (17) 

Assume that 𝑓(𝑥) has continuous first partial derivative, according to Krasovskii method, we define  

𝑉(𝑥) = 𝑓𝑇(𝑥)𝑓(𝑥), 𝑉′(𝑥) =  (𝑓′)𝑇(𝑥)𝑓(𝑥) + 𝑓𝑇(𝑥)𝑓′(𝑥)  and 𝑓′(𝑥) =
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
 = 𝐴(𝑥)𝑓(𝑥) 

Therefore  

𝑉′(𝑥) =  [𝐴(𝑥)𝑓(𝑥)]𝑇𝑓(𝑥) + 𝑓𝑇(𝑥)𝐴(𝑥)𝑓(𝑥) 

𝑉′(𝑥) =  𝑓𝑇(𝑥)[𝐴𝑇(𝑥) + 𝐴(𝑥)  ] 𝑓(𝑥) 

Since 𝑓′(𝑥) =
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
 = 𝐴(𝑥)𝑓(𝑥), this implies that 𝐴(𝑥) =

𝜕𝑓

𝜕𝑥
  is the jacobian matrix of the model. 

𝑨(𝒙) =      

(

 
 
 
 

−𝜇0 − 𝜆 − 𝛾3 0 −
𝑥1𝛽

𝑁
−

𝑥1𝛽𝜀

𝑁
𝜑 0

𝜆 −𝜎 − 𝜇0 − 𝛾2 0 0 0 0
0 𝜎 −𝜇0 − 𝛾1 0 0 0
0 0 𝑞𝛾1 −𝜇1 − 𝜇0 − 𝜃 − 𝛼 0 0
𝛾3 𝛾2 0 0 −𝜑 − 𝜇0 0
0 0 (1 − 𝑞)𝛾1 𝜃 + 𝛼 0 −𝜇0)

 
 
 
 

          (18) 

Let’s define a function �̂� = 𝐴(𝑥) + 𝐴𝑇(𝑥), where 𝐴𝑇(𝑥) is the transpose of 𝐴(𝑥), that is  
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𝐴𝑇(𝑥)    =

(

 
 
 
 
 

−𝜇0 − 𝜆 − 𝛾3 𝜆 0 0 𝛾3 0
0 −𝜎 − 𝜇0 − 𝛾2 𝜎 0 𝛾2 0

−
𝑥1𝛽

𝑁
0 −𝜇0 − 𝛾1 𝑞𝛾1 0 (1 − 𝑞)𝛾1

−
𝑥1𝛽𝜀

𝑁
0 0 −𝜇1 − 𝜇0 − 𝜃 − 𝛼 0 𝜃 + 𝛼

𝜑 0 0 0 −𝜑 − 𝜇0 0
0 0 0 0 0 −𝜇0 )

 
 
 
 
 

      (19) 

Then  �̂� = 𝐴(𝑥) + 𝐴𝑇(𝑥)  becomes  

(

 
 
 
 
 

−2𝜇0 − 2𝜆 − 2𝛾3 𝜆 −
𝑥1𝛽

𝑁
−

𝑥1𝛽𝜀

𝑁
𝜑 + 𝛾3 0

𝜆 −2𝜎 − 2𝜇0 − 2𝛾2 𝜎 0 𝛾2 0

−
𝑥1𝛽

𝑁
𝜎 −2𝜇0 − 2𝛾1 𝑞𝛾1 0 (1 − 𝑞)𝛾1

−
𝑥1𝛽𝜀

𝑁
0 𝑞𝛾1 −2𝜇1 − 2𝜇0 − 2𝜃 − 2𝛼 0 𝜃 + 𝛼

𝜑 + 𝛾3 𝛾2 0 0 −2𝜑 − 2𝜇0 0
0 0 (1 − 𝑞)𝛾1 𝜃 + 𝛼 0 −2𝜇0 )

 
 
 
 
 

      (20) 

Recall that  

𝑉′(𝑥) =  𝑓𝑇(𝑥)[𝐴𝑇(𝑥) + 𝐴(𝑥)  ] 𝑓(𝑥) 

And where  �̂� = 𝐴(𝑥) + 𝐴𝑇, then  𝑉′(𝑥) =  𝑓𝑇(𝑥)�̂� 𝑓(𝑥) 

According to the Krasovaskii method, from the expression 

𝑉′(𝑥) =  𝑓𝑇(𝑥)�̂� 𝑓(𝑥),  𝑉′(𝑥) is negative definite if we have that   −𝐹1̂ = −[𝐴(𝑥) + 𝐴𝑇], 𝑎nd   𝐹1̂  is positive definite. So, we have that −𝐹1̂ =
−[𝐴(𝑥) + 𝐴𝑇]  𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

(

 
 
 
 
 
 
 

2𝜇0 + 2𝜆 + 2𝛾3 −𝜆
𝑥1𝛽

𝑁

𝑥1𝛽𝜀

𝑁
−(𝜑 + 𝛾3) 0

−𝜆 2𝜎 + 2𝜇0 + 2𝛾2 𝜎 − 0 −𝛾2 0
𝑥1𝛽

𝑁
−𝜎 2𝜇0 + 2𝛾1 −𝑞𝛾1 0 −(1 − 𝑞)𝛾1

𝑥1𝛽𝜀

𝑁
0 −𝑞𝛾1 2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼 0 −(𝜃 + 𝛼)

−(𝜑 + 𝛾3) −𝛾2 0 0 2𝜑 + 2𝜇0 0

0 0 −(1 − 𝑞)𝛾1 −(𝜃 + 𝛼) 0 2𝜇0 )

 
 
 
 
 
 
 

 

To check the definiteness of 𝐹1̂,  using the leading principal submatrices. From the system of equations, 𝑛 = 6 and 𝑘 = 1,2, … ,5.  And find the determinant 

of the leading principal minors of 𝐹1̂, thus  𝐷1 𝑖𝑠 2𝜇0 > 0 , The determinant of 𝐷2 𝑖𝑠 2((𝜑 + 𝜇0)𝜇0) > 0 , The determinant of 𝐷3 , |𝐷3 | =

(2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼) (2((𝜑 + 𝜇0)𝜇0)) + ((𝜃 + 𝛼)22(𝜑 + 𝜇0))  >  0,  

The determinant of 𝐷4 , |𝐷4 | = (2𝜇0 + 2𝛾1)(2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼)(|𝐷2 |) + (|𝐷2 |)(𝑞𝛾1)
2 

The determinant of 𝐷5 , |𝐷5 | = (2𝜎 + 2𝜇0 + 2𝛾2) ((|𝐷2 |)((2𝜇0 + 2𝛾1)(2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼) + (𝑞𝛾1)
2))  > 𝟎    

And the determinant of 𝐷6 ,                                

|𝐷6 | = (𝑅0 − 1) ( 4𝜇0(𝜇0 + 𝜆 + 𝛾3)((𝑥1𝛽𝜇1 + 𝑥1𝛽𝜇0 + 𝑥1𝛽𝜃 + 𝑥1𝛼𝛽)𝜎 + 𝑞𝛾1𝜀)(𝜑 + 𝜇0)) (𝑁𝑅0)
−1-                𝝀𝟐 ((2((𝜑 + 𝜇0)𝜇0))((2𝜇0 +

2𝛾1)(2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼) + (𝑞𝛾1)
2)) 

            −(( 4𝜇0(𝜇0 + 𝜆 + 𝛾3)((𝑥1𝛽𝜇1 + 𝑥1𝛽𝜇0 + 𝑥1𝛽𝜃 + 𝑥1𝛼𝛽)𝜎 + 𝑞𝛾1𝜀)(𝜑 + 𝜇0))(𝑁)−1)      

Since all the determinant of leading principal minors of 𝐹1̂ are positive if 𝑅0 > 1  and if the inequality  

( 4𝜇0(𝜇0 + 𝜆 + 𝛾3)((𝑥1𝛽𝜇1 + 𝑥1𝛽𝜇0 + 𝑥1𝛽𝜃 + 𝑥1𝛼𝛽)𝜎 + 𝑞𝛾1𝜀)(𝜑 + 𝜇0)) (𝑁𝑅0)
−1 > 

𝝀𝟐 ((2((𝜑 + 𝜇0)𝜇0)) ((2𝜇0 + 2𝛾1)(2𝜇1 + 2𝜇0 + 2𝜃 + 2𝛼) + (𝑞𝛾1)
2)) 

                 −(( 4𝜇0(𝜇0 + 𝜆 + 𝛾3)((𝑥1𝛽𝜇1 + 𝑥1𝛽𝜇0 + 𝑥1𝛽𝜃 + 𝑥1𝛼𝛽)𝜎 + 𝑞𝛾1𝜀)(𝜑 + 𝜇0))(𝑁)−1)      

Is true, then   𝐹1̂ is positive definite 

Therefore, if 𝑅0 > 1,  𝐹1̂ is positive definite which imply that the derivative of 𝑉(𝑥) that is 𝑉′(𝑥) is negative definite 

  Then                                                           

𝑉(𝑥) = (𝐵𝑤0 +  𝜑𝑥5 − (𝜆 + 𝛾3 + 𝜇0)𝑥1)
2 + (𝜆𝑥1 − (𝛾2 + 𝜇0 +  𝜎)𝑥2)

2 + (𝜎𝑥2 − (𝜇0 + 𝛾1)𝑥3  )
2 +(𝑞𝛾1𝑥3 − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝑥4)

2 + (𝐵(1 −
𝑤0) + 𝛾3𝑥1 + 𝛾2𝑥2 − (𝜇0 +  𝜑)𝑥5 )

2   + ( (1 − 𝑞)𝛾1𝑥3 + (𝛼 + 𝜃)𝑥4 − 𝜇0𝑥6)
2                                                         

Clearly, 𝑉(𝑥)  > 0 which imply that 𝑉(𝑥) is positive definite and since −𝐹1̂ is positive definite if 𝑅0  > 1 which imply that the derivative of 𝑉(𝑥) that is 

𝑉′(𝑥) is negative definite according to krasvoskii method. Hence the endemic equilibrium is locally asymptotically stable if  𝑅0  > 1. 

Theorem 4.4   If  𝑅0  > 1, the endemic equilibrium point is globally asymptotically stable 

Proof  
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Since the study have constructed the Lyapunov function of the endemic equilibrium point of  the model  and its derivative using krasvoskii method; 

Clearly, 𝑉(𝑥) is positive definite and  

𝑉′(𝑥) =  𝑓𝑇(𝑥)�̂� 𝑓(𝑥) and having  𝐹1̂ = −[𝐴(𝑥) + 𝐴𝑇] =  −�̂�, is negative definite.  Since −�̂�  is positive definite if 𝑅0 > 1, and V(x)  is radially 

unbounded since as norm of 𝑥 tends to infinity, the 𝑉(𝑥) also tends to infinity. 

 That is;  

||𝑥||
𝑥→∞

⟶ ∞  ⟹V(x) ⟶
𝑥⟶∞

∞ 

Hence the endemic equilibrium point of model is globally asymptotically stable. 

4. Numerical Simulation for Stability Analysis 

Taking the values of the parameter from the Table below 

Parameters Interpretation Estimate 

𝐵 Recruitment 0.09121 

𝜇0 Natural mortality 0.09121 

𝜇1 HBV-related mortality 0.041 

𝜔0 Proportion of non-vaccinated recruitment 0.3 

𝜎 Rate of moving from exposed to acute state 0.36 

𝛾2 Post exposed vaccinated of the exposed individuals 0.45 

𝜑 vaccination waning rate 0.53  

𝛽 Transmission coefficient 0.655 

𝜀 Reduced transmission rate relative to acute infection by carriers 0.5 

𝛾1 Rate of moving from acute to other compartments 0.44 

𝑞 Rate of moving from acute to carrier 0.5 

𝛼 Rate of moving from carrier to immune by treatment 0.6 

𝜃 Rate of moving from carrier to immune naturally 0.6 

𝛾3 Rate of susceptible get vaccinated 0.5 

 

Table 4.3: Parameter values for the model system 3.3 at 𝑹𝟎 < 𝟏 for the Numerical simulation of model system 3.3 without delay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Numerical Simulation of  the lyapunov funtion for Disease free equilibruim at 𝑅0 < 1. It is observed that the Lyapunov function of the diseases 

free equilibrium is positive except at zero. 
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Figure 2: Numerical Simulation of the Derivative of Lyapunov function for Disease free equilibrium at  𝑅0 < 1. This shows that the derivative of the 

Lyapunov function is negative everywhere except at zero. 

4.  Conclusion 

The paper focused on the stability of the model of HBV dynamics which incorporates vaccination, treatment and post-exposure prophylaxis. The study 

established the disease-free equilibrium and the endemic equilibrium, and showed that the disease-free equilibrium is local and global asymptotically 

stable as 𝑅0 < 1. Also, the endemic equilibrium is local and global asymptotically stable as 𝑅0 > 1 Our analysis and the numerical simulation shown in 

Figure 1 and Figure 2 that the Lyapunov function of the disease-free equilibrium is positive definite and the derivative of the Lyapunov function is 

negative definite. Hence, this implies that the disease-free equilibrium is stable when the basic reproduction number is less than one. The study suggests 

that the use of post-exposure prophylaxis or combining the post-exposure prophylaxis with vaccination (both the vaccination of infants) and treatment 

will keep the basic reproduction number less than one. 
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