Study of Structural Characteristics of Erbium doped Yttrium Iron Garnet by Conventional Ceramic Method.

Muhammad Waqas¹, Zubair Khan², Usman Ali Qazi³

¹Department of Physics, Government Postgraduate College Haripur, The University of Haripur.
² Department of Physics, Government Postgraduate College Haripur, The University of Haripur.
³ Department of Physics, Government Postgraduate College Haripur, The University of Haripur.

ABSTRACT.

This paper discussed the microstructural aspects of ferrites. A ferromagnetic insulator known as yttrium iron garnet (Y₃Fe₅O₁₂), which Bertaut and Forrat discovered in 1956[4], was dubbed the “fruit fly of magnetism” by Kittel almost 50 years ago [5]. Yttrium iron garnet has a specific composition as well as a complex crystal structure with nearly cubic symmetry. YIG has a density of 5.17 g/cm³ [6]. It has an extremely low magnetization damping of just 310-5 [7]. It has a large band gap of 2.85 eV and a high Curie temperature of roughly 560K. The lattice constant of the YIG unit cell is 12.376 ±0.004Å. O^10-la3d is the most likely space group for yttrium iron garnet [8]. The YIG unit cell has a cubic structure and eight chemical formula units of Y₃Fe₅O₁₂, with a total of 160 ions (Figure 1.1). Each YIG formula unit has three dodecahedral (c site), two octahedral (a site), and three tetrahedral (d site) sites having 24 Y³⁺, 40 Fe²⁺, and 96 O²⁻ ions [9]. The Y³⁺ ions fill dodecahedral sites (c sites), which are surrounded by eight O²⁻ ions, forming an eight-cornered twelve-sided polyhedron. The 24 Fe²⁺ ions occupy tetrahedral sites (d sites) and are surrounded by four O²⁻ ions, resulting in tetrahedral symmetry. The 16 ions of Fe³⁺ occupy octahedral sites (a sites) and are surrounded by six O²⁻ ions, resulting in octahedral symmetry as shown in figure 1.1 [10].

1. Introduction

The term ferrite comes from the Latin word “ferrum,” which means “iron.” Ferrites are magnetic materials that have both electrical and magnetic characteristics. The ferrites' major elements are iron oxide and metal oxides. For many ages, mankind has recognized the significance of ferrite material. The Chinese were able to utilize lodestones (Fe₃O₄) in compasses for navigation in the early 12th century [1]. Spinal ferrites, hexagonal ferrites, and garnets are the three basic types of ferrites. Spinal ferrites have the chemical formula MOFe₂O₄ or MFeO₃, where M denotes divalent cations (Mn, Fe, Ni, Zn, Mg, and Cd, for example). Oxygen atoms create a closed pack shape in the spinal lattice. The typical formula for hexagonal structure is MFe₂O₄, where M might be (Ph, Ba, or Sr). They were used as permanent magnetic materials [2]. The standard formula for magnetic rare earth garnets is M₂Fe₂O₄, where M might be Yttrium or any of the rare earth ions. The total magnetic moments of garnets can be altered through substitution. Magnetic memories (bubble memory) and microwave systems use substituted rare earth garnet. Spinal and garnet crystal formations are cubic, but hexagonal structures are hexagonal [3].
The microstructural aspect, Grain size affects the permeability. Studies reveal that less grain boundaries there are, the bigger the grains and the higher the permeability. This idea is often applicable to metallic magnetic materials. It has been said that grain size is not an important part of high permeability metallic materials such as Permalloy (an 80% Ni-Fe alloy) [12]. In recently published findings indicate that the lengths between pores account for variations in permeability. Even though the distances between pores were the same, samples with massive grains and porosity due to excessive grain development exhibited greater permeabilities than those with regularly developed grains [13]. Experiments also revealed that insufficient binder burn-off can result in a duplex structure. This research demonstrated the emergence of the duplex structure, as well as a degradation of magnetic characteristics, including a drop in permeability and an increase in losses [14].

Ferrites are regarded to be superior magnetic materials over pure metals due to their greater magnetism properties, high resistance, low cost, and simplicity of manufacture [15]. Sensors for alternating current and direct current magnetic fields, as well as alternating current and direct current electric currents, can be built. Nickel ferrite (Ni$_{1-x}$Zn$_x$Fe$_2$O$_4$ with $x=1-0.5$) lead zirconate-titanate (PbZr$_{0.52}$Ti$_{0.48}$O$_3$) sensors have demonstrated outstanding performance [16].

2. Methods and Materials

2.1 Chemical Used:

Erbium oxide Er$_2$O$_3$ powder with 99.99% purity (PanReac Application). Iron oxide Fe$_2$O$_3$ powder with 99.99% purity (Sigma Aldrich). Yttrium oxide Y$_2$O$_3$ powder with 99.99% purity (Sigma Aldrich) was used for the synthesis of Erbium substituted Yttrium Iron Garnet Er$_x$Y$_{3-x}$Fe$_5$O$_{12}$ where $x=0.6$

There are several techniques to make Erbium substituted Yttrium Iron Garnet. However, the solid state reaction route is the most often used method for producing polycrystalline solids from a mixture of solid starting materials. At room temperature, solids do not react together on typical time scales. In order for the reaction to proceed at a significant pace, they must be heated to considerably higher temperatures, frequently ranging from 1000°C to 1500°C [17]. The typical chemical equation for obtaining Erbium substituted YIG is as follows:

$$\frac{3-x}{2}Y_2O_3 + \frac{x}{2}Er_2O_3 + \frac{5}{2}Fe_2O_3 \rightarrow Er_xY_{3-x}Fe_5O_{12} \quad \text{Eq (2.1)}$$

The value of x can be varied from zero to three (0-3). The chemical equation Eq (2.2) was used to get Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$ substituting $x = 0.6$ in Equation (2.2) to get desired results.

$$\frac{3}{2}Y_2O_3 + 0.6Er_2O_3 + \frac{5}{2}Fe_2O_3 \rightarrow Er_{0.6}Y_{2.4}Fe_5O_{12} \quad \text{Eq (2.2)}$$

We put $x=0.6$ in Eq (2.2). Only 10g of sample is required, so to get 10g sample of Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$ stoichiometric calculation is done and the Reduction Factor is 78.

2.2 Working:

The preparation procedure for Erbium-substituted Yttrium Iron Garnet (Er: YIG) can be carried out using the following steps:

For Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$
Table 2.1: Figure for 10g composition of Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$

<table>
<thead>
<tr>
<th>Initial material</th>
<th>Molecular weight(g)</th>
<th>Weight for chemical reaction</th>
<th>Weight for initial compound of 10g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2O3</td>
<td>225.809g</td>
<td>270.9708g</td>
<td>3.4739g</td>
</tr>
<tr>
<td>Er2O3</td>
<td>382.515g</td>
<td>114.7545g</td>
<td>1.4172g</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>159.678g</td>
<td>399.2175g</td>
<td>5.1181g</td>
</tr>
<tr>
<td>Total</td>
<td>784.9428g</td>
<td>10.0632g</td>
<td></td>
</tr>
</tbody>
</table>

The stoichiometric measurement was performed on a 10g Er-YIG sample with an Erbium concentration of 0.6. The sample was then grinded for 2 hours to ensure homogeneous mixing of powder components. A homogenous mixture is required to achieve equal a mixture of Er ions in the final product. After mixing, the powder mixture is placed into a crucible and heated in a furnace under a controlled atmosphere. The heating profile involves ramping the temperature gradually from room temperature to 800°C at a rate of 5°C/min, holding at 800°C for 4 hours, then ramping up to 1100°C at a rate of 5°C/min. After sintering, the pellets are cooled to room temperature inside the furnace.

Different techniques are used for structural analysis however XRD is an essential technique for analyzing the crystal structure and to determine the substitution location of Erbium atoms in the YIG lattice of Erbium-substituted Yttrium Iron Garnet (Er: YIG). However, the XRD settings and parameters can have an important effect on the quality and accuracy of the findings [18]. Bragg's law illustrates the relation between the YIG crystal's X-ray wavelength, diffraction angle, and lattice spacing. Bragg’s law may explain the lattice spacing and structure phases preferred crystal orientation as well as other structural factors such as grain size and crystallinity by measuring the diffraction angle and the X-ray wavelength [19].

SEM is a technique used to investigate the microstructure and surface morphology of the material. In the case of erbium doped YIG (yttrium iron garnet) the Er: YIG samples' SEM pictures revealed a variety of microstructural characteristics, including grain boundaries, pores, and cracks [20], the distribution of grain sizes was found to be rather consistent, with an average grain size of about 2µm. The grain boundaries appeared to be well-defined, showing that the material had a high degree of crystallinity. The existence of pores and cracks was also discovered, indicating that the sintering process may have resulted in certain material flaws. In addition to the microstructural characteristics, the SEM pictures revealed information on the material's composition [21, 22].

3. Results and Discussions

The phase of the sample is determined using XRD. The interaction of incident X-rays with the sample causes constructive interference, which satisfies Bragg's law. The wavelength of incoming X-rays is related to the diffraction angle and the distance between atomic planes in crystalline samples by Bragg's equation. Lattice parameter a of cubic YIG for all samples was calculated using the relation:

\[
a = \left(\frac{\lambda}{4\sin(\theta)} \right)^{\frac{1}{2}} (h^2 + k^2 + l^2)
\]

Eq (3.1)

Where \(\lambda (1.5405\text{Å})\) is the wavelength, \(\theta\) is the Bragg’s angle in radian for given peaks, and \([h k l]\) are Miller indices of respective peaks.

3.1 X-ray Analysis:

The XRD data of the sample is observed by an XRD machine called D8 Diffractometer. The XRD was collected by step scanning over the angular range of 200 ≤ 2\(\theta\) ≤ 800. The data files are extracted by using Origin Pro Software (2016). The diffraction peaks for (Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$) nanoparticles sintered at 1400°C are shown in Figure.3.1 and all the peaks list data and d-spacing which are calculated by using Bragg’s law and results also shown in table 3.1. Maximum intensity was observed at 2\(\theta\) =32.20 at planes of (420). They are well define and sharp peaks are observed except a small peak of #YFeO$_3$ (Yttrium Iron Pervoskite) at 2\(\theta\) = 33.14 in the given sample, it is due to strong bonding between iron and yttrium.
Figure 3.1 X-ray diffraction pattern of Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$.

<table>
<thead>
<tr>
<th>Position (2θ)</th>
<th>Height(Intensity)</th>
<th>FWHM(β) (Radians)</th>
<th>d-spacing (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.92</td>
<td>141.6</td>
<td>0.00384</td>
<td>3.084852</td>
</tr>
<tr>
<td>32.39</td>
<td>329.6</td>
<td>0.003142</td>
<td>2.76185</td>
</tr>
<tr>
<td>35.58</td>
<td>206.3</td>
<td>0.003142</td>
<td>2.5212</td>
</tr>
<tr>
<td>53.43</td>
<td>224.2</td>
<td>0.004363</td>
<td>1.71348</td>
</tr>
<tr>
<td>55.61</td>
<td>188.7</td>
<td>0.004887</td>
<td>1.651361</td>
</tr>
<tr>
<td>69.60</td>
<td>152.8</td>
<td>0.003491</td>
<td>1.348191</td>
</tr>
</tbody>
</table>

Table 3.1: Peak list of Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$ where x = 0.6

For the calculation of average crystallite size D we use the characteristics of (420) XRD peaks using the Scherrer formula.

\[
D = \frac{C \lambda}{\beta \cos \theta}
\]

- $\lambda = 0.15405\text{nm}$ is the wavelength incident x-ray.
- β is the relative value of full width half maximum (FWHM) of diffraction peak (420).
- θ Is the Bragg’s angle at 2θ scale. Angles are taken in radian.

The lattice parameter, crystallite size, d-spacing, and molecular weight of Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$ at (420) plane as shown in table 3.2

<table>
<thead>
<tr>
<th>X</th>
<th>Position (2θ)</th>
<th>Molecular Weight (g)</th>
<th>d-spacing (Å)</th>
<th>Crystallite size (nm)</th>
<th>Lattice Constant (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>32.39</td>
<td>784.9428</td>
<td>2.76185</td>
<td>45.95271</td>
<td>12.27554</td>
</tr>
</tbody>
</table>

3.2 SEM analysis

The grain size of the sample was done by using Scanning Electron Microscope (SEM). The SEM micrograph for Er$_{0.6}$Y$_{2.4}$Fe$_5$O$_{12}$ is express below, well defined and localized grains of uniform nature were observed in the micrograph. This magnified micrograph at 10µm clearly shows the grain of Erbium (0.6) YIG. The grain size was measured by using Image J software along with histogram to display the count rate, as results are shown in Table 3.3
Table 3.3: Variation of Grain size (µm) of Er$_{0.6}$Y$_{2.4}$Fe$_{5}$O$_{12}$

<table>
<thead>
<tr>
<th>Length (µm)</th>
<th>Mean</th>
<th>Minimum</th>
<th>Median</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.85462</td>
<td>0.894</td>
<td>3.608</td>
<td>8.147</td>
</tr>
</tbody>
</table>

Figure 3.2 Micrograph and histogram of Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$

Comparison of Results of Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$ where $x = 0.1, 0.3, 0.6$. The results were compared of Erbium substituted Yttrium Iron Garnet (Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$) at concentration of $x = 0.6$ with fellows which take the same sample but change its concentration such as take $x = 0.1, 0.3$.

Figure 3.3 Comparison of X-ray diffraction pattern of Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$ where $x = 0.1, 0.3, 0.6$

The d-spacing, lattice constants and crystallite sizes for (420) peaks are shown in Table 3.4;

<table>
<thead>
<tr>
<th>X</th>
<th>Position (20)</th>
<th>Molecular Weight (g)</th>
<th>d-spacing (Å)</th>
<th>Crystallite size (nm)</th>
<th>Lattice Constant (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>32.33</td>
<td>745.7662</td>
<td>2.766838</td>
<td>45.94573</td>
<td>12.29798</td>
</tr>
<tr>
<td>0.3</td>
<td>32.34</td>
<td>761.4368</td>
<td>2.766905</td>
<td>48.65694</td>
<td>12.29423</td>
</tr>
<tr>
<td>0.6</td>
<td>32.39</td>
<td>784.9428</td>
<td>2.76185</td>
<td>45.95271</td>
<td>12.27554</td>
</tr>
</tbody>
</table>

Table 3.4: Physical properties of Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$ at (420) plane

The lattice parameters from diffraction pattern of Er$_{x}$Y$_{3-x}$Fe$_{5}$O$_{12}$ where $x = 0.1, 0.3, 0.6$ for (420) plane are calculated by using equation
\[a = \sqrt{\frac{\lambda^2}{\cos^2(\theta)} (h^2 + k^2 + l^2)} \]

Eq (3.2)

This decrease in lattice constant with increase in Erbium content at a single sintering temperature of 1400°C is due to replacement of smaller Erbium ion (crystal ionic radius of 1.03Å) by slightly larger Yttrium ion (crystal ionic radius 1.04Å) at dodecahedral sites of YIG unit cell.

The decrease in d-spacing is due to decrease in lattice constants as shown from table 3.4, same reduction in d-spacing is shown in Figure 3.5, further shift of XRD peaks to higher angles (2θ) with substitution of Erbium results the decrease in d-spacing as calculated from Bragg’s law.

It is observed that crystallite sizes are almost identical at same sintering temperature of 1400°C, it is probably due to almost identical effective ionic radii of Erbium ion (0.89Å) and Yttrium ion (0.90Å). To calculate the size of the crystallite for (420) peak Scherrer formula is used and values are in table 3.4. The variations are shown in figure 3.6.
It is observed that average grain sizes for each sample slightly shift toward lower size as shown in Figure 3.7, it may be attributed to structural deformation i.e. due to decrease in Fe-O bond length with substitution of Erbium at same sintering temperature of 1400°C. The average sizes of grains are large due to the very high sintering temperature of 1400°C.

Figure 3.7: Variation of Grain size (µm) of Er$_x$Y$_{3-x}$Fe$_5$O$_{12}$ with Erbium (x)

4. Summary and conclusions.

The article presents the preparation and structural characteristics of Erbium Doped Yttrium Iron Garnet nanoparticles (Er$_x$Y$_{3-x}$Fe$_5$O$_{12}$) where x=0.6. It was synthesized by Conventional Ceramic method using oxides (Y$_2$O$_3$, Er$_2$O$_3$, Fe$_2$O$_3$) powders as precursors. The XRD pattern confirms the formation of phases of cubic YIG. The highest peak was observed to be (420) plane. A small distort peak of YFeO$_3$ (Yttrium Iron Perovskites) is observed in all samples due to strong bonding between iron and yttrium. The XRD and SEM results showed that,

The variation in Erbium concentration in Er$_x$Y$_{3-x}$Fe$_5$O$_{12}$ brought a change in lattice constant. As Erbium concentration increases d-spacing decreases which in turn reduces lattice constant. Lattice constant decrease with increase in Er concentration at same sintering temperature of 1400°C is due to replacement of greater ionic radii (0.90°A) of Yttrium ion with smaller ionic radii (0.89°A) of Erbium ion. The lattice constant can be increased if Yttrium is substituted in a cubic unit cell the Fe-O bond length increases which in turn increases d-spacing. The increment in Erbium content moves the XRD peaks to the higher angles (2Θ). According to Bragg’s law, angle varies inversely with d-spacing. XRD peaks shift to higher angle resulting in decrease in d-spacing.

Crystallite size shows non-linear variation for erbia content from 0.1 to 0.6. It ranges from 45.94nm - 48.65nm at the same sintering temperature of 1400°C. The small variation in crystallite size is due to almost equal ionic radii of Y and Er. The SEM result shows minute non-linear variation in grain sizes for Er content the observed grain size was in the range of (4.20951µm - 3.85462µm). The average sizes of grains are large but it cannot be observed due to nearly equal ionic radii of Yttrium ‘Y’ and substituted Erbium ‘Er’.

References: