On Non-homogeneous Cubic Equation with Four Unknowns $x y+$ $2 z^{2}=10 w^{3}$

J. Shanthi ${ }^{1}$, M.A. Gopalan ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. Email: shanthivishvaa@gmail.com,
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002,Tamil Nadu, India. Email: mayilgopalan@gmail.com

ABSTRACT:

This paper is devoted to obtain non-zero distinct integer solutions to non-homogeneous cubic equation with four unknowns given by $x y+2 z^{2}=10 w^{3}$.
Keywords: Non-homogeneous cubic, Cubic with four unknowns, Integer solutions.

Introduction:

Diophantine equations theory have been working by numerous mathematicians since ancient time of Diophantus. There is a big gap in the general theory of homogeneous/non homogeneous cubic equations with three or more variables. Also, the cubic diophantine equations are rich in variety and offer an unlimited field for research [1, 2]. For an extensive review of various problems, one may refer [3-30]. This paper concerns with another interesting nonhomogeneous cubic diophantine equation with four unknowns $x y+2 z^{2}=10 w^{3}$ for determining its infinitely many non-zero integral solutions.

Method of Analysis:

The non-homogeneous cubic equation with four unknowns to be solved is

$$
\begin{equation*}
x y+2 z^{2}=10 w^{3} \tag{1}
\end{equation*}
$$

The process of obtaining different sets of non-zero distinct integer solutions to (1) is
illustrated below:
Illustration 1:
The introduction of the linear transformations

$$
\begin{equation*}
\mathrm{x}=2 \mathrm{p}, \mathrm{y}=2 \mathrm{q}, \mathrm{z}=\mathrm{p}-\mathrm{q},(\mathrm{p} \neq \mathrm{q}) \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
\mathrm{p}^{2}+\mathrm{q}^{2}=5 \mathrm{w}^{3} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{equation*}
\mathrm{w}=\mathrm{a}^{2}+\mathrm{b}^{2} \tag{4}
\end{equation*}
$$

Express the integer 5 on the R.H.S. of (3) as the product of complex conjugates as

$$
\begin{equation*}
5=(2+i)(2-i) \tag{5}
\end{equation*}
$$

Using (4) and (5) in (3) and employing the method of factorization, define

$$
\begin{equation*}
\mathrm{p}+\mathrm{iq}=(2+\mathrm{i})(\mathrm{a}+\mathrm{i} \mathrm{~b})^{3} \tag{6}
\end{equation*}
$$

On equating the real and imaginary parts in (6) ,it is seen that

$$
\begin{equation*}
\mathrm{p}=2 \mathrm{f}(\mathrm{a}, \mathrm{~b})-\mathrm{g}(\mathrm{a}, \mathrm{~b}), \mathrm{q}=\mathrm{f}(\mathrm{a}, \mathrm{~b})+2 \mathrm{~g}(\mathrm{a}, \mathrm{~b}) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f(a, b)=a^{3}-3 a b^{2}, g(a, b)=3 a^{2} b-b^{3} \tag{8}
\end{equation*}
$$

In view of (2) ,the integer solutions to (1) are given by
$x=4 f(a, b)-2 g(a, b), y=2 f(a, b)+4 g(a, b), z=f(a, b)-3 g(a, b)$
along with (4).

Note 1:

Apart from (5) ,the integer 5 on the R.H.S. of (3) is expressed as below:

$$
\begin{aligned}
& 5=(1+2 \mathrm{i})(1-2 \mathrm{i}), \\
& 5=\frac{(2+11 \mathrm{i})(2-11 \mathrm{i})}{25}, \\
& 5=\frac{(2+29 \mathrm{i})(2-29 \mathrm{i})}{169}
\end{aligned}
$$

The repetition of the above process leads to three more sets of integer solutions to (1).

Illustration 2:

Introducing the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{z}, \mathrm{y}=\mathrm{u}-\mathrm{z} \tag{9}
\end{equation*}
$$

in (1) gives

$$
\begin{equation*}
u^{2}+z^{2}=10 w^{3} \tag{10}
\end{equation*}
$$

which is satisfied by

$$
\begin{gather*}
\mathrm{u}=10^{2} \mathrm{~m}\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right) \tag{11}\\
\mathrm{z}=10^{2} \mathrm{n}\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right), \mathrm{w}=10\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right) \tag{12}
\end{gather*}
$$

In view of (9), it is seen that

$$
\begin{equation*}
\mathrm{x}=10^{2}(\mathrm{~m}+\mathrm{n})\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right), \mathrm{y}=10^{2}(\mathrm{~m}-\mathrm{n})\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) \tag{13}
\end{equation*}
$$

Thus , (12) and (13) give the integer solutions to (1).
Illustration 3:

Express the integer 10 on the R.H.S. of (10) as the product of complex conjugates as

$$
\begin{equation*}
10=(3+i)(3-i) \tag{14}
\end{equation*}
$$

Using (4) \& (14) in (10) and following the procedure as in Illustration 1 ,the integer
solutions to (1) are found to be

$$
\begin{equation*}
\mathrm{x}=4 \mathrm{f}(\mathrm{a}, \mathrm{~b})+2 \mathrm{~g}(\mathrm{a}, \mathrm{~b}), \mathrm{y}=2 \mathrm{f}(\mathrm{a}, \mathrm{~b})-4 \mathrm{~g}(\mathrm{a}, \mathrm{~b}), \mathrm{z}=\mathrm{f}(\mathrm{a}, \mathrm{~b})+3 \mathrm{~g}(\mathrm{a}, \mathrm{~b}) \tag{15}
\end{equation*}
$$

Thus, (4) and (15) represent the integer solutions to (1).
Note 2:
It is to be noted that the integer 10 on the R.H.S. of (10) is also considered as

$$
10=(1+3 \mathrm{i})(1-3 \mathrm{i})
$$

This choice leads to a different set of integer solutions to (1).
Illustration 4:
Introducing the transformations

$$
\begin{equation*}
\mathrm{x}=2 \mathrm{p}, \mathrm{y}=2 \mathrm{w}, \mathrm{z}=\mathrm{p}-\mathrm{w}, \mathrm{p} \neq \mathrm{w} \tag{16}
\end{equation*}
$$

in (1) , it is written as

$$
\begin{equation*}
\mathrm{p}^{2}=\mathrm{w}^{2}(5 \mathrm{w}-1) \tag{17}
\end{equation*}
$$

There are two sets of integer solutions to (17) as shown below:
$\mathrm{w}=\left(\begin{array}{c}5 \mathrm{k}^{2}-6 \mathrm{k}+2, \\ 5 \mathrm{k}^{2}-4 \mathrm{k}+1\end{array}\right.$
$\mathrm{p}=\left(\begin{array}{l}\left(5 \mathrm{k}^{2}-6 \mathrm{k}+2\right)(5 \mathrm{k}-3), \\ \left(5 \mathrm{k}^{2}-4 \mathrm{k}+1\right)(5 \mathrm{k}-2)\end{array}\right.$,

In view of (16), the corresponding two sets of values of X, Y, Z satisfying (1) are
respectively given by
$\mathrm{x}=2(5 \mathrm{k}-3)\left(5 \mathrm{k}^{2}-6 \mathrm{k}+2\right), \mathrm{y}=2\left(5 \mathrm{k}^{2}-6 \mathrm{k}+2\right), \mathrm{z}=(5 \mathrm{k}-4)\left(5 \mathrm{k}^{2}-6 \mathrm{k}+2\right)$
$\mathrm{x}=2(5 \mathrm{k}-2)\left(5 \mathrm{k}^{2}-4 \mathrm{k}+1\right), \mathrm{y}=2\left(5 \mathrm{k}^{2}-4 \mathrm{k}+1\right), \mathrm{z}=(5 \mathrm{k}-3)\left(5 \mathrm{k}^{2}-4 \mathrm{k}+1\right)$
It is worth to mention that, apart from the above integer solutions, there are other choices of integer solutions to (1) which are exhibited below in Table 1:

Table 1 - Integer solutions

S. No	x	y	z	w
1	$2 a^{3 s}$	$4 a^{3 s}$	$a^{3 s}$	$a^{2 s}$
2	$2 a^{6 s}$	4	$a^{3 s}$	$a^{2 s}$
3	$4 a^{6 s}$	2	$a^{3 s}$	$a^{2 s}$

4	$5000 \mathrm{a}^{6 \mathrm{~s}}$	1	$50 \mathrm{a}^{3 \mathrm{~s}}$	$10 \mathrm{a}^{2 \mathrm{~s}}$
5	$10\left(5 \mathrm{a}^{2}+1\right)^{2}$	1	$5 \mathrm{a}\left(5 \mathrm{a}^{2}+1\right)$	$\left(5 \mathrm{a}^{2}+1\right)$
6	$5\left(5 \mathrm{a}^{2}+1\right)^{2}$	2	$5 \mathrm{a}\left(5 \mathrm{a}^{2}+1\right)$	$\left(5 \mathrm{a}^{2}+1\right)$
7	$2\left(5 \mathrm{a}^{2}+1\right)^{2}$	5	$5 \mathrm{a}\left(5 \mathrm{a}^{2}+1\right)$	$\left(5 \mathrm{a}^{2}+1\right)$
8	$5\left(5 \mathrm{a}^{2}+1\right)$	$2\left(5 \mathrm{a}^{2}+1\right)$	$5 \mathrm{a}\left(5 \mathrm{a}^{2}+1\right)$	$\left(5 \mathrm{a}^{2}+1\right)$
9	$2 \mathrm{k}^{3} \mathrm{~s}^{2}$	$5 \mathrm{~s}-\mathrm{ks}^{2}$	$\mathrm{k}^{2} \mathrm{~s}^{2}$	ks
10	$10 \mathrm{k}^{3} \mathrm{~s}^{2}$	$\mathrm{~s}-5 \mathrm{ks}^{2}$	$5 \mathrm{k}^{3} \mathrm{~s}^{2}$	ks
11	$10 \mathrm{k}^{2} \mathrm{~s}$	$\mathrm{ks} 2-5 \mathrm{~s}$	$5 \mathrm{ks}^{2}$	ks

Conclusion:

In this paper, we have made an attempt to determine different patterns of non-zero distinct integer solutions to the non-homogeneous cubic equation with four unknowns given by $x y+2 z^{2}=10 w^{3}$ As the cubic equations are rich in variety, one may search for other forms of cubic equations with multi-variables to obtain their corresponding solutions.

References:

[1] L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing Company, NewYork, 1952.
[2] L.J. Mordell, Diophantine equations, Academic press, New York, 1969.
[3] M.A. Gopalan, G. Sangeetha, "On the ternary cubic Diophantine equation $y^{2}=D x^{2}+z^{3}$ ", Archimedes J.Math 1(1), 2011, 7-14.
[4] M.A. Gopalan, B. Sivakami, "Integral solutions of the ternary cubic equation $4 x^{2}-4 x y+6 y^{2}=\left((k+1)^{2}+5\right) W^{3}$ ", Impact J.Sci.Tech, 6(1), 2012, 15-22.
[5] M.A. Gopalan, B. Sivakami, "On the ternary cubic Diophantine equation $2 \mathrm{xZ}=\mathrm{y}^{2}(\mathrm{x}+\mathrm{z})$ ", Bessel J.Math, 2(3), 2012, 171-177.
[6] M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, "On the homogeneous cubic equation with four unknowns $X^{3}+Y^{3}=14 Z^{3}-3 W^{2}(X+Y)$, , Discovery, 2(4), 2012, 17-19.
[7] S. Vidhyalakshmi, M.A. Gopalan, A. Kavitha, "Observation on homogeneous cubic equation with four unknowns $X^{3}+Y^{3}=7^{2 n} Z W^{2}$ ", IJMER, 3(3), May-June 2013, 1487-1492.
[8] S. Vidyalakshmi, T.R. Usharani, M.A. Gopalan, "Integral solutions of non-homogeneous ternary cubic equation $a x^{2}+b y^{2}=(a+b) z^{3} "$, Diophantus J.Math 2(1), 2013, 31-38.
[9] M.A. Gopalan, K. Geetha, "On the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=z^{3}$ ", Bessel J.Math., 3(2), 2013,119-123.
[10] M.A. Gopalan, S. Vidhyalakshmi, A.Kavitha "Observations on the ternary cubic equation $x^{2}+y^{2}+x y=12 z^{3}$ ", Antartica J.Math, 10(5), 2013, 453-460.
[11] M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi, "Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}+(x+y+z)=0$,, Impact J.Sci.Tech, 7(1), 2013, 21-25.
[12] M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi "Lattice points on the non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0$ „, Impact J.Sci.Tech, 7(1), 2013, 51-55,
[13] M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, "On the ternary non-homogenous cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, , Impact J.Sci.Tech, 7(1), 2013, 41-45.
[14] M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, "On homogeneous cubic equation with four unknowns $(x+y+z)^{3}=z\left(x y+31 w^{2}\right)$ ", Cayley J.Math, 2(2), 2013, 163-168.
[15] M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, "On homogeneous cubic equation with four unknowns $x^{3}+y^{3}=21 z w^{2}$ ", Review of Information Engineering and Applications, 1(4), 2014, 93-101.
[16] S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, "On the ternary cubic Diophantine equation $4\left(x^{2}+x\right)+5\left(y^{2}+2 y\right)=-6+14 z^{3}$,
" International Journal of Innovative Research and Review (JIRR), 2(3), July-Sep 2014, 34-39.
[17] M.A. Gopalan, S. Vidhyalakshmi, E. Premalatha, C. Nithya, "On the cubic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=31\left(\mathrm{k}^{2}+3 \mathrm{~s}^{2}\right) \mathrm{zW}{ }^{2}$ ", IJSIMR, 2(11), Nov-2014, 923-926.
[18] S. Vidhyalakshmi, T.R. Usha Rani, M.A. Gopalan, V. Kiruthika, "On the cubic equation with four unknowns $x^{3}+y^{3}=14 z w^{2}$ ", IJSRP, 5(3), March 2015, 1-11.
[19] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, "On the cubic equation with four unknowns $x^{3}+4 z^{3}=y^{3}+4 w^{3}+6(x-y)^{3}$ ", International Journal of Mathematics Trends and Technology, 20(1), April 2015, 75-84.
[20] M.A. Gopalan, N. Thiruniraiselvi and V. Kiruthika, "On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$ ", IJRSR, 6(9), Sep2015, 6197-6199.
[21] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$ ", International Journal of Applied Research, 1(8), 2015, 209-212.
[22] R. Anbuselvi, K. Kannaki, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$,", IJSR, 5(9), Sep 2016, 369-375.
[23] G. Janaki, C. Saranya, "Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$,", IRJET, 4(3), March 2017, 665-669.
[24] R. Anbuselvi, K.S. Araththi, "On the cubic equation with four unknowns $x^{3}+y^{3}=24 Z^{2}{ }^{2}$ ", IJERA, 7(11) (Part-I), Nov-2017, 01-06. Sharadha Kumar, M.A. Gopalan, ON THE CUBIC EQUATION $x^{3}+y^{3}+6(x+y) z^{2}=4 w^{3}$, JETIR ,6(1), 2019, 658-660.
[26] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, "A Search On the Integer Solutions of Cubic Diophantine Equation with Four Unknowns $x^{3}-y^{3}=4\left(w^{3}-z^{3}\right)+3(x-y)^{3}$, , International Journal of Engineering And Science, 10(8), August 2020, 13-17.
[27] S. Vidhyalakshmi, T. Mahalakshmi, M.A.Gopalan and G. Dhanalakshmi, "On homogeneous Cubic Equation with Four Unknowns $\left(x^{3}+y^{3}\right)=7 z w^{2}$
"Stochastic Modeling \& Applications, 25(3), Special Issue III, Part-3, July-December 2021, 1968-1978.
[28] S. Vidhyalakshmi, T. Mahalakshmi and M.A. Gopalan, "A Search On The Integer Solutions of Cubic Diophantine Equation with Four Unknowns $x^{2}+y^{2}+4\left(35 z^{2}-4-w^{2}\right)=6 x y z_{,}$, International Journal of Grid and Distributed Computing, 13(2), 2021, 25812584.
[29] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, " On the non-homogeneous cubic equation with five unknowns $9\left(\mathbf{x}^{3}-\mathbf{y}^{3}\right)=\mathbf{z}^{3}-\mathbf{w}^{3}+12 \mathbf{p}^{2}+16_{„, \text { IJIRR, Volume 3, Issue 6, 2525-2528, }} 2016$.
[30] M.A. Gopalan, J. Shanthi," On the non-homogeneous cubic equation with five unknowns $(\mathbf{a}+1)^{2}\left(\mathbf{x}^{3}-\mathbf{y}^{3}\right)=(2 \mathbf{a}+1)\left(\mathbf{z}^{3}-\mathbf{w}^{3}\right)+6 \mathbf{a}^{2} \mathbf{p}^{2}+2 \mathbf{a}^{2} \quad$ ", IJMSET, Volume 3, Issue 5, 32-36, 2016

