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ABSTRACT

This research deals on the comparative analysis of two different but uniformly supported plate, using odd energy functional. Two different rectangular isotropic
plate with one, simply supported all round and the other Clamped all round, were closely examined. From several minimization of the shape functions, 3rd order
strain energy equation was formulated. Further minimization of this gave rise to the Third Order Total Potential Energy Functional. Integrating the t Total Energy
functional with respect to the amplitude produced the Governing equation. Various coefficients which explains the extent of their stiffnesses were formulated. The
Third order strain energy equation was also formulated, from where the Third Order Total Potential Energy Functional was formed. The critical buckling load
equations emerged by further minimizing the governing equation. By substituting the different aspect ratios into the equation, the non-dimensional buckling load
parameters were obtained. The final outcome in both cases were critically observed as detailed below.

INTRODUCTION

THIRD ORDER ENERGY FUNCTIONAL FOR THE PLATES

The two uniformly supported plate under consideration in the research work are simple-simple-simple simple and clamped-clamped-clamped-clamped
rectangular plates. The displacements of a thin rectangular plate include in-plane displacements —u and v and out of plane displacement — w. Considering
u and v as the functions of x, y and z, w is only a function of x and y and so x, y and z are the principal coordinates. The implication of this is that w is
constant along z direction. This is in consonant with the assumption that- “vertical normal strain of a plate is equal to zero”. The vertical shear strains
are negligible in classical plate analysis and assumed to be equal to zero. Thus, out of the six engineering strain components, €, ¥y, and ¥y, were assumed
to be zero. Therefore, leaving only three engineering strain components - &y, -&y, and yyy.

Upon the minimization of the strain deflection.

METHODOLOGY

Direct integration of the strain energy formed the fundamental for the formulation of the needed functional. The strain, stress, shear stress and shear strain
were further introduced by substitution and this gave rise to the flexural rigidity. When the derived strain energy was added to the external work done,
the Total potential energy, T,, was derived. The stages involved were as detailed below,

From the f the strain deflection,

B 6u+ v dw ’Pw *w 1
YT oy T ox T oxay  “oxay . ““oxay
and stress strain relationship, the stress deflection relationship were formulated

_ —Ez (9*w *w 5
%= 12\ o2 + ll6yz
Similarly, substituting Equations 3.18 and 3.19 into Equation 3.8 gives:

_ —Ez [ 3w 0w 3
Oy = 1-p2 H 9x2 + ayz

The summation of the product of stress and strain at every point on the plate continuum gives

08 = Oy&xt Oy &y + Tyy ¥ gy 4
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Further substitutions and minimizations gives the 3™ Strain energy equation as

B J‘J‘ 6W+2 3w aw ’w ow dxd
9% x| “axay? ox T ay? oy )Y

J‘ J‘ 6w+2 3w 6w+03w ow dxd
9x3  0x 0x2dy dy dy3 dy Xy

or

Upon the addition of the external work done, Wy, the Total potential energy, T,, was formulated as

AZfo (63_h.6_h+2 FE _+ﬂ ah)dd _ANxffaxz hdxdy

ax3 " dx axdy? " 9 ay3'd
or
AZD °h oh 2°h oh | 8°h on
—.—+2 — ——— " h)dxd
f f 9x3 " dx + 9x2 9y " dy tos ay3" o ff ax2” ) y

7

8

Differentiating the Total Potential energy with respect to the Amplitude and further substitutions gives

0 (e A [y

BCTt -
_fo Io ( x) dxdy
or
2AD 93h oh, 93h ]on | [a3n]oh
B 7I0 Iy ¢ ([6){3 [0xay2] Bx [0y3 ay)dXdy
crt

ﬁfo fo ( x) dxdy

The critical buckling load equation was further reduced to

D 1 1
g(cr1 + 2p—Z cr, + Fcrg)

t
cr crg

where

1 1_ 1 a3h oh
oy, = fo fodedQ:fO f 5755 ARAQ

cry = ffxz dRdQ = ff[aRan] dRdQ

crngo fOK_3deQ=f0 f g;}; gngdQ

cr4_ffK6deQ ff( —)% dRdQ

Critical Buckling Load Equation for SiSiSiSi plates

10

11

12

13

14

15

The critical buckling load equation for SSSS can be written in terms of stiffness coefficients

(cry, cra, crzand crg) using the a2 = b?p?, for the
aspect ratio of p = b/a as follows

2 1
D(cr +—Cry+—cCr: )
B _ 1 p2 2 p* 3
cre crga?

Critical Buckling Load Equation for CICICICI Plates

16

Substituting the stiffness coefficients (cry, crz, crsand crg) for the CICICICI plate, into the general buckling load equation, the critical buckling load

equation the plate can be expressed as

2 1
D(cry+-5cry+=ycr
(Cry+ 5Crp+gcrs)

crt = P

kea
Considering a?=b?%p?, for p = b/a as the aspect ratio.

Determination of the Stiffness coefficients of the plates

From the Polynomial rules, the shape function of the shape function, sh for SiSiSiSi Plate
is as (R-2R3+R?) (Q-2Q%+Q*%

Differential values for Simple-Simple-Simple-Simple shape

The various derivatives of the shape functions can be expressed as

17

18
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sh = (R = 2R® + R)(Q — 2Q3 + Q%)

aSh 2 3 3 4
Sg = (1-6R? +4R)(Q-2Q° + Q")
9%sh
6—22 = (—12R + 12R2)(Q — 2Q° + Q%)
0%sh 5 .
S5 = (F12+24R)(Q - 2Q° + QY
oh
30= R~ 2R3 + R (1 — 6Q? + 4Q?)
aZSh 3 4 2
57 = (R—2R7 +RO(-120++ 1209
d3sh
507 = (R —2R® +R*)(—12 + 24Q)
0%sh
3Raq = (- 6R? + 4R3)(1 — 6Q2 + 4Q)
93sh
T(’;Qz = (1— 6R? + 4R%)(—12Q + 12Q2)
?3sh
a;; = (=12 + 24R)(Q — 2Q% + 4Q%)
o 03sh 0dsh
= * —
T R TR
——= _ 0%sh _dsh
Crt2 = 2R0Q? * ﬁ
el 63sh dsh
A TERET}
Cre6 = 2t

OR?

From the expressions above,

Psh B _ (124 24R)(Q - 2Q° + QYx(1 — 6R? + 4R)(Q - 20° + Q)

Collecting the like terms together yields

(-12+24R) (1 —6R? + 4R*) x (Q — 2Q* + QN (Q — 2Q®* + Q%)
and multiplying out each bracket gives

—12(1 — 6R? + 4R®) +24R (1 — 6R? + 4R?)

x QQ-2Q°+QH —2Q°(Q—2Q° +Q" +Q*(Q—2Q° +Q"

which finally changes to

19

20

21

22

23

24

25

26

27

28

29

30

31

41

(=12 + 72R? — 48R3 + 24R — 144R® + 96R*) x (Q* — 2Q* + Q5 —2Q*+4Q° — 2Q” + Q5 — 2Q” + Q®)

";:f * ﬂ = (=12 + 24R + 72R? — 192R® + 96R*)

x(Q? - 4Q* +2Q° +4Q°~ 4Q7 + Q%)

But crt; = [[Crt1dRdQ = || i;:f @deQ

Therefore

That implies that cry = [ ['(—12 + 24R + 72R? — 192R® + 96R*) x

(Q% —4Q* + 2Q° +4Q°—4Q" + Qs)deQ

_ ﬂ 24R? | 72R3 192R4 96R5 4_5 2Q3 L 4Q7  4Q% | Q%yim1
= I =+ 2T Tyx (@ - 1Ly 2,000 Sy
= (- 12+_+Z_£ —) (———+— i——+—)
124
Therefore crt; = (—4 )X(E) pren
also,
d3sh  dsh
6R—0QZ * R = (1 —6R?+4R3)(—12Q +12Q%) x (1 — 6R? + 4R®)(Q — 2Q% + Q%)

Collecting the like terms together yields

42

43
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= (1—6R%+4R3) (1 — 6R% + 4R®) x (—12Q + 12Q%) (Q — 2Q3+Q")

and multiplying out each bracket gives

=1(1 — 6R? 4+ 4R3) —6R? (1 — 6R? + 4R3) + 4R3(1 — 6RZ + 4R3) x

-12Q(Q—2Q° + QM + 12Q* (Q—2Q* + QY

which finally changes to

(1 — 6R? + 4R% — 6R? + 36R* — 24R5 + 4R3 — 24R% + 16R®)x (—12Q% + 24Q*—12Q%+12Q% — 24Q° + 12Q°%)
= (1 — 12R? + 8R3 + 36R* — 48R5 + 16R®) x (—12Q2+12Q3 + 24Q* — 36Q° + 12Q°)

9*h _ oh

oh _ 2 3 4 _ 5 6
RogE "R = (1 —12R* + 8R3 + 36R* — 48R> + 16R®)x

(—12Q%+12Q° + 24Q* — 36Q° + 12Q°) 44

Therefore

But crt, = [[Cr2dRdQ = 122 « 2 dRdQ

That implies thatcrt, = [ [(1 — 12R? + 8R® + 36R* — 48R°® + 16R®) x

(—12Q%+12Q3 + 24Q* — 36Q° + 12Q°) dRdQ 45
3 4 5 6 7 _ 3 4
:[[(E+ﬂ+£+36k __48R " 16R)X( 12Q° _ 12Q "
1 3 4 5 6 7 3 4
24Q° _36Q° | 127\1imp
= —— +3)01
= G428y 88 6, 12 12, 24, 30 12,
1 3 4 5 6 7 3 4 5 6 7

Therefore k. = G) X (52) = o2

also,
93sh _dsh _ 3 4 3 4 2 3
iy = (R —2R® + R")(—12 + 24Q) x (R — 2R® + R*)(1 — 6Q2 + 4Q3)

Collecting the like terms together yields

(R—=2R3 4+ RY)(R— 2R3+ RY) x (=12 + 24Q) (1 — 6Q% + 4Q3)

and multiplying out each bracket, gives

=R(R —2R® + R*) —2R3 (R — 2R3 + R*) + R*(R — 2R3 + R%) x

—12(1 — 6Q% + 4Q%) + 24Q(1 — 6Q? + 4Q%)

which finally changes to

(R? = 2R*+ R5 — 2R* + 4R® — 2R7 + R® — 2R7 + R®) x(—12+ 72Q%-48Q° + 24Q — 144Q3 + 96Q*)

= (R? — 4R* + 2R 5 + 4R® — 4R” + R®) x (—12 + 24Q+72Q% — 192Q3 + 96Q*)

Therefore ‘23;3'1 x % = (R? — 4R* + 2R5 + 4R® — 4R7 + R®) x (=12 + 24Q+72Q% — 192Q° + 96Q*)
3
But crty = JICrE3dRdQ = [123 « = dRdQ

That implies that

orty = f01 fol(RZ — 4R* 4 2R5 + 4R® — 4R7 + R®)

x (=12 + 24Q+72Q% — 192Q® + 96Q*)dRdQ 46

3 5 6 7 8 9 — 2 3
:[[(R_+£+£+£_£+ R_)X( 12Q+ 24Q + 72Q°

3 5 6 7 8 9 1 2 3

192Q* | 96Q%\q1171
+ 22 4 20
=(l+i+5+i_i+l)x(‘_12+ﬂ+2 _1_92_*,%)

3 5 6 7 8 9 1 2 3 4 5

_ (31, a4y o C124

Therefore k3-(630) X ( 435) = also

(?;—; 2=(1-6R2+4R%)(Q—2Q>+ Q") x (1 —6R? + 4R%*)(Q—2Q% + Q%)

Collecting the like terms together yields
(1—6R%?+4R%)(1 — 6R? + 4R*) x (Q —2Q% + Q1)(Q —2Q* + Q%)

and multiplying out each bracket gives
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1(1 — 6R% + 4R3) — 6R?(1 — 6R? + 4R®) + 4R3(1 — 6R? + 4R®)x Q(Q — 2Q® + Q") — 2Q3(Q — 2Q% + Q") + Q*(Q — 2Q%* + Q*)
= (1 — 6R? + 4R® — 6R? + 36R* — 24R5 + 4R® — 24R% + 16R%) x (Q% —2Q*+ Q% — 2Q* +4Q°®—2Q” + Q5 —2Q” + Q®)
which finally changes to

(1 —12R? + 8R® + 36R* — 48R° + 16R®) x(Q? — 4Q* + 2Q° + 4Q° — 4Q” + Q%)

dsh

2
Therefore( —) =(1 — 12R? + 8R® + 36R* — 48R> + 16R®) x
OR

(Q*—4Q* + 2Q° +4Q° —4Q" + Q%)

But crts = J] Cre6dRdQ = JI( %)ZdeQ

That implies that crts = [ [(1 — 12R? + 8R® + 36R* — 48R® + 16R®) x

(Q*—4Q*+ 2Q°+4Q° —4Q” +Q%)dRdQ 47
_rrcR_12R® | 8R*  36R® 48R®  16R’y Q®  4Q° & 2Q°
UG-+ s T xG 5 6

4Q7  4Q®  Q%\q171
b A ST 2
+= =5 I

—ql.2,8 36 48 16 A4, 2 4 4 hym
_[[(1 et T 7)X(3 stTets 8+9)]]

(i) - 527

17
Therefore crtg = (E) X (59 = 3200

Similarly from Polynomial rules, the shape function, sh for CICICICI panel
is (R%-2R°+R") (Q%-2Q°+Q") 48
Differential values for Clamped-Clamped-Clamped-Clamped shape

Also the various differential values for CICICICI shape functions are as detail

sh = (R? — 2R® + RH)(Q? - 2Q° + QY ¥
dsh
2x = (@R- 6R* + 4R*)(Q* —2Q + Q%) 50
92%sh
6_22 = (2 — 12R+ 12R?)(Q* — 2Q° + Q%) o1
83sh
6_23= (—12 + 24R)(Q% — 2Q* + QY >
dsh 2 3 4 2 3
20 = R 2R +R)(2Q - 6Q" + 4Q7) >3
92%sh
aQSz = (R* - 2R* + RH)(2 - 12Q + 12Q?) >
33sh
6—QS3 = (R* = 2R® + R")(~12 + 24Q) %
d%sh
3R3q " (2R — 6R? + 4R%)(2Q — 6Q? + 4Q®) 56
d3sh 2 3 2
IRG = (2R — 6R? + 4R%)(2 — 12Q + 12Q?) >
d03sh dsh
Crtl = EVE *ﬁ 8
A5 _ _03sh ,dsh
Cre2= dRAQ? R ”
d%h 0dsh
Crt3 = 0Q3 *% 60
= _  0%sh dshyp
Crt6 = —= or (52) o

From the expressions above,

d03sh dsh

W* R = (—12 + 24R)(Q* — 2Q® + Q*) x (2R — 6R% + 4R%)(Q%* — 2Q® + QY

Collecting the like terms together yields

(—12 + 24R) (2R—6R? + 4R®*) x (Q* — 2Q® + Q1)(Q* — 2Q* + Q%)
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and multiplying out each bracket gives

—12(2R — 6R? + 4R3) +24R (2R — 6R? 4+ 4R3) x Q2(Q% — 2Q3 + Q%)
—2Q°(Q - 2Q® + QM)+ Q*(Q* —2Q° + QY

= (—24R + 72R? — 48R3 + 48R? — 144R3 + 96R*)

x(Q* —2Q° +Q°-2Q° +4Q° - 2Q7 +Q° - 2Q” + Q)

which finally changes to

(—24R + 120R? — 192R® + 96R*) x (Q* — 4Q° + 6Q° — 4Q7 + Q®)

93sh _ dsh

Therefore —=+—- = (—24R + 120R? — 192R% + 96R*) x (Q* —4Q%+ 6Q° — 4Q" +Q?®)
But crt; = [[CriIdRdQ = 122 « 2 dRdQ
That implies that
ort= [ [1(~24R + 120R? — 192R® + 96R*) x (Q* —4Q° + 6Q° — 4Q’ + Q®)dRdQ 62
_[fo -24R* 120R®  192R* | 96RS Q5 4Q° , 6Q7 _ 4Q® Q%
_[[(z+3 4+5)X(5 rER 8+9)]]

(T2 4120 192 % 146 4 1

_[[(T+T 4+5)X(5 - 3+9)
Therefore

—(_% 1y - %

ety = ( 5) X (630) 3150 also,
af;gz +ZL = (2R - 6R? + 4R%)(2 — 12Q + 12Q)X(2R — 6R? + 4R*)(Q* - 2Q° + Q)

Collecting the like terms together yields
= (2R—6R?+4R3) (2R—6R? + 4R3®) x (2 —12Q + 12Q3) (Q*— 2Q%+ Q%
and multiplying out each bracket gives
2R x2(Q* - 2Q° +Q*) —12Q(Q* - 2Q* +Q*) + 12Q* (Q* - 2Q° +Q*)
= (4R% — 12R3 + 8R* — 12R® + 36R* — 24R® + 8R* — 24R> + 16R®)
x (2Q2 — 4Q32Q*—12Q3+12Q* — 12Q° + 12Q* + 24Q° + 12Q°)
which finally changes to

(4R? — 24R3 + 52R* — 48R5 + 16R®)x (2Q% — 16Q> + 38Q* — 36Q° + 12Q°) °

Therefore
f;f * ";—: = (4R? — 24R3 + 52R* — 48R5 + 16R®)x(2Q% — 16Q% + 38Q* — 36Q° + 12Q%)
But crt, = [[ TreZdRdQ = [ + 2L dRdQ

That implies that

crtzzfol f01(4R2 — 24R3 + 52R* — 48R% + 16R®) x (2Q% — 16Q% + 38Q* —36Q° + 12Q°)

dRdQ 63
_ 4R® | 24R* il{s_48R7 16R8 2Q°  16Q* ﬁ 36Q° | 127\niq1
_[[(3+4+5 s+7)X(3 4+576+7)]]
= (222 B NGy Be

3 4 5 6 7 3 4 5 6 7

S 2y x () =

Therefore crt, = (105) X (105) TTo%s also,

3
‘;st x ‘3;—;‘ = (R? — 2R? + R*)(=12 + 24Q)x (R? — 2R? + R)(2Q — 6Q% + 4Q%)

Collecting the like terms together yields

(RZ — 2R3 + R*)(RZ — 2R® + RY) x (—12 + 24Q) (2Q — 6Q2 + 4Q3)
and multiplying out each bracket gives
R2(R? — 2R3 + R*) —2R3 (R% — 2R3 + R*) + R*(R? — 2R3 + R%)

x—12(2Q — 6Q? + 4Q3) + 24Q(2Q — 6Q?% + 4Q%)
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= (R*— 2R5 + R® — 2R® + 4R® — 2R” + R® — 2R” + R?®)
x (—24Q + 72Q%—48Q3 + 48Q% — 144Q3 + 96Q*)
which finally changes to

(R* — 4R5 + 6R® — 4R7 + R®) x (—24Q + 120Q2—192Q° + 96Q%)

Therefore

‘:;f x % = (R* — 4R5 + 6R® — 4R7 + R®) x (—24Q + 120Q>—192Q3 + 96Q*)

But crt; =JJ Cre3dRdQ = 1% Psh @deQ

That implies that

orts = [ [(R* — 4R5 + 6R® — 4R” + R®) x (—24Q + 120Q>~192Q° + 96Q*)dRdQ 3.118
S ars er? . s ¢ 05

SIS - A B (R 1fQ—¥%+%§WP

= G-IHI-lH x-S+ 2 -2 D)

_ —2
3150 1575

Therefore crt; = (—) X (— —) =
Also

(%)2 (2R — 6R? + 4R*)(Q? — 2Q3 + Q*) x (2R — 6R? + 4R*)(Q* — 2Q*+ Q%)
Collecting the like terms together yields

(2R — 6R? + 4R3®)(2R — 6R? + 4R%) x (Q% — 2Q% + QH)(Q? — 2Q®* + Q%)

and multiplying out each bracket gives

2R(2R — 6R? + 4R3®) — 6R?(2R — 6R? + 4R?) + 4R3(2R — 6R? + 4R?)

xQ*(Q% - 2Q° + Q%) —2Q%(Q* - 2Q° + Q) + Q*(Q* - 2Q* + Q)

= (4R% — 12R3 + 8R* — 12R?® + 36R* — 24R5 + 8R* — 24R® + 16R®)

x(Q* - 2Q° + Q° - 2Q° +4Q° — 2Q7 - Q°* - 2Q7 + Q%)

which finally changes to

(4R? — 24R3 + 52R* — 48R5 + 16R®) x (Q* — 4Q° + 6Q° — 4Q” + Q®)

Therefore

(%)2 = (4R* — 24R% + 52R* — 48R° + 16R°) x (Q* — 4Q° + 6Q° —4Q" +Q®)

dsh

But crte =] Crt6dRdQ = H( 2 drRdQ
That implies that
orts = [} [/(4R? — 24R® + 52R* — 48R° + 16R®) x (Q* —4Q° + 6Q° —4Q” + Q*)dRdQ 64

5 6 7 5

=[5 2y

4R® 24R* | 52RS 48RS | 16R’ Q5 4Q% | 6Q7 4Q® ,Q°
e —t )X (T - —— T

=IG-S+5 -9+ PxG— o+ 5 —5 I

7

Therefore crtg = (E) (5) e

Results

The substitution of the stiffness coefficients into the critical buckling load equations gave the results as detailed below
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Table 1: Shape functions and stiffness coefficients

Shape Functions, sh

Stiffness Coefficients, crt

crty crt, crtz Crtg
SiSiSiSi —124 —289 —124 527
shssss = (R-2R3+R4) x 525 1225 525 22050
(Q-2Q3+04) = 0.236219 = 0.23591 = 0236219 = 0.02390
cicicicl -2 —4 -2 2
sheeee = (R2 = 2R® +R*) x(Q* - 1575 11025 1575 66150
2Q3 + Q%) =0.00127 = 0.00036 = 0.00127 =0.00003

Result for Simple-Simple-Simple-Simple and Clamped-Clamped-Clamped-Clamped Plates

The non- dimensional buckling load parameters for SiSiSiSi and CICICICI plates were presented on Table 2a and 2b and the behavior of the critical
buckling load against Aspect ratio is shown in Figurel.

Table.2a Non dimensional buckling load parameters for SSSS and CICICICI plates for aspect ratio of b/a

bla 2 19 18 17 16
B 15.4371 16.111 16.9186 17.8983 19.1036
Bcrt .
Sisisisi 15436322 | 16.11018> 16.91777> | 17.897532> 19.102822
a a a a a
cicicicl 1 50.97922 52.2299> 53.7734> 55.7064> 58.1679>
a a a a a
Table 2b
bla 15 14 13 12 11 1
B 20.6102 22,5288 25.0256 28.3593 32.9492 39.508
Pt | sisisisi 2 D D D D D D
0.6098 22.52811 25.02498- 28.35882- 32.94889- 39.50795
cicicicl | 61.3621> 65.59795> 71.35659> 79.41538> 91.08228> 108.6667=
a a a a a a
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uckling Load Bgrt
o (6} o (6]

wu

Critical Bucklin

0 0.5 Aspect Ratiol-> 2 2.5

Figure 1b: Graph of critical buckling load against aspect ratio, p = b/a for SiSiSiSi (Previous)

Table 2b: B-values from present study compared with previous works for SiSiSiSi rectangular plate buckling.

Aspect Ratios | B.-Values from B.c-Values B.c-Values from Percentage Difference
(p=bla) Present Study from Ventsel&  Krauthermmer | Between (i) and (ii)
(i) Ibearugbulem (2001),Megson (2010),
etal. Chajes (1974) (iii)
(2014) (ii)
1 39.508 39.508 39.488 0
11 32.9489 32.9492 32,932 -0.00091
1.2 28.3588 28.3593 28.344 -0.00176
13 25.025 25.0256 25011 -0.0024
14 22.5281 22.5288 22515 -0.00311
15 20.6095 20.6102 20.597 -0.0034
16 19.1028 19.1036 19.091 -0.00419
17 17.8975 17.8983 17.886 -0.00447
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18 16.9178 16.9186 16.906 -0.00473
19 16.1102 16.111 16.099 -0.00497
2 15.4363 15.4371 15.425 -0.00518

Table 3a continued

120

100

0o
o

(o2}
o

Critical buckling load , Bcrt
N S
o o

o

120

100

80

60

40

20

Critical buckling load , Bcrt

Aspect Ratio,s, P
1 1.5

Figure 2b: Graph of critical buckling load, B against aspect ratio, p = b/a for CICICICI (Previous)
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Table 3b: B-values from present study compared with previous works for different aspect ratio for CICICICI rectangular plate buckling.

Aspect Ratios | B-Values from B-Values from B-Values from Percentage Difference
(p=Dbla) Present Study Ibearugbulem Ventsel& Krauthermmer | Between (i) and (ii)
0] etal. (2001), Megson(2010),
(2014) (i) Chajes (1974) (iii
1 108.6667 108.667 108.654 -0.00028
1.1 91.0823 91.082 91.068 0.000329
1.2 79.41538 79.415 79.402 0.000478
71.3566
1.3 71.3565 71.3425 0.00014
14 65.598 65.5979 65.5829 0.000152
15 61.3621 61.3621 61.3501 0
1.6 58.1679 58.167 58.151 0.001547
1.7 55.7064 55.706 55.694 0.000718
1.8 53.7734 53.773 53.761 0.000744
1.9 52.2299 52.229 52.212 0.001723
2 50.9792 50.979 50.965 0.000392
Conclusion

From the conducted research, one can conclude that:

i. Non dimensional parameters along x and y respectively formed a differential product of (R-2R3+R*) x (Q2-2Q3+Q*) for the case of
Simple-Simple -Simple-Simple plate while (R? — 2R3 + R*) x (Q?-2Q3+Q* Clamped- Clamped- Clamped- Clamped and so giving
different Differential values

ii. In both cases, as the aspect ratio increases, the corresponding critical buckling load Reduces. That means under the same stress, they
behave alike.

iii. At every Stiffness, crt the CICICICI Plate shows high value of stiffness coefficient compared to its corresponding value of SiSiSi Plate.
That means that the slightest load to cause buckling is more in SiSiSiSi Plate than in CICICICI Plate.
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