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ABSTRACT: 

The ternary non-homogeneous  quintic   equation given by 𝑥2 + 5𝑦2 = 2𝑧5 is  analysed for   determining  its distinct integer solutions.Also,a generation formula 

for the integer solutions to the given quintic equation ,being given its particular solution, is illustrated. 
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Introduction: 

It is well-known that the   Diophantine   equations ,homogeneous or non-homogeneous ,have aroused the interest of many mathematicians. In 

particular,one may refer [1-12] for quintic equations with three   unknowns .The above problems motivated us to search for the distinct integer solutions 

to ternary non-homogeneous quintic equation 𝑥2 + 5𝑦2 = 2𝑧5 

Also,a general formula for generating sequence of integer solutions to the considered quintic equation being given its particular solution is illustrated. 

Method of analysis: 

          The ternary non-homogeneous quintic equation under consideration is                                                     

                                         𝑥2 + 5𝑦2 = 2𝑧5                                                                              (1) 

The process of determining non-zero distinct integer solutions to (1) is illustrated below: 

Method 1: 

        Introduction of the transformations  

                                       𝑥 = 8𝑋, 𝑦 = 8𝑌, 𝑧 = 2𝑤                                                                  (2) 

in (1) leads to 

                               𝑋2 + 5𝑌2 = 𝑤5                                                                                        (3) 

 Assume 

                           𝑤 = 𝑎2 + 5𝑏2                                                                                                 (4) 

Using (4) in (3)  and employing the method of factorization ,consider 

                       𝑋 + 𝑖√5𝑌 = (𝑎 + 𝑖√5𝑏)5                                            

Equating the rational  & irrational parts  in the above equation and using (2) , it is  

seen that 

            𝑥 = 8𝑓(𝑎, 𝑏), 𝑦 = 8𝑔(𝑎, 𝑏), 𝑧 = 2(𝑎2 + 5𝑏2) 

𝑤ℎ𝑒𝑟𝑒 

𝑓(𝑎, 𝑏) = 𝑎5 − 50𝑎3𝑏2 + 125𝑎𝑏4, 𝑔(𝑎, 𝑏) = 5𝑎4𝑏 − 50𝑎2𝑏3 + 25𝑏5                                   (5) 
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Thus,(5)  represents  the integer solutions to (1).  

Method 2: 

 Rewrite (3) as  

                              𝑋2 + 5𝑌2 = 𝑤5*1                                                                                            (6) 

Consider the integer 1 on the R.H.S. of (6) as 

                       1 =
(2+𝑖√5)(2−𝑖√5)

9
                                                                                            (7) 

Substituting (4) ,(7) in (6) and employing the method of factorization , consider 

                 𝑋 + 𝑖√5𝑌 =
(2+𝑖√5)

3
[𝑓(𝑎, 𝑏) + 𝑖√5𝑔(𝑎, 𝑏)] 

Following the analysis as in Method 1,the corresponding integer solutions to (1) are given by 

𝑥 = 8*34[2𝑓(𝐴, 𝐵) − 5𝑔(𝐴,𝐵)], 𝑦 = 8*34[𝑓(𝐴, 𝐵) + 2𝑔(𝐴, 𝐵)], 𝑧 = 18(𝐴2 + 3𝐵2) 

Note 1 : 

In addition to (7) ,the integer 1 on the R.H.S. of (6) is expressed as 

1 =
(5𝑟2−𝑠2+𝑖√52𝑟𝑠)(5𝑟2−𝑠2−𝑖√52𝑟𝑠)

(5𝑟2+𝑠2)2
, 1 =

(2+𝑖3√5)(2−𝑖3√5)

49
                                                        (8) 

In this case ,the repetition of the above process  leads to two more sets of integer solutions to (1). 

Method 3: 

  Taking 

                                 𝑥 = (2𝑘 + 1)𝑦                                                                                             (9)           

 in (1) , it simplifies to 

                             (2𝑘2 + 2𝑘 + 3)𝑦2 = 𝑧5                 

which is satisfied by     

                      𝑦 = (2𝑘2 + 2𝑘 + 3)2𝛼5𝑠, 𝑧 = (2𝑘2 + 2𝑘 + 3)𝛼2𝑠                                                     (10) 

In view of (9) ,we have 

                 𝑥 = (2𝑘 + 1)(2𝑘2 + 2𝑘 + 3)2𝛼5𝑠                                                                                (11)    

Thus (10) and (11) represent the integer solutions to (1). 

Method 4:             

Taking 

                                 𝑦 = (2𝑘 + 1)𝑥                                                                                            (12)           

 in (1) , it simplifies to 

                             (10𝑘2 + 10𝑘 + 3)𝑥2 = 𝑧5                 

which is satisfied by     

                      𝑥 = (10𝑘2 + 10𝑘 + 3)2𝛼5𝑠, 𝑧 = (10𝑘2 + 10𝑘 + 3)𝛼2𝑠                                               (13) 

In view of (12) ,we have 

                 𝑦 = (2𝑘 + 1)(10𝑘2 + 10𝑘 + 3)2𝛼5𝑠                                                                             (14)    

Thus (13) and (14) represent the integer solutions to (1). 

Method 5: 

The substitution  
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                        𝑦 = (2𝑘 + 1)𝑧2                                                                                                    (15) 

in (1) leads to 

                   𝑥2 = 𝑧4(2𝑧 − 5(2𝑘 + 1)2)                                                                                         (16) 

After some algebra ,it is seen that (16) is satisfied by 

               𝑧 = (10𝑘2 + 10𝑘 + 3 + 2𝑠2 + 2𝑠), 𝑥 = (2𝑠 + 1)(10𝑘2 + 10𝑘 + 3 + 2𝑠2 + 2𝑠)2                (17) 

In view of (15) ,one has  

                          𝑦 = (2𝑘 + 1)(10𝑘2 + 10𝑘 + 3 + 2𝑠2 + 2𝑠)2                                                         (18) 

Thus,(17) and (18) satisfy (1).  

Method 6: 

The substitution 

                        𝑥 = 2𝑘𝑧2                                                                                                           (19) 

in (1) leads to 

                   5𝑦2 = 2𝑧4(𝑧 − 2𝑘2)                                                                                          (20) 

After some algebra ,it is seen that (20) is satisfied by 

               𝑧 = 2𝑘2 + 10𝑠2, 𝑦 = 2𝑠(2𝑘2 + 10𝑠2)2                                                                  (21)            

In view of (19) ,one has  

                          𝑥 = 2𝑘(2𝑘2 + 10𝑠2)2                                                                                  (22) 

Thus,(21) and (22) satisfy (1). 

  Observation: Generation formula 

       Let   (𝑥0, 𝑦0, 𝑧0) be a particular solution to (1). 

Then ,the formula for generating a sequence of integer solutions to (1)  is presented below: 

                    𝑥𝑠 =
𝛼𝑠+5𝛽𝑠

6
𝑥0 −

5(𝛼𝑠−𝛽𝑠)

6
𝑦0, 

𝑦𝑠 =
(𝛼𝑠 − 𝛽𝑠)

6
𝑥0 +

5𝛼𝑠 + 𝛽𝑠

6
𝑦0, 

𝑧𝑠 = 62𝑠𝑧0, 𝑠 = 1,2,3, . .. 

where 

                  𝛼 = 65, 𝛽 = −65 

An example has been given in Table 1 below: 

    Table 1- Example 

s  sx
 sy

 sz
 

0 21 3 3 

1 -54 *64 54 *64 3*62 

2 21*610 3*610 3*64 

3 -54*614 54*614 3*66 

 

Conclusion: 

In this paper ,an attempt has been made to obtain non-zero distinct integer solutions to the ternary non-homogeneous  quintic  equation   𝑥2 + 5𝑦2 =

2𝑧5As the quintic equations are rich in variety, one may search for the integer solutions to other choices of quintic equations with three or more unknowns. 
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