

# **International Journal of Research Publication and Reviews**

Journal homepage: www.ijrpr.com ISSN 2582-7421

# Method Development and Validation of Capecitabine in Tablets by RP-HPLC

# Shaik Yasmeen\*, Karavadi Thejomoorthy and Ch. Saibabu

Department of Pharmaceutical Analysis, Malineni Lakshmaiah College of Pharmacy, Kanumalla, Singarayakonda-523101

# ABSTRACT

An isocratic reverse phase liquid chromatography (RP-HPLC) method has been developed and subsequently validated for the determination of capecitabine in Bulk and its pharmaceutical formulation. Separation was achieved with a Develosil ODS-MG-5; 100 x 4.6mm I.D; particle size 5  $\mu$ m)) Column and Acetate buffer, using buffer and Methanol (450:550) v/v as eluent and purified water, methanol and acetonitrile(600:350:50)v/v as diluent at flow rate 1.0 mL/min and the Column temperature was 40°C. UV detection was performed at 250 nm and sample temperature was maintained at 5°C. The method is simple, rapid, and selective. The described method of Capecitabine is linear over a range of 6  $\mu$ g/mL to 30  $\mu$ g/mL. The method precision for the determination of assay was below 2.0% RSD. The method enables accurate, precise, and rapid analysis of capecitabine. It can be conveniently adopted for routine quality control analysis of Bulk and pharmaceutical formulations.

Keywords: Capecitabin, RP-HPLC, Method development, Method validation.

## Introduction:

Capecitabine, is chemically known as 5'-deoxy-5-fluor[(pentyloxy)carbonyl]-cytidine.. Capecitabine is a prodrug that is selectively tumour-activated to its cytotoxic moiety, fluorouracil, by thymidine phosphorylase, an enzyme found in higher concentrations in many tumors compared to normal tissues or plasma. Fluorouracil is further metabolized to two active metabolites, 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and 5-fluorouridine triphosphate (FUTP), within normal and tumour cells. These metabolites cause cell injury by two different mechanisms. First, FdUMP and the folate cofactor, N5-10-methylenetetrahydrofolate, bind to thymidylate synthase (TS) to form a covalently bound ternary complex. This binding inhibits the formation of thymidylate from 2'-deaxyuridylate. Thymidylate is the necessary precursor of thymidine triphosphate, which is essential for the synthesis of DNA, therefore a deficiency of this compound can inhibit cell division. Secondly, nuclear transcriptional enzymes can mistakenly incorporate FUTP in place of uridine triphosphate (UTP) during the synthesis of RNA. This metabolic error can interfere with RNA processing and protein synthesis through the production of fraudulent RNA.

## Materials & Methods:

## Instrument:

The equipments used are double beam Uv-Visible spectrophotometer (Make: Schimadzu) equipped with Uv probe software, Micro balance (Make: Mettler Toledo), pH meter (Make: Lab India), Sonicator: Ultrasonic bath sonicator (Make: SV Scientific), centrifuge (Make: SV Scientific). The chromatographic separation was carried out using HPLC Alliance Waters (2487) equipped with gradient system, connected to dual absorbance detector. The data was acquired by Empower Pro.

## **Chemicals & Reagents:**

Capecitabin working standard was used for analysis. Methanol, Acetonitrile used are of HPLC grade solvents. Chemicals Glacial acetic acid are of AR grade.

# METHOD DEVELOPMENT

# I. Solubility studies:

Solubility studies for Capecitabine revealed the solubility of drug in methanol. capecitabine was slightly soluble in water.

## II. Selection of detector wave length:

An UV spectrum of  $30 \ \mu g$  / ml Capecitabine in diluents (purified water: Methanol: ACN) in (600:350:50) was recorded by scanning in the range of 200nm to 400nm. From the UV spectrum wavelength of 250 nm was selected. At this wavelength Capecitabine standard showed good absorbance. For spectra refer fig.1. For optimized chromatogram refer fig.2.



Fig.no.1 Spectra of capecitabine showing  $\lambda$  max of 250nm

#### **Optimized Chromatographic conditions:** Mobile phase : Buffer (glacial acetic acid) and Methanol the ratio of( 450:550) Column : Develosil ODS- MG-5(100x4.6mm), 5µm Flow rate : 1.0 ml/min : 250 nm Detector wavelength :40°C Column temperature : 10 µl Injection volume Run time : 10 min Retention time : 5.334 min 0.12 Capecitabine - 5.334 0.10 0.08 P 0.06 0.04 0.02-0.00 2.00 4.00 1.00 3.00 5.00 6.00 7.00 8.00 9.00 10.00 Minutes

Fig. No. 2 Optimized Chromatogram

# Observation: Good peak was obtained.

#### **Preparation of solutions:**

## **Buffer Preparation:**

Accurately transfer 1 mL of Glacial Acetic acid in 1000 ml of purified water and mix. pH need not to be adjusted.

# Mobile phase

Prepare a filtered (0.45µ) and degassed mixture of buffer , Methanol in the ratio of 450:550 v/v respectively

## Diluent

Prepare a mixture of purified Water, Methanol and Acetonitrile in the ratio of 600:350:50 v/v respectively.

# Preparative Steps for Assay method development:

#### **Standard Preparation**:

Accurately Weigh and transfer accurately 60mg of Capecitabine working Standard into a 1000 ml clean dry volumetric flask, and add about 600 ml of diluents, and sonicate to dissolve. cool the solution to room temperature and dilute to volume with diluents and mix.

#### Sample preparation:

Accurately weigh and transfer the sample equivalent to 15 mg of Capecitabine into a 250ml Amber colour volumetric flask. Add about 180 ml of diluents, shake for 10 minutes on orbital shaker and sonicate for 20 minutes with occasional shakings. Cool the solution to room temperature and dilute to volume with diluents . filter the solution through 0.45 \mum PVDF filter.

#### METHOD VALIDATION

This Validation describes the procedure for assay of Capecitabine tablets by HPLC as per ICH Guidelines (Q2B). The method validation parameters for assay of Capecitabine monohydrate include

- Specificity
- System Suitability
- Accuracy
- Linearity and Range
- Precision
- 1. Intermediate precision (ruggedness)

#### 2. Method precision

- Detection Limit
- Quantitation Limit
- Robustness

## VALIDATION

# SYSTEM SUITABILITY:

The system suitability studies were done with the 60mg of standard drug. The % of RSD values are below 2%, theoretical plate count is above 2000 and tailing factor is less than 2, indicating that the method is suitable. The chromatogram is recorded and are shown in fig. No.3 and Table. No.1&2.

#### Fig.No.3 Chromatogram showing system suitability



Table No.1. Showing results from system suitability study

| S. No | Peak Name    | Rt (min) | Area    | USP Tailing | Plate count |
|-------|--------------|----------|---------|-------------|-------------|
| 1     | Capecitabine | 5.332    | 1383340 | 1.12        | 5413        |
| 2     | Capecitabine | 5.331    | 1387644 | 1.12        | 5377        |
| 3     | Capecitabine | 5.330    | 1387750 | 1.11        | 5396        |
| 4     | Capecitabine | 5.330    | 1388970 | 1.11        | 5385        |
| 5     | Capecitabine | 5.330    | 1389243 | 1.11        | 5369        |
| 6     | Capecitabine | 5.328    | 1385820 | 1.12        | 5364        |
| Mean  |              |          | 1387128 | 1.12        | 5384        |
| SD    |              |          | 2217.27 |             |             |
| %RSD  |              |          | 0.16    |             |             |

# Table No.2. Summary of system suitability study

| System suitability parameters | Results (avg) |
|-------------------------------|---------------|
| %RSD                          | 0.16          |
| Tailing factor                | 1.12          |
| Plate count                   | 5384          |
| No. of theoretical plates     | 4890          |
| Relative retention            |               |
| Resolution                    |               |
| Capacity factor               |               |

# LINEARITY

The linearity study was performed for the concentration of  $6\mu g/ml$  to  $30\mu g/ml$  level. Each level was injected into chromatographic system. The area of each level was used for calculation of correlation coefficient. The results are tabulated in Table. No.3.

# Table No.3 showing results from linearity study

| S. No                   | Linearity<br>Level | Concentration<br>(µg/ml) | Peak area |
|-------------------------|--------------------|--------------------------|-----------|
| 1                       | Ι                  | 6                        | 143119    |
| 2                       | II                 | 12                       | 282164    |
| 3                       | III                | 18                       | 432216    |
| 4                       | IV                 | 24                       | 572315    |
| 5                       | V                  | 30                       | 692418    |
| Correlation Coefficient |                    |                          | 0.999     |

The linearity study was performed the correlation coefficient of capecitabine was found to be 0.999 respectively (NMT 0.999).

0.999 respectively (NMT 0.999).

# SPECIFICITY

The system suitability for specificity was carried out to determine whether there is any interferences of any impurities in retention time of analytical peak. The study was performed by injecting blank. The chromatograms are shown in Fig. No.4&5

# Blank:

# Fig No.4 Chromatogram showing blank preparation



# Capecitabine standard:

Fig No.5 Chromatogram showing standard preparation



| S. No | Drug name    | vail | RT    | Peak    | USP         | USP     |
|-------|--------------|------|-------|---------|-------------|---------|
|       |              |      |       | area    | plate count | tailing |
|       |              |      |       |         |             |         |
|       |              |      |       |         |             |         |
|       |              |      |       |         |             |         |
| 1.    | capecitabine | 5    | 5.334 | 1364432 | 5431        | 1.10    |

# Capecitabine sample:

Fig No.6 Chromatogram showing sample preparation



|    | Drug name    | vail | RT    | Peak<br>area | USP<br>plate count | USP<br>tailing |
|----|--------------|------|-------|--------------|--------------------|----------------|
| 1. | capecitabine | 6    | 5.328 | 1356532      | 5431               | 1.10           |

The specificity test was performed for Capecitabine. It was found that there was no interference of impurities in retention time of analytical peak. The method shows excellent specificity with capecitabine eluting at retention of 5.328 minutes. No interference was observed with mobile phase.

# ACCURACY

The accuracy study was performed for 50%, 100% and 150% for capecitabine. Each level was injected in triplicate into chromatographic system. The area of each level was used for calculation of % recovery. Results are tabulated in Table. No.4.

# Table No.4. Showing result from accuracy study

| Level of %<br>recovery | Amount of drug<br>spiked(µg/ml) | Drug recovered | %Recovery | Mean  | SD     | %RSD |
|------------------------|---------------------------------|----------------|-----------|-------|--------|------|
|                        |                                 | 9.62           | 100.2     |       |        |      |
| 80                     | 9.6                             | 9.62           | 100.2     | 100.4 | 0.346  | 0.34 |
|                        |                                 | 9.68           | 100.8     |       |        |      |
|                        |                                 | 12.23          | 101.9     |       |        |      |
| 100                    | 12                              | 12.08          | 100.6     | 101.6 | 0.974  | 0.95 |
|                        |                                 | 12.31          | 102.5     |       |        |      |
|                        |                                 | 14.26          | 99.02     |       |        |      |
| 120                    | 14.4                            | 14.21          | 99.8      | 99.70 | 0.6451 | 0.64 |
|                        |                                 | 14.45          | 100.3     |       |        |      |

The accuracy study was performed for % recovery. The % recovery was found to be 100.4 to 99.70% respectively. (NLT 98% and NMT 102%).

# PRECISION

- Repeatability
- Intermediate Precision

# Repeatability

The standard solution was injected for six times and measured the area for all six injections in HPLC. The %RSD for the area of six replicate injections was found to be within the specified limits.

## Intermediate Precision/Ruggedness

The standard solution was injected for six times and measured the area for all six injections in HPLC. The %RSD for the area of five replicate injections was found to be within the specified limits.

# Repeatability

The precision study was performed for six injections of capecitabine. Each standard injection was injected into chromatographic system. The area of each standard injection was used for calculation of %RSD. Results are tabulated in Table.Nos.5&6.

# Table No.5. Showing from precision study-repeatability (60 µg/ml)

# **Method Precision**

| S. No | Peak Name    | Peak area |
|-------|--------------|-----------|
| 1     | Capecitabine | 1381620   |
| 2     | Capecitabine | 1384273   |
| 3     | Capecitabine | 1382656   |
| 4     | capecitabine | 1383288   |
| 5     | Capecitabine | 1388610   |
| 6     | Capecitabine | 1382144   |
| Mean  |              | 1383765   |
| SD    |              | 1502.76   |
| %RSD  |              | 0.10      |

Table No.6. Showing from precision study-repeatability( $60\mu g/ml$ )

# System Precision

| S.No | Peak Name    | Peak area |
|------|--------------|-----------|
| 1    | Capecitabine | 1382136   |
| 2    | Capecitabine | 1385243   |
| 3    | Capecitabine | 1386230   |
| 4    | Capecitabine | 1386790   |
| 5    | Capecitabine | 1384273   |
| 6    | Capecitabine | 1385280   |
| Mean |              | 1384992   |
| SD   |              | 1648.33   |
| %RSD |              | 0.12      |

#### Ruggedness

# Intra-day precision

Intra-day precision was carried out on same day, same HPLC system, using same column at different times. Calculated average area and %R.S.D for 12 tests, (Condition I and Condition II).

# Inter-day precision

Inter-day precision was carried out on same HPLC system, using same column on another day.

The average area was calculated and %R.S.D. for 6 replicate injections of standard drug solutions.

Method precision: Six Sample solutions are prepared as per test method and injected as per test procedure.

# Table No.7 . Showing from precision study- Intraday

| Conc µg/ml | Peak area | Statistical parameters |
|------------|-----------|------------------------|
| 40         | 912546    | Mean:915887            |
|            | 916382    | S.D:3123.5             |
|            | 918734    | %R.S.D:0.34            |
| 60         | 1364876   | Mean:1366257           |
|            | 1366208   | S.D:1407.15            |
|            | 137689    | %R.S.D:0.10            |
| 80         | 1814786   | Mean:1816049           |
|            | 1816124   | S.D:1227.72            |
|            | 1817238   | %R.S.D:0.06            |

# Table No.8. Showing from precision study- Interday

| Conc µg/ml | Peak area | Statistical parameters |         |              |
|------------|-----------|------------------------|---------|--------------|
|            | Day-1     | Day-2                  | Day-3   | Mean:915780  |
| 40         | 912436    | 916257                 | 918648  | S.D:3133.3   |
|            |           |                        |         | %R.S.D:0.34  |
| 60         | 1364926   | 1365182                | 1367394 | Mean:1365834 |
|            |           |                        |         | S.D:1357.0   |
|            |           |                        |         | %R.S.D:0.09  |
| 80         | 1814954   | 1816242                | 1817438 | Mean:1816211 |
|            |           |                        |         | S.D:1242.28  |
|            |           |                        |         | %R.S.D:0.07  |

The precision of method was determined by replicate injection of sample solution. The %RSD of area of intraday precision are 0.3%, 0.10% and 0.06%. %RSD of interday precision was found to be 0.3%, 0.09% and 0.07%. Precision results are within the limits. (NMT 2)

# LIMIT OF DETECTION AND QUANTIFICATION

## **Detection Limit**

The Detection Limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily qualitated as an exact value

# Calculation of S/N Ratio:

Average Baseline Noise obtained from  $Blank = 42.43 \ \mu V$ 

Signal Obtained from LOD solution =  $0.00948 \ \mu V$ 

LOD= $3.3 \times \sigma/s = 3.3 \times 0.00948/42.43 = 0.000737$ 

#### Acceptance Criteria:

# S/N Ratio value shall be 3 for LOD solution.

#### **Quantitation Limit**

The Quantitation limit of an analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined with suitable precision and accuracy.

#### Calculation of S/N Ratio:

Average Baseline Noise obtained from  $Blank = 42.43 \mu V$ 

Signal Obtained from LOQ solution =  $0.00948 \mu V$ 

 $LOD=10 \times \sigma/s = 10 \times 0.00948/42.43 = 0.02342$ 

## Acceptance Criteria:

S/N Ratio value shall be 10 for LOQ solution.

## ROBUSTNESS

The robustness of an analytical method is a measure of its capacity to remain unaffected by small but deliberate variations in method parameters and provides an indication of its reliability during normal usage. Robustness was done by changing the flow rate ( $\pm$  1), column temperature ( $\pm$  5°C), Changing the wavelength ( $\pm$  5 nm). The %RSD of peak area, tailing factor and theoretical plates of Capecitabine standard was found within the limits.

# Table No.9. Showing results from robustness study

| Replicate standard injections at 0.9ml/min |           |                  |                          |  |  |
|--------------------------------------------|-----------|------------------|--------------------------|--|--|
| Injection No                               | Peak area | Observation      | Acceptance criteria      |  |  |
| 1                                          | 1364216   |                  |                          |  |  |
| 2                                          | 1362325   | Average :1364003 | % RSD : not more than 2% |  |  |
| 3                                          | 1365470   |                  |                          |  |  |

Table No.10. Showing results from robustness study

| Replicate standard injections at 1.1ml\min |           |                                  |                          |  |
|--------------------------------------------|-----------|----------------------------------|--------------------------|--|
| Injection No                               | Peak area | Observation                      | Acceptance criteria      |  |
| 1                                          | 1384273   |                                  |                          |  |
| 2                                          | 1388610   | Average :1385179<br>% RSD = 0.14 | % RSD : not more than 2% |  |
| 3                                          | 1382656   |                                  |                          |  |

The analytical method was found to be robust with respect to change in flow rate.

#### Influence on variation of Column Temperature:

# Table No.11. Showing results from robustness study

| Replicate standard injections at 35°c |           |                                   |                          |  |  |  |
|---------------------------------------|-----------|-----------------------------------|--------------------------|--|--|--|
| Injection No                          | Peak area | Observation                       | Acceptance criteria      |  |  |  |
| 1                                     | 1364354   | Average :1366608<br>% RSD = 0.10% | % RSD : not more than 1% |  |  |  |
| 2                                     | 1367124   |                                   |                          |  |  |  |
| 3                                     | 1368346   |                                   |                          |  |  |  |

Table No.12. Showing results from robustness study

| Replicate standard injections at 45°c |           |                                   |                          |  |  |  |
|---------------------------------------|-----------|-----------------------------------|--------------------------|--|--|--|
| Injection No                          | Peak area | Observation                       | Acceptance criteria      |  |  |  |
| 1                                     | 1364592   | Average :1366723<br>% RSD = 0.15% | % RSD : not more than 1% |  |  |  |
| 2                                     | 1366831   |                                   |                          |  |  |  |
| 3                                     | 1368746   |                                   |                          |  |  |  |

Influence on variation of wave length :

Table No.13. Showing results from robustness study

| Replicate standard injections at wave length 245 nm |           |                                  |                          |  |  |
|-----------------------------------------------------|-----------|----------------------------------|--------------------------|--|--|
| Injection No                                        | Peak area | Observation                      | Acceptance criteria      |  |  |
| 1                                                   | 1364234   | Average :1364798<br>% RSD = 0.04 | % RSD : not more than 1% |  |  |
| 2                                                   | 1365173   |                                  |                          |  |  |
| 3                                                   | 1364986   |                                  |                          |  |  |

Table No. 14. Showing results from robustness study

| Replicate standard injections at wave length 255nm |           |                                  |                          |  |  |  |
|----------------------------------------------------|-----------|----------------------------------|--------------------------|--|--|--|
| Injection No                                       | Peak area | Observation                      | Acceptance criteria      |  |  |  |
| 1                                                  | 1365216   | Average :1366677<br>% RSD = 0.09 | % RSD : not more than 1% |  |  |  |
| 2                                                  | 1366528   |                                  |                          |  |  |  |
| 3                                                  | 1368287   |                                  |                          |  |  |  |

Assay calculation-:

$$\% \text{Assay} = -\frac{TA}{SA} \times \frac{SW}{100} \times \frac{250}{\text{TW}} \times \frac{P}{100} \times \frac{Avg.wt}{LA} \times 100$$

%Assay = 99.32%

# CONCLUSION

A new method has been established for estimation of Capecitabine by RP-HPLC method. The chromatographic conditions were successfully developed for the separation of Capecitabine by using Develosil ODS-MG-5 column, flow rate was 1.0ml/min, mobile Phase: Buffer and Methanol (450:550v/v) and Diluent mixture of purified water, Methanol and Acetonitrile (600:350:50). Detection wave length was 250nm. The instrument used was WATERS HPLC auto sampler. The retention times were found to be 5.334 mins. The analytical method was validated according to ICH guidelines (ICH Q2b). The correlation coefficient ( $r^2$ ) was found to be 0.999, % recovery was 100.4-99.70% and %RSD for precision on replicate injection was 0.10 and intermediate precision for intraday precision at condition-I,II and III was 0.3, 0.10 and 0.06% interday precision at condition-I,II and III was 0.3, 0.09 and 0.07% respectively. The precision study was precise, robust, and repeatable. LOD value was 0.000737 and LOQ value was 0.02342. Hence the method can be used for routine analysis of capecitabine in API and tablet dosage form.

#### **References:**

- Willard HH, Merritt LL, Dean JA and Settle FA, (2001), Instrumental Methods of Analysis, 7<sup>th</sup> ed., CBS Publishers and Distributors, Delhi, p.3.
- Skoog DA, West DM and Holler FJ, (1996), Fundamentals of Analytical Chemistry, 7<sup>th</sup> ed., Saunders College Publishing, Philadephia, p. 1-3.
- 3) Sharma BK, (2002), Instrumental Methods of Chemical Analysis, 21st ed., Goel Publishing House, Meerut, p. 3-5.
- Skoog DA, Holler FJ, Timothy A and Niemann NW, (2004), Principle of Instrumental Analysis, 5<sup>th</sup> ed., Eastern Press, Bangalore, p. 1-2, 678-688, 695-696.
- 5) Scott RPW, (2003), Technique and Practice of chromatography, Marcel Dekker, New York, Vol. 70, p. 1-12.
- Jeffery GH, Basset J, Mendham J and Denney RC, (1996), Vogel's textbook of Quantitative Chemical analysis, 5<sup>th</sup> ed., Longman Publication, England, p. 647-649.
- 7) Connors KA, (1999), a textbook of Pharmaceutical Analysis, 8<sup>th</sup> ed., Wiley-Interscience, New York, p. 408-421.
- 8) Hamilton RJ and Sewell PA (1982) Introduction to HPLC, 2<sup>nd</sup> ed., Chapman and Hall, London, p. 189.
- 9) Snyder LR, Kirkland JJ and Glajch JL, (1997), Practical HPLC Method Development, 2<sup>nd</sup> ed., New York, Wiley, p. 1-20.
- Sethi PD, (2001), HPLC 'High Performance Liquid Chromatography', Quantitative Analysis of Pharmaceutical Formulations, 1<sup>st</sup> ed., CBS Publishers and Distributors, New Delhi, p. 3-11, 116-120.
- 11) Munson JW, (2001), Pharmaceutical Analysis: Modern Methods (Part B), Marcel Dekker, New York, p. 51-54,120,175.
- 12) Scott RPW, Liquid Chromatography for the Analyst, Marcel Dekker, New York, Vol. 67, p. 15-23, 265-272.
- Chatwal GR and Anand (2001) SK, (2004), Instrumental Methods of Chemical Analysis, 5<sup>th</sup> ed., Himalaya Publishing House, Delhi, p. 2.599-2.605.
- 14) Ewing's, Analytical Instrumentation Handbook,(2005) 3<sup>rd</sup> ed., edited by Cazes J, Marcel Dekker, New York, p. 995-998.
- 15) Sharma BK, (2003), Instrumental Methods of Chemical Analysis, 25th ed., Goel Publishing House, Meerut, p. 39-42, 96-104.
- 16) Parimoo P, (1998), Pharmaceutical Analysis, 1st ed., CBS Publication and Distributors, New Delhi, p. 151-152.
- 17) Schrimer RE, (1991), Modern Method Pharmaceutical Analysis, 2<sup>nd</sup> ed., CRC Press, Vol.-1, p. 75-76.
- Beckett AH and Stenlake JB, (2004), Practical Pharmaceutical Chemistry, Part 2, CBS Publishers and Distributors, New Delhi, p. 282-283
- 19) ICH Harmonised Tripartite Guideline (Nov 2005) Validation of Analytical Procedures: Text and Methodology Q2 (R1).
- ICH, (October 1993), Q1A Stability testing of New Drug Substances and Products, In: Proceedings of the International Conference on Harmonization, Geneva.
- 21) Liia D. Vainchtein, Hilde Rosing, Jan H.M. Schellens, Jos H. Beijnen. (2010) A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine, 5-fluorouracil and 5-fluorodihydrouracil, in human plasma. http://www.ncbi.nlm.nih.gov/pubmed/19650151

- 22) N. Sreekanth, Bahlul Z. Awen, Babu Rao; A new validated RP-HPLC method for the estimation of Capecitabine in bulk and pharmaceutical dosage form http://www.researchgate.net/publication/251442317AnewvalidatedRP-HPLCmethod for the estimation of Capecitabine in bulk and pharmaceutical dosage forms
- 23) Kumar, K. Ravi; Prasada Rao, CH. M. M.; Rao, CH. Babu; Chandra sekhar, K. B.; Reddy, P. GangiJanuary 2010 RP-HPLC Method development and validation for estimation of capecitabine capsules. http://connection.ebscohost.com/c/articles/51973456/rp-hplc-methoddevelopment validation-estimation-capecitabine-capsules
- 24) R.Svobaite, I.Solassol, F.Pinguet, T.Mazzard, M.Ychou A new, validated HPLC-MS/MS method for the simultaneous determination of the anti-cancer agent capecitabine and its metabolites: 5'-deoxy-5-fluorocytidine, 5'-deoxy-5-fluorouridine, 5-fluorouracil and 5fluorodihydrouracil, in human plasma http://www.tandfonline.com/doi/abs/10.1080/10826076.2010.503842#.UnDYCVMlgk
- 25) Karnaker Reddy, T.; Sravan Kumar, S.; Ravindra Reddy, Y.January 2011Estimation of capcetabine drug present in tablets by RP-HPLC method http://connection.ebscohost.com/c/articles/74080369/estimation-capcetabine-drug-present-tablets-by-rp-hplc-method
- 26) Christoph Siethoff, Matthias Orth, Andrea Ortling, Erich Brendel<sup>2</sup>, Winfried Wagner-Redeker Simultaneous determination of capecitabine and its metabolite 5-fluorouracil by column switching and liquid chromatographic/tandem mass spectrometry <u>http://www.ncbi.nlm.nih.</u> gov/pubmed/15329840
- 27) Dhananjeyan MR, Liu J, Bykowski C, Trendel JA, Sarver JG, Ando H, Erhardt PW Rapid and simultaneous determination of capecitabine and its metabolites in mouse plasma, mouse serum, and in rabbit bile by high-performance liquid chromatography <u>http://www.ncbi.</u> <u>nlm.nih.gov/pubmed/17070825</u>
- 28) Rajesh, V.; anupama, B.; jagathi, V.; sai praveen, P. Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method http://www.hindawi.com/journals/jchem/2011/437157/abs/
- 29) Zufía L, Aldaz A, Giráldez J Simple determination of capecitabine and its metabolites by liquid chromatography with ultraviolet detection in a single injection

http://www.ncbi.nlm.nih.gov/pubmed/15282093

- 30) Sylvie M. Guichard, Iain Mayer, Duncan I. Jodrell Simultaneous determination of capecitabine and its metabolites by HPLC and mass spectrometry for preclinical and clinical studieshttp://www.ncbi.nlm.nih.gov/pubmed/16198157
- Salvador, L. Millerioux, A. Renou Simultaneous LC-MS-MS Analysis of Capecitabine and its Metabolites (5'-deoxy-5-fluorocytidine, 5'deoxy-5-fluorouridine, 5-fluorouracil) After Off-Line SPE from Human Plasma

http://link.springer.com/article/10.1365%2Fs10337-006-0799-5

- 32) Yan Xu, Jean L Grem Liquid chromatography-mass spectrometry method for the analysis of the anti-cancer agent capecitabine and its nucleoside metabolites in human plasma
- 33) http://www.curehunter.com/m/pubmed12450548.do
- 34) Damien Montange, Michel Bérard, Martin Demarchi, Patrice Muret, Sarah Piédoux, Jean Pierre Kantelip, Bernard Roye An APCI LC-MS/MS method for routine determination of capecitabine and its metabolites in human plasma <u>http://www.ncbi.nlm.nih.gov/pubmed/20527036</u>
- 35) http://www.xeloda.com/about/isi/
- 36) http://www.drugbank.ca/drugs/DB01101